JPH07167391A - High purity gas filling container and manufacture thereof - Google Patents

High purity gas filling container and manufacture thereof

Info

Publication number
JPH07167391A
JPH07167391A JP31140293A JP31140293A JPH07167391A JP H07167391 A JPH07167391 A JP H07167391A JP 31140293 A JP31140293 A JP 31140293A JP 31140293 A JP31140293 A JP 31140293A JP H07167391 A JPH07167391 A JP H07167391A
Authority
JP
Japan
Prior art keywords
polishing
magnetic
container
gas filling
purity gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31140293A
Other languages
Japanese (ja)
Inventor
Atsushi Togo
淳 東郷
Yoshihiro Shindou
義弘 神道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benkan Kikoh Corp
Original Assignee
Sumikin Kikoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Kikoh Co Ltd filed Critical Sumikin Kikoh Co Ltd
Priority to JP31140293A priority Critical patent/JPH07167391A/en
Publication of JPH07167391A publication Critical patent/JPH07167391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To reduce the generation of particles and the discharge of adsorbed water content by smoothing the inner surface of the head part, subjected to contraction of opening, of a high purity gas filling container made of nonmagnetic material, by magnetic polishing so that the surface roughness becomes the specific value or less. CONSTITUTION:A container formed by applying opening contraction work to the head part 10 of a seamless steel pipe made of nonmagnetic material such as austenite stainless steel is installed with the head part 10 facing downward. Magnetic poles 3 are installed obliquely downward. Magnetic abrasive material is charged in the container and attracted to the magnetic poles 3 so as to be in contact with the inner surface of the opening-contracted part. In this state, the container is rotated to smooth the inner surface of the opening- contracted part by magnetic polishing. The surface roughness of the smoothed part is to be 10mum or less at Rmax, thus obtaining a high purity gas filling container having a small quantity of water content and reduced in the discharge of particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセス等
で使用される高純度ガスを充填するための容器であっ
て、その内面が平滑で充填した高純度ガスの汚染のおそ
れがない容器、およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for filling a high-purity gas used in a semiconductor manufacturing process or the like, the inner surface of which is smooth so that the filled high-purity gas is not contaminated. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体製造分野においては、近年、高集
積化の進捗が著しく、超LSIと称されるディバイスで
は、1μm以下の微細パターンの加工が必要とされてい
る。このような超LSI製造プロセスでは、微少な塵や
微量不純物ガスが配線パターンに付着、吸着して回路不
良の原因となる恐れがあるため、使用する反応ガスおよ
びキャリアーガスは共に高純度であること、すなわちガ
ス中の微粒子(パーティクル)および不純物ガスが少な
いことが必要とされる。従って、半導体製造プロセス等
で使用される高純度ガス用配管および充填用容器には、
その内表面から放出される汚染物としてのパーティクル
および不純物ガスとしての吸着水分が極力少ないことが
要求される。
2. Description of the Related Art In the field of semiconductor manufacturing, progress in high integration has been remarkable in recent years, and devices called VLSIs are required to process fine patterns of 1 μm or less. In such a VLSI manufacturing process, a minute amount of dust or a trace amount of impurity gas may be attached to and adsorbed on the wiring pattern to cause a circuit failure. Therefore, both the reaction gas and the carrier gas to be used must have high purity. That is, it is necessary that the amount of fine particles (particles) and the impurity gas in the gas be small. Therefore, high purity gas pipes and filling containers used in semiconductor manufacturing processes, etc.
It is required that particles as contaminants released from the inner surface and adsorbed moisture as impurity gas be as small as possible.

【0003】上記のようなパーティクルの発生や内表面
への水分の吸着を防止する対策として、配管および容器
の内表面を平滑化することが重要である。配管用の管
材、あるいは一方に大きな開口を持つ容器であれば、そ
の内面の平滑化は機械研磨や電解研磨等によって比較的
容易に実施できる。しかしながら、閉鎖した底部と、絞
られた口を持つ容器、即ちガス充填用容器(ボンベ)で
は、その内面の全体を平滑に仕上げることが困難であ
る。
As a measure for preventing the generation of particles and the adsorption of water on the inner surface as described above, it is important to smooth the inner surfaces of pipes and containers. In the case of a pipe material for piping or a container having a large opening on one side, smoothing of the inner surface can be relatively easily performed by mechanical polishing, electrolytic polishing, or the like. However, with a container having a closed bottom and a narrowed mouth, that is, a gas filling container (cylinder), it is difficult to make the entire inner surface of the container smooth.

【0004】図3は、ガス充填用容器の通常の製造工程
の概要を示す図である。図示のように、先ず原管(継目
無鋼管)31を所定長さに切断する(の工程)。次にそ
の一端を熱間で絞り加工して閉鎖し、底部を形成する
(、の工程)。このようにしてできた底つきの素管
がに示す32である。この素管の開口端を熱間で絞り加
工して頭部を成形する(の工程)。その後、必要な熱
処理()と頭部の口ねじ加工()を施し、検査
()および塗装()の工程を経て製品となる。
FIG. 3 is a diagram showing an outline of a normal manufacturing process of a gas filling container. As shown in the drawing, first, the raw pipe (seamless steel pipe) 31 is cut into a predetermined length (step of). Next, one end thereof is hot drawn and closed to form a bottom portion (step of,). The bottomed tube made in this way is 32. The open end of this raw pipe is hot drawn to form the head (step of). After that, necessary heat treatment () and head screw processing () are applied, and the product undergoes inspection () and painting () steps.

