JPH07167239A - Multi-disc type continuously variable transmission - Google Patents

Multi-disc type continuously variable transmission

Info

Publication number
JPH07167239A
JPH07167239A JP31380993A JP31380993A JPH07167239A JP H07167239 A JPH07167239 A JP H07167239A JP 31380993 A JP31380993 A JP 31380993A JP 31380993 A JP31380993 A JP 31380993A JP H07167239 A JPH07167239 A JP H07167239A
Authority
JP
Japan
Prior art keywords
shaft
power transmission
transmission ring
disc
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31380993A
Other languages
Japanese (ja)
Inventor
Haruma Tanaka
春馬 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIOBARA TERUMI
Original Assignee
SHIOBARA TERUMI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIOBARA TERUMI filed Critical SHIOBARA TERUMI
Priority to JP31380993A priority Critical patent/JPH07167239A/en
Publication of JPH07167239A publication Critical patent/JPH07167239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)

Abstract

PURPOSE:To make it possible to transmit required torque at high speed by transmitting power by means of causing a power transmission ring body to make pressurized contact with an adjoining disc and displacing the pressurized contact point by means of causing the power transmission ring body to be eccentric to the shaft. CONSTITUTION:Power is transmitted between both shafts 1, 6 by a driving disc 4 provided on a drive shaft 1 after pressurizing it with pressurizing discs 2, 3 and friction drive power generated by causing a drive shaft 1 to rotate by making a follow disc 7 provided on a follow shaft 6 and a power transmission ring body 9 to come into contact under pressure. While rotating, the pressurized contact point is displaced within the area where the adjoining driving disc 4 and the follow disc 7 face each other by making the power transmission 9 eccentric to the drive shaft 1. Thus, besides being able to transmit required torque at high speed, excessive power is not needed at the time of speed change by changing speed after causing the power transmission ring body to make a stabilized rotating motion by providing a means to make the power transmission ring body eccentric to the shaft on which the power transmission ring body is provided and restoring its rotating center onto the center line connecting No.1 and No.2 shafts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輸送機や産業用設備等
に使用される多数の円板を備えた多板式無段変速機に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-plate continuously variable transmission equipped with a large number of discs used for transportation machines and industrial equipment.

【0002】[0002]

【従来の技術】従来から、機械的に入力軸と出力軸の回
転比を段なしに滑らかに変化させる無段変速機として
は、Vベルト式無段変速機やバイエル式無段変速機等が
ある。Vベルト式のものは、可撓性のあるベルトを動力
伝達用媒体として用いているので、摩擦面を広くして大
きな摩擦力を得ることができ、駆動トルクが大きく信頼
性が高いが、これを自動車等の高速回転を必要とする機
構に利用しようとすると、ベルトが高速回転による遠心
力でが破断してしまう等の動力伝達媒体の強度の問題が
生じる。上記した問題を解決する方法としては、高強度
のベルトの開発や、動力伝達用媒体を剛体にする方法が
挙げられる。後者のバイエル式無段変速機は、複数の円
板を備えた駆動軸と複数の円板を備えた従動軸とを、各
々の円板が交互に重なるように配置し、円板を軸方向に
圧縮して隣接した円板同士を加圧接触することによって
駆動軸の回転力を従動軸に伝達するように構成されてい
る。このバイエル式無段変速機は、剛体同志を加圧接触
して得られる摩擦で動力を伝達するので、その摩擦面は
点になり、極めて小さいが多点化して大きな動力を伝達
するように構成されている。
2. Description of the Related Art Conventionally, V-belt type continuously variable transmissions, Bayer type continuously variable transmissions, etc. have been known as continuously variable transmissions for mechanically and smoothly changing the rotation ratio of an input shaft and an output shaft. is there. Since the V-belt type uses a flexible belt as a power transmission medium, it is possible to obtain a large frictional force by widening the friction surface, and the driving torque is large and the reliability is high. When the above is used in a mechanism such as an automobile that requires high-speed rotation, a problem of strength of the power transmission medium occurs such that the belt is broken by centrifugal force due to high-speed rotation. As a method for solving the above-mentioned problem, there is a method of developing a high-strength belt or a method of using a power transmission medium as a rigid body. In the latter Bayer type continuously variable transmission, a drive shaft provided with a plurality of discs and a driven shaft provided with a plurality of discs are arranged so that the discs are alternately superposed, and the discs are axially arranged. The rotary force of the drive shaft is transmitted to the driven shaft by compressing and pressing the adjacent disks into pressure contact with each other. This Bayer type continuously variable transmission transmits power with friction obtained by pressing and contacting rigid bodies, so the friction surface becomes a point, and it is extremely small, but it has multiple points and is configured to transmit large power. Has been done.

【0003】[0003]

【発明が解決しようとする課題】上記したバイエル式無
段変速機は、リンク操作で一方の軸を他方の軸に近づけ
たり離したりすることによって、円板の加圧接触されて
いる部分の半径を変えて変速を行う。この変速は無段変
速機であるので、当然回転中に行われるのであるが、摩
擦力を得るために相当高い圧力で円板同士を加圧接触さ
せているため、この加圧接触面の加圧力に逆らって有効
回転半径を可変させる方向に円板を移動させるには大き
な力が必要となり、装置が大型化するという問題点があ
る。これは、省スペース化が要求される自動車等の変速
機構として採用する場合には大きな問題となる。本発明
は上記した問題点を解決し、高速回転で、必要なトルク
を伝達することができ、かつ、自動車等の小型化の要求
される分野でも利用できるように小型化することのでき
る多板式無段変速機を提供することを目的としている。
SUMMARY OF THE INVENTION In the above Bayer type continuously variable transmission, the radius of the portion of the disc that is in pressure contact is brought about by moving one shaft close to or away from the other shaft by a link operation. To change gears. Since this shift is a continuously variable transmission, it is naturally performed during rotation.However, since the disks are brought into pressure contact with each other at a considerably high pressure in order to obtain frictional force, the pressure contact surface is applied. There is a problem that a large force is required to move the disc in the direction of varying the effective radius of rotation against the pressure, and the size of the device becomes large. This becomes a big problem when it is adopted as a speed change mechanism of an automobile or the like which requires space saving. The present invention solves the above-mentioned problems, can transmit a required torque at a high speed, and can be downsized so that it can be used in a field requiring downsizing of an automobile or the like. It is intended to provide a continuously variable transmission.