【0005】さて、前述の内面平滑化は、図3のに示
す素管32の状態で機械研磨や電解研磨によって実施でき
る。ところが、その後の工程で熱間での口絞り加工を
行うと、頭部の内面は再び荒れて粗面化してしまう。し
かも、口絞りによって頭部の開口は小さくなって、容器
はほぼ密閉状態であるため、この粗面化した部分を再度
研磨するのは極めて困難である。従って、従来は、この
頭部の内面の再研磨は十分に行われずに使用に供してい
た。
The above-mentioned inner surface smoothing can be carried out by mechanical polishing or electrolytic polishing in the state of the shell 32 shown in FIG. However, if hot drawing is performed in the subsequent process, the inner surface of the head becomes rough again and becomes rough. Moreover, since the opening of the head is reduced by the mouth stop and the container is in a substantially sealed state, it is extremely difficult to polish the roughened portion again. Therefore, conventionally, the inner surface of the head has not been sufficiently re-polished, and the head has been used.

【0006】上記のようにして製造した容器を高純度ガ
ス充填用容器として使用する場合、パーティクルの発生
および吸着水分の放出を十分に防止できないという問題
がある。
When the container manufactured as described above is used as a high-purity gas filling container, there is a problem that generation of particles and release of adsorbed moisture cannot be sufficiently prevented.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記した従
来のガス充填用容器における問題点に鑑み、頭部内面を
含めた全内表面が十分に平滑化され、パーティクルの発
生および吸着水分の放出が極めて少ない高純度ガス充填
用容器、およびその製造方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the conventional gas filling container, the present invention sufficiently smooths the entire inner surface including the inner surface of the head to prevent generation of particles and adsorption moisture. It is an object of the present invention to provide a high purity gas filling container that emits extremely little and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、下記の (1)の
高純度ガス充填用容器、および(2) のその製造方法を要
旨とする。
The gist of the present invention is the following (1) high-purity gas filling container and (2) a method for producing the same.

【0009】(1) 口絞り加工を施した頭部の内面が磁気
研磨によって平滑化されており、その平滑化した部分の
表面粗さがRmax で10μm 以下であることを特徴とする
高純度ガス充填用容器。
(1) A high-purity gas characterized in that the inner surface of the head subjected to the mouth-drawing processing is smoothed by magnetic polishing, and the surface roughness of the smoothed portion is Rmax of 10 μm or less. Filling container.

【0010】(2) 頭部に口絞り加工を施した容器を頭部
を下向きにして設置し、その斜め下方に磁極を設置し、
容器内部に装入した磁性研磨材を上記磁極で引きつけて
口絞り部内面に接触させた状態で容器をその中心軸の周
りに回転させて磁気研磨を行うことを特徴とする高純度
ガス充填用容器の内面研磨方法。
(2) The head of which the mouth is processed is placed with the head facing downward, and the magnetic poles are placed diagonally below the head,
For high-purity gas filling, characterized in that the magnetic polishing material charged in the container is attracted by the magnetic poles and is brought into contact with the inner surface of the orifice portion to rotate the container around its central axis for magnetic polishing. Method for polishing inner surface of container.

【0011】上記(1) の容器は、磁気研磨が可能な非磁
性材料、例えば JISのSUS 316Lのようなオーステナイト
系ステンレス鋼で製造されるものである。
The container (1) is made of a non-magnetic material capable of magnetic polishing, for example, an austenitic stainless steel such as JIS SUS 316L.

【0012】上記(2) の方法における磁気研磨とは、磁
極と磁性研磨材とを使用して被研磨材と上記磁性研磨材
とを接触状態で相対的に移動させて行う研磨方法であ
る。また、この研磨方法では、磁性研磨材として磁性砥
粒、強磁性粒および湿潤剤からなるものを用いて湿式磁
気研磨を行うのが望ましく、さらに、この研磨を荒研磨
と仕上研磨との工程に分けて行うことが好ましい。
The magnetic polishing in the method (2) is a polishing method in which a magnetic material and a magnetic polishing material are used to relatively move the material to be polished and the magnetic polishing material in contact with each other. Further, in this polishing method, it is desirable to perform wet magnetic polishing using a magnetic abrasive composed of magnetic abrasive grains, ferromagnetic grains and a wetting agent. Further, this polishing is performed in steps of rough polishing and finish polishing. It is preferable to carry out separately.

【0013】[0013]

【作用】図4は、円管の内面研磨を例として磁気研磨の
原理を説明する図である。図示のように、回転する非磁
性の円管1の外部近傍に磁極3を設けて、励磁コイル4
に通電すると磁極3による磁束が発生し、非磁性円管1
に影響されることなく磁束が管の内面を透過する。その
ため、非磁性円管1の管内に装入された磁性研磨材2は
磁力によってN−S磁極3に吸引されることによって、
非磁性円管1の管内面に押しつけられる。そこで、非磁
性円管1を回転させれば、管の内面と磁性研磨材2が相
対運動を生じることとなり、非磁性円管1の内面研磨が
行われる。
FIG. 4 is a view for explaining the principle of magnetic polishing, taking the inner surface of a circular tube as an example. As shown, a magnetic pole 3 is provided in the vicinity of the outside of the rotating non-magnetic circular tube 1, and an exciting coil 4 is provided.
Magnetic flux is generated by the magnetic pole 3 when electricity is applied to the non-magnetic circular tube 1
The magnetic flux passes through the inner surface of the tube without being affected by Therefore, the magnetic abrasive 2 loaded in the non-magnetic circular tube 1 is attracted to the N-S magnetic pole 3 by the magnetic force,
It is pressed against the inner surface of the non-magnetic circular tube 1. Therefore, when the non-magnetic circular tube 1 is rotated, the inner surface of the tube and the magnetic polishing material 2 cause relative movement, and the inner surface of the non-magnetic circular tube 1 is polished.

【0014】磁気研磨に作用する力、即ち、磁性研磨材
2を加工領域である管内面に押しつける磁力(ΔFx
よびΔFy )は、次のように表せる。
The force acting on the magnetic polishing, that is, the magnetic force (ΔF x and ΔF y ) for pressing the magnetic polishing material 2 against the inner surface of the tube, which is the processing region, can be expressed as follows.

【0015】 ΔFx =V0 χΔKx =πD3 /6・χH(αH/αx)・・・ (1) ΔFy =V0 χΔKy =πD3 /6・χH(αH/αy)・・・ (2) ここで、V0 :粒子の体積、 χ:粒
子の磁化率、D:粒子を球と仮定したときの粒径、Δ
K:磁場強度と磁界の変化率の積、 H:磁場強度 ただし、添字のx、yは、x:磁力線の方向、y:磁力
線と垂直方向を示している。
[0015] ΔF x = V 0 χΔK x = πD 3/6 · χH (αH / αx) ··· (1) ΔF y = V 0 χΔK y = πD 3/6 · χH (αH / αy) ··· (2) Here, V 0 : volume of particles, χ: magnetic susceptibility of particles, D: particle size when the particles are assumed to be spheres, Δ
K: product of magnetic field strength and change rate of magnetic field, H: magnetic field strength However, subscripts x and y indicate x: direction of magnetic force line, y: direction perpendicular to magnetic force line.

【0016】加工物の回転を伴う磁気研磨において、研
磨材が加工部分とともに回転する、いわゆる研磨材の
「とも回り」が発生すると研磨不能となるため、研磨材
の「とも回り」を避けなければならない。一般に、図4
に示すような磁極配置では、上記(1)、(2)式で表
されるΔFx およびΔFy を大きくすることによって、
磁性研磨材2が加工領域に強く拘束されるため、研磨材
の「とも回り」は発生しにくくなる。
In magnetic polishing accompanied by rotation of a workpiece, if the so-called "rotation" of the abrasive, which is caused by rotation of the abrasive with the processed portion, occurs, polishing cannot be performed. Therefore, the "rotation" of the abrasive must be avoided. I won't. In general, FIG.
In the magnetic pole arrangement as shown in, by increasing ΔF x and ΔF y represented by the above equations (1) and (2),
Since the magnetic polishing material 2 is strongly bound to the processing area, the "blur" of the polishing material is less likely to occur.

【0017】上記の原理に基づく磁気研磨を、ほぼ密閉
状態となるガス充填用容器の頭部内面の平滑加工法とし
て、応用するのが本発明方法の特徴である。すなわち、
頭部成型後の容器であっても、容器の一部、例えば容器
の頭部に内面研磨用の研磨材の装入および排出のために
若干の開口部が確保できれば、磁気研磨によって内面研
磨が可能となる。また、高純度ガス充填用容器としてオ
ーステナイト鋼、代表的にはSUS 316L鋼がパーティクル
の発生や内表面への水分の吸着を防止できることから、
一般的に使用されている。従って、鋼種としても非磁性
であって、磁気研磨の適用には支障とはならない。しか
し、適正に高純度ガス充填用として内面研磨を行うに
は、次に示すように研磨材の選定および加工条件を考慮
しなければならない。
It is a feature of the method of the present invention that magnetic polishing based on the above principle is applied as a method for smoothing the inner surface of the head of a gas filling container that is in a substantially sealed state. That is,
Even in the case of a container after head molding, if some opening can be secured in a part of the container, for example, the head of the container for charging and discharging the abrasive for the inner surface polishing, the inner surface can be polished by the magnetic polishing. It will be possible. Further, as a high-purity gas filling container, austenitic steel, typically SUS 316L steel can prevent generation of particles and adsorption of water on the inner surface,
Commonly used. Therefore, it is also non-magnetic as a steel grade and does not hinder the application of magnetic polishing. However, in order to properly perform the inner surface polishing for filling the high-purity gas, it is necessary to consider the selection of the polishing material and the processing conditions as described below.

【0018】A.研磨材 本発明の磁気研磨においては、研磨材として磁性砥粒、
強磁性粒および湿潤剤を用いて、湿式磁気研磨を行うこ
とが好ましい。
A. Abrasive In the magnetic polishing of the present invention, magnetic abrasive grains as an abrasive,
Wet magnetic polishing is preferably performed using ferromagnetic particles and a wetting agent.