【0004】[0004]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の多板式無段変速機は、周方向に向かっ
て先薄のテーパ状に形成した少なくとも一つの円板を備
えた少なくとも一つの第1軸と、前記円板と相似形状に
形成した円板を前記第1軸より一枚多く備えた第2軸と
を、並列に配置し、各軸の円板を交互に配列するととも
に、隣接した円板のテーパ状部分が互いに一定の間隔を
置いて対向するようにし、少なくとも前記円板より直径
が大きく形成された動力伝達用環体を、一部分が隣接し
た円板の間に位置するように何れか一方側の軸に設け、
また、第2軸に軸方向に円板を加圧する加圧機構を設け
て、動力伝達用環体を隣接する円板に加圧接触させ、該
加圧接触点の摩擦駆動力により動力伝達用環体を介して
第1軸と第2軸との間で動力伝達を行うようにするとと
もに、動力伝達用環体をそれが設けられた軸に対して偏
心させて、隣接する円板が対向している範囲内で加圧接
触点を変位させる手段を設けたことを特徴とするもので
ある。また、前記第1軸が駆動軸で前記第2軸が従動軸
であってもよく、第1軸が従動軸で第2軸が駆動軸であ
ってもよい。さらに、動力伝達用環体は第1軸側に設け
られてもよく、第2軸側に設けられてもよい。好ましく
は、本発明に係る加圧機構は、動力伝達用環体と隣接す
る円板との加圧接触点の摩擦駆動力に対応した加圧力を
加圧接触点に作用させるように構成され得る。また、前
記加圧機構は、軸方向に沿ってたわむように形成した加
圧板と、動力伝達用環体と隣接する円板との加圧接触点
の変位に対応した位置において加圧板を押圧し、加圧接
触点の摩擦駆動力に対応した加圧力を加圧接触点に作用
させる押圧部材とから構成され得る。
In order to achieve the above object, a multi-plate continuously variable transmission according to the present invention comprises at least one disc formed in a taper shape which is tapered toward the circumferential direction. At least one first shaft and a second shaft having one more disk formed in a similar shape to the disk than the first shaft are arranged in parallel, and the disks of each shaft are alternately arranged. In addition, the tapered portions of the adjacent discs are opposed to each other at a constant interval, and at least a power transmission ring having a diameter larger than that of the discs is located between the discs partially adjacent to each other. To be installed on either side of the shaft,
Further, the second shaft is provided with a pressurizing mechanism for axially pressing the disc, and the power transmission ring is brought into pressure contact with the adjacent disc, and the friction drive force at the pressure contact point is used for power transmission. Power transmission is performed between the first shaft and the second shaft via the ring body, and the power transmission ring body is eccentric with respect to the shaft on which it is provided so that adjacent disks face each other. It is characterized in that means for displacing the pressure contact point is provided within the range in which the pressure is applied. Further, the first shaft may be a drive shaft and the second shaft may be a driven shaft, and the first shaft may be a driven shaft and the second shaft may be a drive shaft. Further, the power transmission ring body may be provided on the first shaft side or the second shaft side. Preferably, the pressurizing mechanism according to the present invention may be configured to apply a pressing force corresponding to the frictional driving force at the pressurizing contact point between the power transmission ring and the adjacent disk to the pressurizing contact point. . Further, the pressure mechanism presses the pressure plate at a position corresponding to the displacement of the pressure contact point between the pressure plate formed to bend along the axial direction and the disc adjacent to the power transmission ring. , A pressing member that applies a pressing force corresponding to the friction driving force at the pressure contact point to the pressure contact point.

【0005】[0005]

【作用】上記したように構成された本発明の多板式無段
変速機によれば、加圧機構で加圧して第1軸と第2軸と
に設けられた円板と動力伝達用環体とを加圧接触させ、
その状態で何れか一方側の軸を回転させると前記加圧接
触された部分の摩擦駆動力により第1軸と第2軸との間
で動力伝達を行う。この動力伝達は一方の軸の円板上で
動力伝達用環体が接触している半径と、他方の軸の円板
上で動力伝達用環体が接触している半径との比により変
速比が決定される。また、回転中に、動力伝達用環体を
それが設けられている軸に対して偏心させて、環体の回
転中心を第1軸と第2軸の中心を結ぶ線上からずらす
と、動力伝達用環体はその加圧接触点が螺旋状の軌跡を
描くように何れか一方の軸方向に、環体の回転中心が両
軸を結ぶ線上に一致するまで移動させることができ、そ
れによって一方の軸の円板と他方の軸の円板との接触部
分の半径の比が変えられる。
According to the multi-plate continuously variable transmission of the present invention configured as described above, the disc provided on the first shaft and the second shaft and the ring for power transmission are pressurized by the pressurizing mechanism. And pressure contact,
When one of the shafts is rotated in that state, power is transmitted between the first shaft and the second shaft by the friction drive force of the portion that is in pressure contact. This power transmission is based on the ratio of the radius of contact of the power transmission ring on the disc of one shaft and the radius of the contact of the power transmission ring on the disc of the other shaft. Is determined. Further, during rotation, the power transmission ring is eccentric with respect to the shaft on which it is provided, and the rotation center of the ring is displaced from the line connecting the centers of the first and second shafts. The ring body can be moved in either axial direction so that the pressure contact point draws a spiral locus until the center of rotation of the ring body coincides with the line connecting both axes. The ratio of the radii of the contact portion between the disk of the axis of the and the disk of the other axis can be changed.

【0006】[0006]

【実施例】以下、添付図面を参照して本発明に係る多板
式無段変速機の一実施例について説明する。図1は本実
施例の多板式無段変速機の一実施例を示す概略正面図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a multi-plate continuously variable transmission according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic front view showing an embodiment of the multi-plate continuously variable transmission of this embodiment.

【0007】図面に示すように本実施例の多板式無段変
速機は駆動軸1の周りに3つの従動軸6を設け、駆動軸
1に設けられた駆動用円板4と従動軸6に設けられた従
動用円板7との間で動力伝達用環体9を介して回転力の
伝達を行うように構成されている。図中矢印aは駆動軸
1の回転方向、矢印bは各従動軸6の回転方向を示して
いる。駆動軸1と各従動軸6との関係は3軸とも同じで
あるので、以下、2つの従動軸を省略して駆動軸1と一
つ従動軸6との構成を説明する。
As shown in the drawings, the multi-plate continuously variable transmission of this embodiment is provided with three driven shafts 6 around a drive shaft 1, and a drive disk 4 and a driven shaft 6 provided on the drive shaft 1. The rotational force is transmitted between the driven disc 7 and the driven disc 7 via the power transmission ring 9. In the figure, an arrow a indicates the rotation direction of the drive shaft 1, and an arrow b indicates the rotation direction of each driven shaft 6. Since the relationship between the drive shaft 1 and each driven shaft 6 is the same for all three shafts, the two driven shafts will be omitted and the configuration of the drive shaft 1 and one driven shaft 6 will be described below.