【0019】磁性砥粒は、磁気に感応する鉄粉と加工部
を研磨するための酸化アルミニウム系砥粒(Al2O3 、以
下、WA砥粒という)とによって構成されている。磁性
砥粒の具体的な製造法の一例として、鉄粉とWA砥粒の
混合割合を重量比で、鉄:WA砥粒=4:1で混合し
て、高温(1300℃)、かつ、高圧(約5MPa)下で、真
空中または不活性ガス雰囲気中で焼結した後、粉砕して
整粒する方法がある。このようにして製造した磁性砥粒
の種類(磁性砥粒No1〜3)、粒径およびそれに使用し
たWA砥粒の粒径を表1にまとめる。
The magnetic abrasive grains are composed of iron powder sensitive to magnetism and aluminum oxide type abrasive grains (Al 2 O 3 , hereinafter referred to as WA abrasive grains) for polishing the processed portion. As an example of a specific method for producing magnetic abrasive grains, iron powder and WA abrasive grains are mixed at a weight ratio of iron: WA abrasive grains = 4: 1 to obtain high temperature (1300 ° C) and high pressure. There is a method of sintering under vacuum (about 5 MPa) or in an inert gas atmosphere, and then pulverizing and sizing. Table 1 summarizes the types of magnetic abrasive grains thus produced (magnetic abrasive grains No. 1 to No. 3), the grain size and the grain size of the WA abrasive grains used therein.

【0020】[0020]

【表1】 [Table 1]

【0021】磁性砥粒に加え、強磁性粒として電解鉄粉
およびショット粒を混合するのがよい。強磁性粒を混合
するのは、磁性砥粒のみの研磨では磁場力が小さく、所
定の研磨力が確保できない場合もあり、研磨材のコアと
して強磁性粒の使用が有効だからである。ここで、電解
鉄粉は、比較的不定型で粒径も大きいので荒研磨用とし
て、ショット粒は形状が球形で粒径が小さいので、仕上
研磨用として使い分けることができる。後述する研磨工
程の検討では、電解鉄粉は粒径の異なるものを二種類
(電解鉄粉No1、No2)使用したが、その強磁性粒の粒
径は表2に示す通りである。
In addition to the magnetic abrasive grains, it is preferable to mix electrolytic iron powder and shot grains as ferromagnetic grains. The reason why the ferromagnetic particles are mixed is that the magnetic field force is small and the predetermined polishing force may not be ensured by polishing only the magnetic abrasive grains, and the use of the ferromagnetic grains as the core of the abrasive is effective. Here, the electrolytic iron powder can be used for rough polishing because it is a relatively irregular type and has a large particle size, and can be used for finish polishing because the shot particles have a spherical shape and a small particle size. In the examination of the polishing step described later, two types of electrolytic iron powders having different particle sizes (electrolytic iron powders No1 and No2) were used, and the particle size of the ferromagnetic particles is as shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】内面研磨に湿式磁気研磨法を採用するのが
望ましいのは、研磨後の表面粗さを向上させるためであ
る。湿潤剤として、研削作用があり、研磨後の防錆およ
び光沢仕上げに優れた効果を発揮するマシン油または研
磨用コンパウンドを用いるのが良い。特に、研磨用コン
パウンドは、研磨後の研磨光沢の向上に適している。
The wet magnetic polishing method is preferably used for the inner surface polishing in order to improve the surface roughness after polishing. As a wetting agent, it is preferable to use a machine oil or a polishing compound that has a grinding action and exerts an excellent effect on rust prevention and gloss finish after polishing. In particular, the polishing compound is suitable for improving the polishing gloss after polishing.

【0024】被研磨材の表面粗さを向上させるには、研
磨材に占める磁性砥粒の混合比を25〜75重量%の範囲に
する必要がある。磁性砥粒の混合比が25重量%未満で
は、強磁性粒が多いので、研磨材の比透磁率が大きくな
り研磨力は生じるが、研磨に関与する磁性砥粒が少ない
ため、内面粗さは良くならない。一方、磁性砥粒の混合
比が75重量%を超えると、磁性砥粒は多いが研磨力が小
さくなり、内面粗さは向上しない。特に、磁性砥粒の混
合比が60重量%のときに、研磨効率が最も良くなる。
In order to improve the surface roughness of the material to be polished, it is necessary to set the mixing ratio of the magnetic abrasive grains in the polishing material in the range of 25 to 75% by weight. When the mixing ratio of the magnetic abrasive grains is less than 25% by weight, there are many ferromagnetic grains, so the relative permeability of the abrasive increases and polishing force is generated, but since there are few magnetic abrasive grains involved in polishing, the inner surface roughness is It doesn't get better. On the other hand, when the mixing ratio of the magnetic abrasive grains exceeds 75% by weight, the magnetic abrasive grains are abundant, but the polishing force becomes small, and the inner surface roughness is not improved. Particularly, when the mixing ratio of the magnetic abrasive grains is 60% by weight, the polishing efficiency is the best.

【0025】B.研磨回転数 通常、小径である高純度ガス充填用容器(外径90mm以
下)を前提とした場合に、被研磨材の回転数は 500〜90
0rpmの範囲が一定の表面粗さを確保する条件として望ま
しい。
B. Polishing speed Normally, assuming a small-diameter high-purity gas filling container (outer diameter 90 mm or less), the number of rotations of the material to be polished is 500 to 90.
The range of 0 rpm is desirable as a condition for ensuring a constant surface roughness.

【0026】図5は、被研磨材(ステンレス鋼管)の回
転数と研磨後の内面粗さとの関係を示す図である。同図
において、供試材としてステンレス鋼管(SUS 316L、外
径50.8mm×肉厚 4.0mm×長さ 300mm、冷間抽伸ままで内
面粗さはRmax 約12μm)を用い、研磨材は電解鉄粉
No1+磁性砥粒No1+マシン油および電解鉄粉No2+
磁性砥粒No1+マシン油の二種類を使用し、研磨(研磨
時間:10分)後の内面粗さを測定した。
FIG. 5 is a diagram showing the relationship between the number of revolutions of the material to be polished (stainless steel pipe) and the inner surface roughness after polishing. In the figure, a stainless steel pipe (SUS 316L, outer diameter 50.8 mm × wall thickness 4.0 mm × length 300 mm, inner surface roughness Rmax of about 12 μm as cold drawn) was used as the test material and electrolytic iron powder was used as the polishing material.
No1 + magnetic abrasive grain No1 + machine oil and electrolytic iron powder No2 +
Using two types of magnetic abrasive grains No. 1 + machine oil, the inner surface roughness after polishing (polishing time: 10 minutes) was measured.