【0008】図2は2つの従動軸を省略した本実施例の
多板式無段変速機の一実施例を示す概略平面図であり、
説明のために一部破断してある。図中1は駆動軸を示し
ており、この駆動軸1は一端が適当な基礎部(図示せ
ず)に設けられた支持部材16aにベアリングを介して
回動自在に軸支されている。駆動軸1の他端は図示して
いな駆動源につながる継手15に回動自在に支持され、
ナット1bで抜け止めされ、該継手15は基礎部(図示
せず)に設けられた支持部材16bに回動自在に軸支さ
れている。駆動軸1には適当な間隔を開けて駆動用円板
の機能を兼ねた2つの加圧用円板2,3が設けられてい
る。一方の加圧用円板3は前記支持部材16a方向には
軸方向に摺動しないように揺動自在ににストッパー3a
に支持されており、これにより、3本ある従動軸6の各
従動用円板7への加圧力を平均化させている。また、他
方の加圧用円板2は前記継手15と共に後述する加圧機
構を構成し、駆動軸1にかかる負荷の大きさに応じて駆
動用円板4、従動用円板7及び環体9を軸方向に加圧し
ながら継手15の回転力を駆動軸1に伝達する。駆動軸
1のこれらの加圧用円板2,3の間には周方向に向かっ
て先薄のテーパ状に形成された駆動用円板4が複数枚
(本実施例においては9枚、従って本実施例においては
前記加圧用円板2,3を含めて実質11枚の駆動用円板
が存在することになる。)設けられており、さらに各駆
動用円板4の間にはスペーサ5が各々設けられている。
FIG. 2 is a schematic plan view showing an embodiment of the multi-plate continuously variable transmission of this embodiment in which the two driven shafts are omitted.
It is partially broken for explanation. In the figure, reference numeral 1 denotes a drive shaft. One end of the drive shaft 1 is rotatably supported by a supporting member 16a provided on a suitable base portion (not shown) via a bearing. The other end of the drive shaft 1 is rotatably supported by a joint 15 connected to a drive source (not shown),
The nut 15 is retained by a nut 1b, and the joint 15 is rotatably supported by a support member 16b provided on a base portion (not shown). The drive shaft 1 is provided with two pressurizing discs 2 and 3 which also function as a drive disc at appropriate intervals. One pressurizing disk 3 is a stopper 3a that is swingable so as not to slide in the axial direction in the direction of the support member 16a.
Are supported on the driven disk 6, and thereby the pressure applied to each driven disk 7 of the three driven shafts 6 is averaged. The other pressurizing disc 2 constitutes a pressurizing mechanism, which will be described later, together with the joint 15, and the drive disc 4, the driven disc 7, and the ring 9 are arranged in accordance with the magnitude of the load applied to the drive shaft 1. The rotational force of the joint 15 is transmitted to the drive shaft 1 while being pressed in the axial direction. Between the pressurizing discs 2 and 3 of the drive shaft 1, there are a plurality of drive discs 4 formed in a tapered shape in the circumferential direction (in this embodiment, 9 discs, therefore, In the embodiment, there are substantially 11 drive discs including the press discs 2 and 3), and a spacer 5 is provided between each drive disc 4. Each is provided.

【0009】図中6は従動軸を示しており、この従動軸
6もまた、図示していない適当な支持部材で回動自在に
軸支されている。従動軸6には駆動用円板4と相似形に
形成された従動用円板7が複数枚(本実施例においては
10枚)設けられており、各従動用円板7の間にはスペ
ーサ8が設けられている。前記した加圧用円板2,3、
駆動用円板4及びスペーサ5は各々軸方向に摺動可能な
ようにスプライン嵌合等の適当な方法で駆動軸1に取り
付けられ、同様に従動用円板7及びスペーサ8も従動軸
6にスプライン嵌合されている。これら、駆動軸1と従
動軸6とは、図2に示すように隣接した円板4,7のテ
ーパ状に形成された部分が互いに一定の間隔をおいて部
分的に対向して、櫛状に重なるように配置されている。
Reference numeral 6 in the drawing denotes a driven shaft, which is also rotatably supported by an appropriate supporting member (not shown). The driven shaft 6 is provided with a plurality of driven discs 7 (10 in this embodiment) formed in a similar shape to the drive discs 4, and a spacer is provided between each driven disc 7. 8 are provided. The pressurizing disks 2 and 3,
The drive disc 4 and the spacer 5 are attached to the drive shaft 1 by an appropriate method such as spline fitting so as to be slidable in the axial direction. Similarly, the drive disc 7 and the spacer 8 are also attached to the drive shaft 6. The spline is fitted. As shown in FIG. 2, the drive shaft 1 and the driven shaft 6 are formed in a comb shape in which tapered portions of adjacent disks 4 and 7 are partially opposed to each other at a constant interval. It is arranged so as to overlap.

【0010】図3(a)はスペーサ5の平面図、図3
(b)は(a)のA−A断面図を各々示しており、図面
に示すようにスペーサ5には表裏面に4個の突起5a,
5bが45度ずらして設けられており、この突起5a,
5bによってスペーサ5を弾性的にして、加圧された時
に軸方向に僅かに動く駆動用円板4の微妙な動きに対応
できるように構成されている。スペーサ8もこのスペー
サ5と同様の構造であり、従動用円板7の微妙な変形や
軸方向のずれに対応する。
FIG. 3A is a plan view of the spacer 5, FIG.
(B) is a cross-sectional view taken along the line AA of (a). As shown in the drawing, the spacer 5 has four protrusions 5a on the front and back surfaces.
5b are provided at a 45 degree offset, and the protrusions 5a,
The spacer 5 is made elastic by 5b so that it can respond to the delicate movement of the drive disk 4 that slightly moves in the axial direction when being pressed. The spacer 8 also has a structure similar to that of the spacer 5, and copes with a slight deformation of the driven disk 7 and a shift in the axial direction.

【0011】図4は図1の多板式無段変速機の動力伝達
部分の概略拡大図、図5は図4におけるB−B断面図、
図6は制御用カムを移動した直後の状態を示す図5に対
応する図、図7は動力伝達用環体が移動を終了した後の
状態を示す図5に対応する図を各々示している。図面に
示すように、駆動軸1と従動軸6とは、隣接した円板
4,7のテーパ状に形成された部分が互いに一定の間隔
をおいて部分的に対向するように、即ち、隣接した円板
4,7が櫛状に重なるように配置されている。これらの
隣接する円板4,7の間には動力伝達用媒体としての動
力伝達用環体9が設けられており、これによって駆動用
円板4から従動用円板7へ回転力を伝達する。動力伝達
用環体9は、その一部が隣接した駆動用円板4と従動用
円板6との間に挟まれるように装着され、装着後に加圧
用円板2,3によって軸方向(図4における矢印f方
向)に加圧すると、駆動用円板4の軸中心4’と従動用
円板7の軸中心7’とを結ぶ線X(以下、軸線Xと称す
る。)上で、前記隣接した円板4,7のテーパ上に形成
された部分の側面に押圧され、弾性変形して接触点10
が得られる(図5参照)。尚、本実施例においては説明
上分かりやすいように接触点10を大きく図面に描いて
いるが、実際は金属等の剛体同士の弾性変形によって得
られるものであるので極て小さい面であることはいうま
でもない。尚、駆動軸1には前記した接触点10及び駆
動用円板4、従動用円板7の表面にオイルを供給するた
めのオイル通路1aが設けられている。このオイル通路
1aには適当量のオイルを供給するように設定されたオ
イルポンプ(図示せず)を介して駆動軸及び従動軸が回
転している間は常時オイルが供給され、スペーサ5の突
起5a,5bによって形成されるスリットを通って、駆
動用円板4及び従動用円板7の表面、即ち接触点10等
を潤滑、冷却する(図2参照)。
FIG. 4 is a schematic enlarged view of a power transmission portion of the multi-plate continuously variable transmission shown in FIG. 1, and FIG. 5 is a sectional view taken along line BB in FIG.
FIG. 6 is a view corresponding to FIG. 5 showing a state immediately after the control cam is moved, and FIG. 7 is a view corresponding to FIG. 5 showing a state after the movement of the power transmission ring is completed. . As shown in the drawing, the drive shaft 1 and the driven shaft 6 are adjacent to each other such that the tapered portions of the adjacent discs 4 and 7 are partially opposed to each other at a constant interval. The circular plates 4 and 7 are arranged so as to overlap each other in a comb shape. A power transmission ring 9 as a power transmission medium is provided between these adjacent discs 4 and 7, and thereby the rotational force is transmitted from the drive disc 4 to the driven disc 7. . The power transmission ring 9 is mounted so that a part of the power transmission ring 9 is sandwiched between the driving disc 4 and the driven disc 6 which are adjacent to each other. When pressure is applied in the direction of arrow f in 4), on the line X (hereinafter referred to as the axis line X) connecting the shaft center 4 ′ of the driving disk 4 and the shaft center 7 ′ of the driven disk 7, The contact points 10 are pressed by the side surfaces of the tapered portions of the adjacent discs 4 and 7 and elastically deformed.
Is obtained (see FIG. 5). In the present embodiment, the contact point 10 is drawn in a large size in the drawing for easy understanding, but in reality it is obtained by elastic deformation of rigid bodies such as metal, so it is a very small surface. There is no end. The drive shaft 1 is provided with an oil passage 1a for supplying oil to the surfaces of the contact point 10, the driving disc 4, and the driven disc 7 described above. Oil is constantly supplied to the oil passage 1a via an oil pump (not shown) set to supply an appropriate amount of oil, while the drive shaft and the driven shaft are rotating, and the protrusion of the spacer 5 is provided. The surfaces of the driving disk 4 and the driven disk 7, that is, the contact points 10 and the like are lubricated and cooled through the slits formed by 5a and 5b (see FIG. 2).