【0027】同図から、またはのいずれの研磨材を
使用しても、被研磨材の回転数が増すにつれて、内面粗
さが向上する傾向を示すが、 500〜900rpmの範囲では内
面粗さは一定となる。回転数が500rpm未満では、10分の
研磨時間で研磨不足であった。一方、回転数が1100rpm
になると、研磨材は被研磨材ととも回りはしないもの
の、若干回転方向に流れるようになり、研磨力は低下す
る。しかし、被研磨材の回転速度がそれを補う結果とな
って、WA砥粒の浅い研磨と高回転による高研磨量によ
って内面粗さは良好になっている。
From the figure, no matter which abrasive material is used, the inner surface roughness tends to improve as the number of revolutions of the material to be polished increases, but the inner surface roughness is in the range of 500 to 900 rpm. It will be constant. When the rotation speed was less than 500 rpm, the polishing time was insufficient and the polishing time was 10 minutes. On the other hand, the rotation speed is 1100 rpm
Then, the polishing material does not rotate together with the material to be polished, but it slightly flows in the rotating direction, and the polishing force decreases. However, the rotation speed of the material to be polished compensates for this, and the inner surface roughness is improved due to the shallow polishing of the WA abrasive grains and the high polishing amount due to the high rotation.

【0028】C.研磨工程 一般に、高純度ガス用配管および部材において、パーテ
ィクルの発生や内表面への水分の吸着を防止する対策と
して、これらの部材の表面とガスまたは純水との接触面
積がなるべく小さくなるように、内面粗さ(Rmax )が
1〜2μm以下とするのが目安となっている。被研磨材
の表面をこのような内面粗さにするためには、本発明の
内面研磨においては荒研磨の工程と仕上研磨の工程に区
分するのが好ましい。
C. Polishing process Generally, in high-purity gas piping and members, as a measure to prevent the generation of particles and the adsorption of moisture on the inner surface, the contact area between the surface of these members and gas or pure water should be as small as possible. As a standard, the inner surface roughness (Rmax) is 1 to 2 μm or less. In order to make the surface of the material to be polished have such an inner surface roughness, it is preferable to divide the inner surface polishing of the present invention into a rough polishing step and a finish polishing step.

【0029】研磨工程の選択にあたっては、次の試験を
行った。供試材として前記と同様のステンレス鋼管(但
し、内面粗さはRmax 約60μm)を用いて、ステンレス
鋼管の回転数は 850rpm で研磨を行い、研磨時間と研磨
後の内面粗さとの関係を調査した。このとき使用した研
磨材は、No.1研磨材として荒研磨用を想定して電解鉄粉
No1(粒径1700μm)+磁性砥粒No1+マシン油の混合
とし、No.2研磨材として仕上研磨用を想定して電解鉄粉
No2(粒径 300μm)+磁性砥粒No1+マシン油の混合
とした。研磨材に占める磁性砥粒の混合比は、いずれも
50重量%とした。
The following tests were conducted in selecting the polishing process. Using the same stainless steel tube as above (however, the inner surface roughness is Rmax about 60 μm) as the test material, the stainless steel tube was polished at a rotation speed of 850 rpm, and the relationship between the polishing time and the inner surface roughness after polishing was investigated. did. The abrasive used at this time was electrolytic iron powder assuming that it would be used for rough polishing as No. 1 abrasive.
Electrolytic iron powder with No1 (particle size 1700 μm) + magnetic abrasive No1 + machine oil mixed, assuming No.2 abrasive for finish polishing
No2 (particle size 300 μm) + magnetic abrasive grain No1 + machine oil was mixed. The mixing ratio of magnetic abrasive grains in the abrasive is
It was set to 50% by weight.

【0030】図6は、研磨時間と内面粗さの関係を表し
た図である。No.1研磨材による研磨時間を10〜80分とし
たが、研磨時間が50分を超えると内面粗さは7μm以下
となる。一方、No.2研磨材による研磨は、No.1研磨材で
40分の間研磨した後、さらに10〜30分の研磨を行うこと
により、荒研磨後の仕上研磨を行うことを想定してい
る。同図より、No.1研磨材による研磨時間が70分で内面
粗さが 3.4μmと最も良好なのに対して、No.2研磨材に
切り替えた場合には、同じ時間で内面粗さが 1.8〜 1.4
μmとなり、大幅な改善となることが明らかである。こ
のことから、磁気研磨においては荒研磨の後、研磨材を
変えて仕上研磨を行うのが好ましいことが分かる。
FIG. 6 is a diagram showing the relationship between the polishing time and the inner surface roughness. The polishing time with the No. 1 polishing material was set to 10 to 80 minutes, but when the polishing time exceeds 50 minutes, the inner surface roughness becomes 7 μm or less. On the other hand, polishing with No. 2 abrasive is
It is assumed that after polishing for 40 minutes, further polishing for 10 to 30 minutes is performed to finish polishing after rough polishing. From the figure, while the polishing time with No.1 abrasive is 70 minutes and the inner surface roughness is 3.4 μm, which is the best, when switching to No.2 abrasive, the inner surface roughness is 1.8 ~ 1.4
μm, which is a significant improvement. From this, it is understood that in the magnetic polishing, it is preferable to carry out finish polishing by changing the polishing material after rough polishing.