【0012】前記動力伝達用環体9はその直径が従動用
円板7より大きく形成され、かつ、前述のように隣接し
た円板4,7のテーパ状に形成された部分によって形成
される隙間に装着し得るように、円錐状に形成されてい
る(図8参照、本図は動力伝達用環体9の単品図であ
る。)。この動力伝達用環体9は装着時にその外周が従
動用円板7より外方にはみ出し、この外周のはみ出した
部分を一対の制御用カム11,12によって支持され、
その回転中心9’が軸線X上に位置するようにされてい
る。図5上、上側の制御用カム11は傾斜した支持面1
1aを備え、この支持面11aが動力伝達用環体9の回
転を妨げない限度で動力伝達用環体9に近づくように位
置決めされ、適当な機構で軸線Xと平行に左右方向(図
5における矢印c方向)に移動できるように基礎部(図
示せず)に適当な方法で取り付けられている。また、下
側の制御カム12は上側の制御用カム11の支持面と平
行になるように傾斜した支持面12aを備え、適当な機
構で制御用カム11と平行に同じ距離だけ同じ方向に移
動するように構成されている。これら制御用カム11,
12には動力伝達用環体9のガイド部材13,14が各
々設けられており、これによって動力伝達用環体9の振
動は防止されている。
The power transmission ring 9 is formed so that its diameter is larger than that of the driven disc 7, and the gap formed by the tapered portions of the adjacent discs 4 and 7 as described above. It is formed into a conical shape so that it can be mounted on the power transmission ring body 9 (see FIG. 8). When mounted, the power transmission ring 9 has an outer periphery protruding outward from the driven disk 7, and the protruding portion of the outer periphery is supported by a pair of control cams 11 and 12.
The center of rotation 9'is located on the axis X. In FIG. 5, the upper control cam 11 is the inclined support surface 1.
1a, the support surface 11a is positioned so as to approach the power transmission ring body 9 within a limit not hindering the rotation of the power transmission ring body 9, and the support surface 11a is parallel to the axis line X in the left-right direction (in FIG. 5) by an appropriate mechanism. It is attached to a foundation (not shown) by a suitable method so that it can move in the direction of arrow c). The lower control cam 12 is provided with a support surface 12a inclined so as to be parallel to the support surface of the upper control cam 11, and is moved in the same direction by the same distance in parallel with the control cam 11 by an appropriate mechanism. Is configured to. These control cams 11,
The guide members 13 and 14 of the power transmission ring 9 are provided at 12 to prevent the vibration of the power transmission ring 9.

【0013】以上のように構成された本実施例の無段変
速機における動力伝達部分の作用を図5から図7を参照
して説明する。まず、駆動軸1を回転させると、その回
転力は、駆動用円板4から従動用円板7へ動力伝達用環
体9を介して、接触点10の摩擦力により伝達される。
このときの駆動軸1及び従動軸6の有効回転半径d,D
はD>dの関係となり、従動軸6は駆動軸1より低速回
転になる(図5参照)。この回転状態において、前記制
御用カム11,12を図6に示すように、左方向に同じ
距離L1だけ動かすと、動力伝達用環体9は円板4,7
との接触点10と前記制御用カム11,12で支持され
ているだけなので、接触点10を支点に下方に傾き、そ
の回転中心9’と前記軸線Xとの間に角度θを生じる
(図6参照)。そして動力伝達用環体9はその接触点1
0が螺旋状の軌跡Yを描いて駆動用円板4の大径方向に
向かうように、即ち、従動用円板7の小径方向に向かう
ように、制御用カム11,12に向かって移動し始め、
制御用カム11,12に達すると、下側の制御用カム1
2の支持面12aに沿って接触点10を支点に上方に持
ち上がりながらさらに制御用カム11,12側、即ち、
図面上左方向に移動し、その回転中心9’が前記軸線X
状に達した時点で移動を停止する(図7参照)。図7に
おいて点線Yは動力伝達用環体9が移動する際の駆動用
円板4上の接触点10の軌跡を示しており、図面からこ
の動力伝達用環体9も制御用カム11,12の動きに追
従して左方向に移動していることが分かる。これによっ
て駆動軸1と従動軸6の有効回転半径d,DはD<dと
なり、駆動軸1から従動軸6への伝達比が変わり、従動
軸6は駆動軸1より高速回転になる。
The operation of the power transmission portion in the continuously variable transmission of this embodiment constructed as above will be described with reference to FIGS. 5 to 7. First, when the drive shaft 1 is rotated, its rotational force is transmitted from the drive disc 4 to the driven disc 7 via the power transmission ring 9 by the frictional force at the contact point 10.
Effective rotation radii d and D of the drive shaft 1 and the driven shaft 6 at this time
Has a relationship of D> d, and the driven shaft 6 rotates at a lower speed than the drive shaft 1 (see FIG. 5). In this rotating state, when the control cams 11 and 12 are moved leftward by the same distance L1 as shown in FIG.
Since it is only supported by the contact point 10 with the control cams 11 and 12, the contact point 10 tilts downward with the fulcrum as a fulcrum, and an angle θ is generated between the rotation center 9 ′ and the axis X (FIG. 6). The power transmission ring 9 has its contact point 1
0 moves toward the control cams 11 and 12 so that 0 draws a spiral locus Y toward the large diameter direction of the driving disk 4, that is, toward the small diameter direction of the driven disk 7. start,
When reaching the control cams 11 and 12, the lower control cam 1
While being lifted upward with the contact point 10 as a fulcrum along the second support surface 12a, the control cams 11, 12 side, that is,
It moves to the left in the drawing, and its rotation center 9'is the above-mentioned axis X.
The movement is stopped when the state is reached (see FIG. 7). In FIG. 7, the dotted line Y indicates the locus of the contact point 10 on the drive disk 4 when the power transmission ring 9 moves, and from the drawing, this power transmission ring 9 also controls the cams 11, 12. It can be seen that it is moving to the left following the movement of. As a result, the effective rotation radii d and D of the drive shaft 1 and the driven shaft 6 become D <d, the transmission ratio from the drive shaft 1 to the driven shaft 6 changes, and the driven shaft 6 rotates faster than the drive shaft 1.