【0031】[0031]

【実施例】本発明のガス充填用容器の内面研磨方法を、
具体的な(実施例1)および(実施例2)に基づき説明
する。
EXAMPLES A method for polishing an inner surface of a gas filling container according to the present invention is described below.
Description will be made based on specific (Example 1) and (Example 2).

【0032】(実施例1)供試材として、図2に示す縦
断面形状のガス充填用容器の頭部10を準備し、下記の条
件で磁気研磨を行った。また、図1は、容器の頭部10に
対する磁極3の配置を示す図であり、(a)は正面図
を、(b)はA−A矢視の底面図を示している。N−S
磁極3は容器頭部10の形状を前提として製作し、図1に
示すように磁極配置をした。この場合に、容器と磁極と
の間隔が小さくなるほど、磁場強度が大きくなり、研磨
力を増加させることができるので、可能な限り間隔を小
さくし、容器と磁極との隙間が1mm以下となるように磁
極配置をした。
Example 1 As a test material, a head 10 of a gas filling container having a vertical cross-sectional shape shown in FIG. 2 was prepared and magnetically polished under the following conditions. 1A and 1B are views showing the arrangement of the magnetic poles 3 with respect to the head 10 of the container, where FIG. 1A is a front view and FIG. 1B is a bottom view taken along the line AA. N-S
The magnetic pole 3 was manufactured on the premise of the shape of the container head 10, and the magnetic poles were arranged as shown in FIG. In this case, the smaller the distance between the container and the magnetic pole, the greater the magnetic field strength and the polishing power can be increased. Therefore, the distance between the container and the magnetic pole should be as small as possible so that the gap between the container and the magnetic pole is 1 mm or less. I arranged the magnetic poles.

【0033】1.供試材 材質:SUS 316L、寸法:図2の通り 研磨前の内面粗さ: Rmax 23μm 2.研磨材 研磨材は、荒研磨用二種と仕上研磨用三種を準備した
が、その研磨材の混合条件等を表3に示す。
1. Specimen material: SUS 316L, dimensions: as shown in Fig. 2 Inner surface roughness before polishing: Rmax 23μm 2. Abrasives Two types of abrasives were prepared for rough polishing and three types for finish polishing. Table 3 shows the mixing conditions of the abrasives.

【0034】[0034]

【表3】 [Table 3]

【0035】3.研磨条件 ガス充填用容器の頭部研磨の条件を、表4に示す。ここ
では、本発明が規定する条件または好ましいとする条件
に基づき、本発明例として供試材No.1〜No.5を磁気研磨
した。研磨後、内面粗さを測定するとともに、表面光
沢、映像性(表面に映した画面の鮮明度、詳細は表5参
照)および研磨目残りについて、○:良好、×:不良で
評価を行った。その結果を表5にまとめる。
3. Polishing Conditions Table 4 shows the conditions for polishing the head of the gas filling container. Here, sample materials No. 1 to No. 5 were magnetically polished as examples of the present invention based on the conditions specified by the present invention or the conditions that are preferable. After polishing, the inner surface roughness was measured, and the surface gloss, the image quality (the sharpness of the screen projected on the surface, see Table 5 for details) and the polishing residue were evaluated as ◯: good, ×: poor. . The results are summarized in Table 5.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】表5から明らかなように、いずれの本発明
例においても、内面粗さはRmax 1〜2μm以下と平滑
化が達成され、表面光沢、映像性および研磨目残りにつ
いて全て良好な成績であり、本発明の内面研磨方法は高
純度ガス充填用容器の平滑加工法として最適であること
が分かる。
As is clear from Table 5, in any of the examples of the present invention, the inner surface roughness was Rmax of 1 to 2 μm or less, smoothing was achieved, and the surface gloss, image quality and polishing residue were all good results. Therefore, it can be seen that the inner surface polishing method of the present invention is most suitable as a smoothing method for a high-purity gas filling container.

【0039】表4に示すように、仕上げ研磨では磁極の
励磁電流を 0.7Aと 1.0Aに変化させている。励磁電流
と磁場力の関係は、磁気飽和していないとすれば励磁電
流の増加とともに磁場力が増加することになるが、内面
粗さには他の要因の影響が大きく、励磁電流は内面粗さ
に関して小さな要因でしかない。
As shown in Table 4, in the final polishing, the exciting current of the magnetic pole was changed to 0.7A and 1.0A. As for the relationship between the exciting current and the magnetic field force, the magnetic field force increases as the exciting current increases if magnetic saturation is not achieved, but the inner surface roughness is greatly affected by other factors, and the exciting current is It's just a small factor.

【0040】(実施例2)本体部を通常の機械研磨法で
研磨し、頭部を本発明の内面研磨方法で研磨して、内容
積 330ccのガス充填用容器を製作し、それを供試容器と
して、水分量測定およびパーティクル測定を行って、高
純度ガス充填用容器としての特性を評価した。
(Example 2) The main body was polished by a normal mechanical polishing method, and the head was polished by the inner surface polishing method of the present invention to produce a gas filling container having an internal volume of 330 cc, which was tested. As a container, water content measurement and particle measurement were performed to evaluate the characteristics as a high purity gas filling container.

【0041】供試容器の材質は、オーステナイト系ステ
ンレス鋼(SUS 316L)を使用して、前記実施例1の供試
材No.1の研磨材(表3、表4)および研磨条件(表4)
で研磨し、供試容器の仕上げ内面粗さはいずれもRmax
1μm以下とした。
Austenitic stainless steel (SUS316L) was used as the material of the sample container, and the sample No. 1 abrasive material (Tables 3 and 4) and polishing conditions (Table 4) of Example 1 were used. )
After polishing, the finished inner surface roughness of the test container is Rmax
It was set to 1 μm or less.

【0042】図7は、水分量測定の試験装置の概要を説
明した図であるが、試験装置を組み立て後、高純度ガス
で系内をパージし、水分量が安定したことを確認しての
ちサンプルガスを供給して、APIMS 12にて水分量を測定
した。
FIG. 7 is a view for explaining the outline of the test apparatus for measuring the water content. After assembling the test apparatus, the inside of the system was purged with high-purity gas to confirm that the water content was stable. The sample gas was supplied and the water content was measured by APIMS 12.

【0043】図8は、水分量の測定結果を示す図であ
る。供試容器はバルブを開けた直後(ガス充填圧力 150
Kgf/cm2 のとき)から放出水分量が安定し、1ppb 以下
を示しており、高純度ガスのバックグランド値が0.73pp
b であることを考慮すれば、含有水分が極めて少なく半
導体製造用として問題のない特性であることが明らかで
ある。
FIG. 8 is a diagram showing the measurement results of the water content. Immediately after opening the valve, the container under test (gas filling pressure 150
(When Kgf / cm 2 ), the amount of water released is stable and shows 1 ppb or less, and the background value of high-purity gas is 0.73 pp
Considering that it is b, it is clear that the water content is extremely small and there is no problem for semiconductor manufacturing.

【0044】図9は、パーティクル測定装置の概略を説
明した図である。水分量測定の場合と同様に、試験装置
を高純度ガスでパージし、系内を安定にしたのちサンプ
ルガスを供給して、パーティクルカウンター16によって
総個数を測定した。
FIG. 9 is a diagram for explaining the outline of the particle measuring device. As in the case of measuring the water content, the test apparatus was purged with a high-purity gas to stabilize the system, and then the sample gas was supplied, and the total number was measured by the particle counter 16.

【0045】図10は、供試容器のパーティクル測定結果
を示す図である。同図に示す結果は、パーティクル(サ
イズ≧ 0.1μm)の総個数は9個と、高純度ガス充填用
容器として問題ないことを明らかにしている。
FIG. 10 is a diagram showing the results of particle measurement of the test container. The results shown in the figure show that the total number of particles (size ≧ 0.1 μm) is 9 and that there is no problem as a high-purity gas filling container.

【0046】[0046]

【発明の効果】本発明の製造方法によれば、頭部内面を
含めた全内表面が十分に平滑化される。この方法で製造
された本発明の容器は、半導体製造用として含有水分量
が少なく、放出するパーティクルが低減された優れた高
純度ガス充填用容器である。
According to the manufacturing method of the present invention, the entire inner surface including the inner surface of the head is sufficiently smoothed. The container of the present invention manufactured by this method is an excellent container for high-purity gas filling, which has a small amount of water content and has a reduced amount of emitted particles for semiconductor manufacturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】被研磨材であるガス充填用容器の頭部に対する
磁極の配置を示す図である。
FIG. 1 is a diagram showing an arrangement of magnetic poles with respect to a head of a gas filling container which is a material to be polished.

【図2】被研磨材であるガス充填用容器の頭部の形状お
よび寸法の例を示す図である。
FIG. 2 is a diagram showing an example of the shape and dimensions of the head of a gas filling container that is a material to be polished.

【図3】ガス充填用容器の製造工程の概要を示す図であ
る。
FIG. 3 is a diagram showing an outline of a manufacturing process of a gas filling container.

【図4】円管の内面研磨を例として磁気研磨の原理を説
明する図である。
FIG. 4 is a view for explaining the principle of magnetic polishing, taking the inner surface of a circular tube as an example.

【図5】ステンレス鋼管の回転数と研磨後の内面粗さと
の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the rotation speed of a stainless steel pipe and the inner surface roughness after polishing.

【図6】荒研磨と仕上研磨における研磨時間と内面粗さ
の関係を表した図である。
FIG. 6 is a diagram showing the relationship between the polishing time and the inner surface roughness in rough polishing and finish polishing.

【図7】水分量測定の試験装置の概要を説明した図であ
る。
FIG. 7 is a diagram illustrating an outline of a test apparatus for measuring water content.

【図8】供試容器の水分量の測定結果を示す図である。FIG. 8 is a diagram showing a measurement result of water content in a test container.

【図9】パーティクル測定装置の概略を説明した図であ
る。
FIG. 9 is a diagram illustrating an outline of a particle measuring device.

【図10】供試容器のパーティクル測定結果を示す図であ
る。
FIG. 10 is a diagram showing a particle measurement result of a test container.