【0014】図9(a),(b)に上述の動力伝達用環
体9が移動する原理を別の例で簡単に説明するための原
理図を示す。図9(a)は回転板50上に車輪51を置
きこの車輪51を振子装置52で支持したもので、回転
板50を矢印r1方向に回転させると、車輪51の軸中
心線X2が常に回転板50の回転中心53を通り、車輪
51は円形の軌跡Y2通って安定して回転する。回転板
50を回転させたままの状態で、図9(b)に示すよう
に振子装置52の支点52aを左方向にずらすと、車輪
51はその軸中心線X2が回転板50の中心53に対し
てθ2度傾き、回転板50上を螺旋状の軌跡Y3を描き
ながら回転板50の外側方向へ、前記角度θ2を小さく
しながら移動する。そして車輪51は、その軸中心X2
が回転板50の中心53を通る位置まで移動した後は再
び円形の軌跡Y4を描きながら安定して回転するように
なる。本実施例に係る動力伝達用環体9もこれと同様の
原理で左右方向へ移動するものである。
FIGS. 9 (a) and 9 (b) are principle diagrams for briefly explaining the principle of the movement of the power transmission ring 9 described above in another example. In FIG. 9A, a wheel 51 is placed on a rotating plate 50 and the wheel 51 is supported by a pendulum device 52. When the rotating plate 50 is rotated in the direction of arrow r1, the axis center line X2 of the wheel 51 always rotates. The wheel 51 stably rotates along the circular locus Y2 through the rotation center 53 of the plate 50. When the fulcrum 52a of the pendulum device 52 is displaced to the left as shown in FIG. 9B while the rotary plate 50 is still rotated, the wheel 51 has its axis center line X2 at the center 53 of the rotary plate 50. On the other hand, the angle θ2 is inclined and the spiral plate Y3 is drawn on the rotary plate 50 in the outward direction of the rotary plate 50 while the angle θ2 is reduced. And the wheel 51 has its axis center X2
After moving to a position passing through the center 53 of the rotary plate 50, it rotates stably while drawing a circular locus Y4 again. The power transmission ring body 9 according to this embodiment also moves in the left-right direction on the same principle.

【0015】図10にガイド部材13の構成及び作用を
説明するガイド部材13の拡大図を示す。図10(a)
に示すように、前記ガイド部材13は複数枚ある動力伝
達用環体9を一つ置きにガイドし得る櫛状のスリットを
備えた2つのガイド体13a,13bとを重ねて構成さ
れており(図5参照)、それぞれ両端は制御カム11に
設けられた左右一対のアーム11b,11cに各々固定
されたピストン11d,11eによって支持され、それ
ぞれ独立して左右方向に摺動可能に構成されている。こ
のガイド体13a,13bの支持構造は同じ構造である
ので、以下、ガイド体13aの支持構造の構成を説明し
てガイド体13bの説明は省略する。ピストン11dは
内部にオイルが通過するオイル通路11fが形成されて
おり、図示していないオイルポンプを介して供給された
オイルはこのオイル通路11fを通ってピストン11d
の先端に設けられた小径の孔(符号なし)からガイド体
13aのオイル溜め13cに供給される。一方、ガイド
体13aに設けられた前記オイル溜め13cを形成する
孔13dにはねじ溝が切られており(図示せず)、前記
オイル溜め13cに供給されたオイルは、この孔13d
に設けられたねじ溝とピストン11dとの間の隙間を通
って、外部に排出される。前記したオイル溜め13cに
供給するオイルは、ガイド体13a,13bが左右方向
に摺動した時に、オイル溜め13cのオイルが不足しな
い程度の低い圧力で供給し、動力伝達用環体9が正常に
移動している場合にはその動きにガイド体13a,13
bが追従し、また、動力伝達用環体9が振動等のように
急激に動いた場合には前記ピストン11dに設けられた
小径の孔の作用でオイル溜め13cのオイルがダンパー
の機能を果たして、ガイド体13a,13bが動力伝達
用環体9を抑えて振動等を防止する。図10(b)は図
10(a)に示す状態(この状態は図2及び図5の状態
に対応している。)から、動力伝達用環体9の接触点1
0が従動用円板7の小径方向に移動した時(図7参照)
のガイド部材13の状態を示している。図面に示すよう
にガイド体13aはそれがガイドしている動力伝達用環
体9aに押されて矢印L方向に移動し、ガイド体13b
はそれがガイドしている動力伝達用環体9bに押されて
矢印R方向に移動する。以上説明したガイド部材13の
構成と下側の制御用カム12に設けられたガイド部材1
4の構成は同じであるので、ガイド部材14についての
説明は省略する。
FIG. 10 shows an enlarged view of the guide member 13 for explaining the structure and operation of the guide member 13. Figure 10 (a)
As shown in, the guide member 13 is formed by stacking two guide bodies 13a and 13b each having a comb-shaped slit capable of guiding a plurality of power transmission ring bodies 9 every other one ( (See FIG. 5), both ends are supported by pistons 11d and 11e fixed respectively to a pair of left and right arms 11b and 11c provided on the control cam 11, and are independently slidable in the left and right direction. . Since the support structures of the guide bodies 13a and 13b are the same structure, the configuration of the support structure of the guide body 13a will be described below and the description of the guide body 13b will be omitted. An oil passage 11f through which oil passes is formed inside the piston 11d, and the oil supplied through an oil pump (not shown) passes through the oil passage 11f and the piston 11d.
It is supplied to the oil reservoir 13c of the guide body 13a from a small-diameter hole (no reference numeral) provided at the tip of the. On the other hand, a screw groove is formed in a hole 13d which is provided in the guide body 13a and which forms the oil reservoir 13c (not shown), and the oil supplied to the oil reservoir 13c is the hole 13d.
It is discharged to the outside through the gap between the screw groove provided in the and the piston 11d. The oil supplied to the oil reservoir 13c is supplied at a low pressure that does not run short of the oil in the oil reservoir 13c when the guide bodies 13a and 13b slide in the left-right direction, and the power transmission ring body 9 is normally operated. If the guide body 13a, 13
b follows, and when the power transmission ring 9 suddenly moves due to vibration or the like, the oil in the oil reservoir 13c acts as a damper by the action of the small diameter hole provided in the piston 11d. The guide bodies 13a and 13b suppress the power transmission ring body 9 to prevent vibration and the like. FIG. 10B shows the contact point 1 of the power transmission ring 9 from the state shown in FIG. 10A (this state corresponds to the states of FIGS. 2 and 5).
When 0 moves in the small diameter direction of the driven disk 7 (see Fig. 7)
The state of the guide member 13 is shown. As shown in the drawing, the guide body 13a is pushed by the power transmission ring body 9a guided by the guide body 13a and moves in the direction of the arrow L, so that the guide body 13b
Is pushed by the power transmission ring 9b guided by it and moves in the direction of arrow R. The structure of the guide member 13 described above and the guide member 1 provided on the lower control cam 12
Since the configuration of 4 is the same, the description of the guide member 14 is omitted.