【符号の説明】[Explanation of symbols]

1…非磁性円管、2…磁性研磨材、3…磁極、4…励磁
コイル 10…容器頭部、11…供試容器、12…APIMS 、13…ゲッタ
ー、14…減圧弁 15…流量計、16…パーティクルカウンター、17…圧力調
整器、18…フィルター 31…原管、32…素管
1 ... Non-magnetic circular tube, 2 ... Magnetic abrasive material, 3 ... Magnetic pole, 4 ... Excitation coil 10 ... Container head, 11 ... Test container, 12 ... APIMS, 13 ... Getter, 14 ... Pressure reducing valve 15 ... Flowmeter, 16 ... Particle counter, 17 ... Pressure regulator, 18 ... Filter 31 ... Original tube, 32 ... Element tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】口絞り加工を施した頭部の内面が磁気研磨
によって平滑化されており、その平滑化した部分の表面
粗さがRmax で10μm 以下であることを特徴とする高純
度ガス充填用容器。
1. A high-purity gas filling characterized in that the inner surface of the head subjected to the mouth-drawing process is smoothed by magnetic polishing, and the surface roughness of the smoothed part is Rmax of 10 μm or less. Container.
【請求項2】頭部に口絞り加工を施した容器を頭部を下
向きにして設置し、その斜め下方に磁極を設置し、容器
内部に装入した磁性研磨材を上記磁極で引きつけて口絞
り部内面に接触させた状態で容器をその中心軸の周りに
回転させて磁気研磨を行うことを特徴とする高純度ガス
充填用容器の内面研磨方法。
2. A container having a head with a mouth-drawing process is installed with the head facing downward, a magnetic pole is installed obliquely below the container, and the magnetic abrasive material charged inside the container is attracted by the magnetic pole to draw the mouth. A method for polishing an inner surface of a high-purity gas-filled container, which comprises magnetically polishing the container by rotating the container around its central axis while being in contact with the inner surface of the narrowed portion.
【請求項3】前記の磁性研磨材として磁性砥粒、強磁性
粒および湿潤剤からなる研磨材を用い、湿式磁気研磨を
行うことを特徴とする請求項2記載の高純度ガス充填用
容器の内面研磨方法。
3. The high purity gas filling container according to claim 2, wherein wet magnetic polishing is performed by using an abrasive composed of magnetic abrasive grains, ferromagnetic grains and a wetting agent as the magnetic abrasive. Internal polishing method.
【請求項4】磁気研磨を荒研磨と仕上研磨との工程に分
けて行うことを特徴とする請求項2または請求項3記載
の高純度ガス充填用容器の内面研磨方法。
4. The method for polishing the inner surface of a high-purity gas filling container according to claim 2 or 3, wherein the magnetic polishing is performed in steps of rough polishing and finish polishing.
JP31140293A 1993-12-13 1993-12-13 High purity gas filling container and manufacture thereof Pending JPH07167391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31140293A JPH07167391A (en) 1993-12-13 1993-12-13 High purity gas filling container and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31140293A JPH07167391A (en) 1993-12-13 1993-12-13 High purity gas filling container and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07167391A true JPH07167391A (en) 1995-07-04

Family

ID=18016770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31140293A Pending JPH07167391A (en) 1993-12-13 1993-12-13 High purity gas filling container and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07167391A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926093A (en) * 1995-07-12 1997-01-28 Teisan Kk Internal surface treatment method for high pressure gas container
DE102011108597B4 (en) * 2011-07-26 2013-09-12 Daimler Ag Device for storing low molecular weight gases
WO2023055691A1 (en) * 2021-09-29 2023-04-06 Entegris, Inc. Adsorbent-type storage and delivery vessels with high purity delivery of gas, and related methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926093A (en) * 1995-07-12 1997-01-28 Teisan Kk Internal surface treatment method for high pressure gas container
DE102011108597B4 (en) * 2011-07-26 2013-09-12 Daimler Ag Device for storing low molecular weight gases
WO2023055691A1 (en) * 2021-09-29 2023-04-06 Entegris, Inc. Adsorbent-type storage and delivery vessels with high purity delivery of gas, and related methods

Similar Documents

Publication Publication Date Title
Shinmura et al. Study on magnetic abrasive finishing
US7585341B2 (en) Polishing material comprising diamond clusters
TWI482867B (en) Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target
EP3447790B1 (en) Silica-based composite fine particle dispersion and method for manufacturing same
EP0976697B1 (en) Alumina sintered body and process for producing the same
JPWO2002028979A1 (en) Cerium-based abrasive and method for producing cerium-based abrasive
US4685937A (en) Composite abrasive particles for magnetic abrasive polishing and process for preparing the same
US20030008765A1 (en) High-purity alumina sintered body, high-purity alumina ball, jig for semiconductor, insulator, ball bearing, check valve, and method for manufacturing high-purity alumina sintered body
Yang et al. Optimization in MAF operations using Taguchi parameter design for AISI304 stainless steel
US20070123153A1 (en) Texturing slurry and texturing method by using same
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JPH07167391A (en) High purity gas filling container and manufacture thereof
JP5352872B2 (en) Method for producing composite particles for polishing
TW495418B (en) Polishing compact and polishing surface plate using the same
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
Gao et al. Preparation and characterization of spherical diamond magnetic abrasive powder by atomization process
JP7454838B2 (en) Magnetic abrasive structure and its manufacturing method
Getzlaff et al. Structure, composition and magnetic properties of size-selected FeCo alloy clusters on surfaces
Gao et al. Characteristics of a novel atomized spherical magnetic abrasive powder
JPH07136925A (en) Grinding method and grinding device
Zefang et al. Chemical mechanical polishing of aluminum alloys using alumina-based slurry
JPS6125629A (en) Powdery body mixer
JPH063964A (en) Magnet roll
JP2004270917A (en) Halogen-based gas charging container, gas charged in the same, and method for processing charging container
JPH058169A (en) Wet type magnetic polishing method and device