【0016】次に駆動軸1に設けられた加圧機構につい
て説明する。図11(a)は駆動軸1の加圧用円板2の
周辺の拡大図、図11(b)は加圧用円板2及び継手1
5のフランジ部15aに各々設けられた孔2a、15b
とこれらの孔2a、15bの中に入れられた加圧球17
の拡大図、11(c)は加圧機構が加圧中の図11
(b)に対応する図である。図面に示すように駆動軸1
には駆動用円板4、スペーサ5及び加圧用円板2がスプ
ライン嵌合され、軸1自体は図示していないエンジンの
クランク軸等の動力源につながる継手15に回動自在に
軸支されナット1bで抜け止めされており、この継手1
5が支持部材16aに軸支されている。継手15の前記
加圧用円板2と対向する部分には加圧用円板2と合致す
る形状のフランジ部15aが形成されており、このフラ
ンジ部15aと加圧用円板2の小径部分及び大径部分の
同一円周上の対向する位置に底に向かってテーパ状に形
成された孔2a,15bを複数個設け、これらの孔2
a、15bの中に加圧球17をいれてある(図11
(a),(b)参照)。従って、動力源が駆動して継手
15に回転力が加わると、駆動軸1側の負荷によって前
記孔2a,15bにずれtが生じ、これによって加圧力
を発生する方向のずれが生じて加圧力fを発生する。こ
の加圧力fは駆動軸1の他端に設けられた加圧用円板3
と加圧用円板2との間に位置する駆動用円板4、従動用
円板7及び動力伝達用環体9を加圧する(図11(c)
参照)。
Next, the pressing mechanism provided on the drive shaft 1 will be described. 11A is an enlarged view of the periphery of the pressurizing disc 2 of the drive shaft 1, and FIG. 11B is a pressurizing disc 2 and joint 1.
Nos. 2a and 15b respectively provided in the flange portion 15a of No. 5
And a pressure ball 17 placed in these holes 2a, 15b
11 (c) is an enlarged view of FIG.
It is a figure corresponding to (b). Drive shaft 1 as shown in the drawing
A drive disk 4, a spacer 5 and a pressurizing disk 2 are spline-fitted to the shaft 1. The shaft 1 itself is rotatably supported by a joint 15 connected to a power source such as an engine crankshaft (not shown). This joint 1 is secured by a nut 1b.
5 is pivotally supported by the support member 16a. A flange portion 15a having a shape that matches the pressurizing disc 2 is formed in a portion of the joint 15 that faces the pressurizing disc 2, and a small diameter portion and a large diameter portion of the flange portion 15a and the pressurizing disc 2 are formed. A plurality of holes 2a and 15b tapered toward the bottom are provided at opposite positions on the same circumference of the part.
A pressure ball 17 is placed in a and 15b (Fig. 11).
(See (a) and (b)). Therefore, when the power source is driven and a rotational force is applied to the joint 15, a shift t occurs in the holes 2a and 15b due to the load on the drive shaft 1 side, which causes a shift in the direction in which the pressurizing force is generated and the pressurizing force is generated. generate f. This pressing force f is applied to the pressing disk 3 provided at the other end of the drive shaft 1.
And the driving disk 4, the driven disk 7 and the power transmission ring 9 located between the pressure disk 2 and the pressure disk 2 (FIG. 11C).
reference).

【0017】ところで、加圧用円板2は図11に示した
ように、孔2aが設けられている大径部分及び小径部分
が肉薄になるように肉取りがなされており、この部分が
弾性変形して動力伝達用環体9の位置に応じて実質的に
加圧力が加わる比率が変化するように構成されている。
即ち、図11(a)に示すように、動力伝達用環体9の
接触点10が駆動用円板4の大径部分にある時には、回
転力の大部分は矢印F1のように伝わっていく。このと
き、小径部分に設けられた孔2a,15b及びボール1
7の作用で、加圧用円板2の小径部分も加圧されるので
あるが、加圧用円板2の小径部分は肉薄に形成されてお
り、かつ、小径部分の加圧方向は空間になっているの
で、加圧用円板2の小径部分は若干弾性変形して、実際
にその部分が動力伝達用環体9を押す力は極めて小さく
なり加圧力の大部分は動力伝達用環体9がある大径部分
に集中することになる。
By the way, as shown in FIG. 11, the pressurizing disc 2 is thinned so that the large-diameter portion and the small-diameter portion where the holes 2a are provided are thinned, and this portion is elastically deformed. The ratio of the applied pressure is substantially changed according to the position of the power transmission ring 9.
That is, as shown in FIG. 11A, when the contact point 10 of the power transmission ring 9 is on the large-diameter portion of the drive disk 4, most of the rotational force is transmitted as indicated by arrow F1. . At this time, the holes 2a and 15b and the ball 1 provided in the small diameter portion
By the action of 7, the small-diameter portion of the pressurizing disc 2 is also pressed, but the small-diameter part of the pressurizing disc 2 is formed thin, and the pressurizing direction of the small-diameter part becomes a space. Therefore, the small diameter portion of the pressurizing disc 2 is slightly elastically deformed, and the force for pushing the power transmission ring 9 is extremely small at that portion, and the power transmission ring 9 is mostly used for the pressing force. It concentrates on a certain large diameter part.

【0018】図12は動力伝達用環体9が加圧用円板2
の小径部分に移動した時に加圧力の伝わりかたを示す図
11(a)に対応する図である。この場合には図11
(a)とは逆に、回転力は矢印F2のように小径部分を
通って駆動軸1に伝わり、大径部分の加圧方向が空間と
なっているので、加圧用円板2の大径部分は変形して、
前記回転力に比例した加圧力が小径部分に集中すること
になる。また、図示していないが、動力伝達用環体9の
接触点10が加圧用円板2の大径部分と小径部分との間
にある時には、その位置の割合に応じて、大径部分と小
径部分とに設けられた孔2a,15b及びボール17の
双方が作用して加圧力が接触点10のある位置に作用す
る。
In FIG. 12, the power transmission ring 9 is the pressurizing disc 2.
It is a figure corresponding to FIG.11 (a) which shows a transmission method of the pressurizing force when it moves to the small diameter part. In this case, FIG.
Contrary to (a), the rotational force is transmitted to the drive shaft 1 through the small-diameter portion as indicated by the arrow F2, and the pressing direction of the large-diameter portion becomes a space, so that the large diameter of the pressing disk 2 is increased. The part is deformed,
The pressing force proportional to the rotating force is concentrated on the small diameter portion. Although not shown, when the contact point 10 of the power transmission ring 9 is between the large-diameter portion and the small-diameter portion of the pressurizing disc 2, the large-diameter portion of the pressurizing disk 2 is determined to correspond to the position ratio. Both the holes 2a and 15b provided in the small-diameter portion and the ball 17 act so that the pressing force acts on the position where the contact point 10 exists.

【0019】上述のように構成することによって、加圧
力fは動力伝達環体9の位置に対応する加圧接触点10
における摩擦駆動力の大きさに比例して増減するように
なるので、加圧力が変化しない無段変速機のように、加
圧力を最大負荷時に設定して平常運転時の伝達効率が悪
くなるという問題は解決される。回転力と加圧力との割
合は、孔2a,15bのテーパの角度で決まるので駆動
用円板4の数、接触点10の摩擦係数等に応じてテーパ
の角度は設定される。また、加圧用円板2を部分的に肉
薄にすることによって、動力伝達用環体9の動きに追従
して加圧力が加わる部分の径を移動させ、その接触点1
0の走行径と加圧力が加わる部分の径を同じにすること
ができ、常時適切な加圧力で接触点10の位置の動力伝
達用環体9と隣接する円板4,7とを加圧接触させるこ
とができるという効果を奏する。
With the configuration as described above, the pressing force f corresponds to the pressure contact point 10 corresponding to the position of the power transmission ring 9.
Since the frictional drive force increases and decreases in proportion to the magnitude of the frictional drive force, the transmission efficiency during normal operation deteriorates by setting the pressure force at maximum load, as in a continuously variable transmission in which the pressure force does not change. The problem is solved. The ratio between the rotational force and the pressing force is determined by the taper angle of the holes 2a and 15b, so the taper angle is set according to the number of the driving disks 4, the friction coefficient of the contact point 10, and the like. Further, by partially thinning the pressurizing disc 2, the diameter of the portion to which the pressurizing force is applied is moved in accordance with the movement of the power transmission ring body 9, and its contact point 1
The running diameter of 0 and the diameter of the portion to which the pressing force is applied can be made the same, and the power transmission ring 9 at the position of the contact point 10 and the adjacent discs 4 and 7 are constantly pressed with an appropriate pressing force. The effect that they can be brought into contact is achieved.

【0020】図13は、加圧機構の別の実施例を採用し
た多板式無段変速機の図11(a)に対応する部分の拡
大図である。本実施例における多板式無段変速機の加圧
機構以外の部分の構成は図2に示した実施例のものと同
様であるので、図2に示した実施例と同じ符号を付けて
説明は省略する。図中1は駆動軸であり、この駆動軸1
は継手15’に回動自在に支持され、ナット1bで抜け
止めされている。駆動軸1には加圧用円板2’がスプラ
イン嵌合されており、継手15’の前記加圧用円板2’
に対応する位置にはフランジ15a’が形成されてい
る。前記加圧用円板2’は薄い円板で、駆動用円板4側
の面は駆動用円板4に対応したテーパ状に形成され、フ
ランジ部15a’側の面には円板の中心から周方向に向
かって伸びる断面テーパ状の溝2a’が複数設けられて
いる(図14(a)参照、本図は加圧用円板2’の概略
上面図を示している。)。一方、継手15のフランジ部
15a’の加圧用円板2’側の面には加圧用円板2’の
溝2a’に対応した位置にテーパ状の溝15b’が設け
られている。
FIG. 13 is an enlarged view of a portion corresponding to FIG. 11A of a multi-plate continuously variable transmission adopting another embodiment of the pressurizing mechanism. Since the configuration of the portion other than the pressurizing mechanism of the multi-plate continuously variable transmission in this embodiment is the same as that of the embodiment shown in FIG. 2, the same reference numerals as those in the embodiment shown in FIG. Omit it. In the figure, 1 is a drive shaft, and this drive shaft 1
Is rotatably supported by a joint 15 'and is prevented from coming off by a nut 1b. A pressurizing disc 2'is spline-fitted to the drive shaft 1, and the pressurizing disc 2'of the joint 15 'is fitted.
A flange 15a 'is formed at a position corresponding to. The pressurizing disc 2'is a thin disc, the surface on the side of the drive disc 4 is formed in a tapered shape corresponding to the drive disc 4, and the surface on the side of the flange portion 15a 'is formed from the center of the disc. A plurality of grooves 2 a ′ having a tapered cross section extending in the circumferential direction are provided (see FIG. 14A, this figure shows a schematic top view of the pressing disk 2 ′). On the other hand, the surface of the flange 15a 'of the joint 15 on the pressurizing disc 2'side is provided with a tapered groove 15b' at a position corresponding to the groove 2a 'of the pressurizing disc 2'.

【0021】加圧用円板2’と継手15のフランジ部1
5a’は組立時に各々に設けられた溝2a’と15b’
とが対応するように位置決めされ、溝2a’と溝15
b’とで形成された各空間に円筒状の加圧棒17’が適
当な本数入れられ(図14(b)参照、本図は図13に
おけるC−C断面図である。)、外側端部で抜け止めさ
れている。
The pressing disk 2'and the flange portion 1 of the joint 15
5a 'is a groove 2a' and 15b 'which are provided in each of them when assembled
Are positioned so as to correspond to each other, and the groove 2a ′ and the groove 15 are
An appropriate number of cylindrical pressure rods 17 'are put in each space formed by b' (see FIG. 14 (b), which is a sectional view taken along the line CC in FIG. 13), and the outer end It is prevented from coming off by the section.

【0022】以上のように構成された加圧機構の作用を
説明すると、動力源が駆動して継手15に回転力が加わ
ると、 駆動軸1側の負荷によって前記溝2a’,15
b’の部分にずれt’が生じ、これによって加圧力f’
が発生して加圧用円板2’が軸方向に押圧される(図1
4(c)参照、本図はずれt’が生じた後の状態を示す
図14(b)に対応する図である。)。前記したずれ
t’は駆動軸1にかかる負荷、即ち、接触点10の摩擦
駆動力の大きさに比例して大きくなり、加圧力が接触点
10の摩擦駆動力の大きさに比例するようになる。加圧
用円板2’は弾性変形しやすいように肉薄に形成されて
いるので、動力伝達用環体9の接触点10の位置に応じ
て接触点10がない部分は弾性変形して加圧力f’を逃
がして、接触点10に加圧力を集中させる。図15
(a),(b),(c)は接触点10の位置に応じた加
圧用円板2’の変形状態の一例を示している。
The operation of the pressurizing mechanism configured as described above will be explained. When the power source is driven and a rotational force is applied to the joint 15, the load on the drive shaft 1 side causes the grooves 2a 'and 15 to be formed.
A displacement t'is generated in the portion b ', which causes the pressing force f'.
Occurs and the pressurizing disc 2'is axially pressed (Fig. 1
4 (c), this figure is a diagram corresponding to FIG. 14 (b) showing a state after the deviation t ′ has occurred. ). The deviation t ′ increases in proportion to the load applied to the drive shaft 1, that is, the magnitude of the friction driving force at the contact point 10, so that the applied pressure is proportional to the magnitude of the friction driving force at the contact point 10. Become. Since the pressurizing disc 2'is formed thin so as to be easily elastically deformed, the portion without the contact point 10 is elastically deformed according to the position of the contact point 10 of the power transmission ring body 9 to apply the pressing force f. 'Is released and the pressure is concentrated at the contact point 10. Figure 15
(A), (b), (c) shows an example of a deformed state of the pressure disk 2 ′ according to the position of the contact point 10.

【0023】図16は前記加圧機構のさらに別の実施例
を示す概略断面図である。図中20は駆動軸を示してい
る。駆動軸20には加圧用円板21、駆動用円板22及
び加圧体23がスプライン嵌合されており、図示してい
ない駆動源につながる継手24にナット25で固定され
ている。図中26は加圧プレート、27は加圧球を各々
示しており、これらは前記継手24に40度間隔で9つ
設けられている。各加圧プレート26は軸28を中心に
回動するように構成されている。加圧球27は加圧体2
3に設けられたテーパ状の溝23aに嵌合され、加圧体
23を、軸28と加圧球27の中心とを結ぶ線の延長方
向に向かって加圧する。また、この加圧体23は前記加
圧プレート26にガイドされ、加圧プレート26と一緒
に軸28を中心に移動して加圧方向を変化させる。加圧
プレート26にはギヤ26aが形成されており、このギ
ヤ26aは筒状のギヤ体29と噛み合っている。ギヤ体
29は図示していない制御用カム(図5における11,
12に対応する部材)の動きに連動して上下方向に動く
筒体30と一緒に上下方向に動くように筒体30に保持
されており、これによって、加圧プレート26は前記制
御用カム(図示せず)の動きに連動して軸28を中心に
回動するようになる。尚、図中30aは制御用カムの直
線運動を回転運動に変換するギヤ、30bはカムピンを
各々示しており、前記カムピン30bは上方から下方に
向かって斜めに形成されたカム体31のカム溝に係合し
ている。尚、図中32は従動用円板、33は動力伝達用
環体、34は接触点を各々示している。
FIG. 16 is a schematic sectional view showing still another embodiment of the pressing mechanism. In the figure, 20 indicates a drive shaft. A pressurizing disc 21, a drive disc 22 and a pressurizing body 23 are spline-fitted to the drive shaft 20, and fixed to a joint 24 connected to a drive source (not shown) with a nut 25. In the figure, reference numeral 26 denotes a pressure plate, and 27 denotes a pressure ball. Nine of them are provided on the joint 24 at intervals of 40 degrees. Each pressure plate 26 is configured to rotate about a shaft 28. The pressure ball 27 is the pressure body 2
The pressurizing body 23 is fitted in the tapered groove 23a provided in the No. 3 and pressurizes in the extension direction of the line connecting the shaft 28 and the center of the pressurizing ball 27. The pressurizing body 23 is guided by the pressurizing plate 26 and moves together with the pressurizing plate 26 around the shaft 28 to change the pressurizing direction. A gear 26a is formed on the pressure plate 26, and the gear 26a meshes with a tubular gear body 29. The gear body 29 is a control cam (11 in FIG. 5,
(A member corresponding to 12) is held by the tubular body 30 so as to move in the vertical direction together with the tubular body 30 which moves in the vertical direction in association with the movement of the pressing cam 26. It rotates about the shaft 28 in conjunction with the movement of (not shown). In the figure, reference numeral 30a denotes a gear for converting the linear motion of the control cam into rotational motion, and 30b denotes a cam pin. The cam pin 30b is a cam groove of a cam body 31 formed obliquely from the upper side to the lower side. Is engaged with. In the figure, 32 is a driven disk, 33 is a power transmission ring, and 34 is a contact point.

【0024】以上のように構成された加圧機構の作用を
図17(a),(b)に示した模式図を用いて説明す
る。加圧球27が図17(a)の位置にある時には加圧
球27は軸28と加圧球27の中心27aとを結ぶ線X
3の延長方向に向かってf5の力で加圧体23を押圧す
る。この時、加圧体23にはf4の力で加圧体23を駆
動軸1の軸方向に押圧することになる。この状態からギ
ヤ体29を下方に下げて加圧プレート26を回転中心2
6bを中心に図面上左回りに回転させた後の状態が図1
7(b)である。このように加圧プレート26を回転さ
せて加圧球27の位置を変えると、加圧球27の加圧方
向は変わるが、加圧力は変化しないので、加圧体23を
軸方向に押圧する力は小さくなることになる。この軸方
向に押圧する力の幅は加圧プレート26の回転幅を調節
することによって任意に設定することができ、図17
(b)の場合は加圧球27が加圧体23を軸方向に押圧
する力f4が図17(a)の状態の1/2になるように
設定されている。このように、加圧球27を移動させて
加圧球27の加圧体23に作用する角度を変え、加圧体
23を軸方向に押圧する力を制御用カム(図示せず)の
動きに応じて変化させられるように構成することによっ
て、接触点34にかかる圧力を、理論値に対して近似的
に変化させることができる。この加圧機構によれば、加
圧用円板21を円周状に設けた9つの加圧球26で均等
に加圧するように構成しているので、本実施例の4軸
(即ち、駆動軸一本に対して従動軸3本)の構成に限定
されることなく、駆動軸一本に対して従動軸一本の構成
等に適用した場合でも所望の効果が得られる。
The operation of the pressurizing mechanism configured as described above will be described with reference to the schematic diagrams shown in FIGS. 17 (a) and 17 (b). When the pressure ball 27 is in the position shown in FIG. 17A, the pressure ball 27 has a line X connecting the shaft 28 and the center 27a of the pressure ball 27.
The pressing body 23 is pressed by the force of f5 in the extending direction of 3. At this time, the pressing body 23 is pressed in the axial direction of the drive shaft 1 by the force f4. From this state, the gear body 29 is lowered to move the pressure plate 26 to the center of rotation 2.
Figure 6 shows the state after rotating counterclockwise in the drawing around 6b.
7 (b). When the position of the pressurizing ball 27 is changed by rotating the pressurizing plate 26 in this way, the pressurizing direction of the pressurizing ball 27 changes, but the pressing force does not change, so the pressurizing body 23 is pressed in the axial direction. The power will be smaller. The width of the force pressing in the axial direction can be arbitrarily set by adjusting the rotation width of the pressure plate 26.
In the case of (b), the force f4 by which the pressurizing balls 27 press the pressurizing body 23 in the axial direction is set to be 1/2 of the state of FIG. 17 (a). In this way, the pressure ball 27 is moved to change the angle of the pressure ball 27 acting on the pressure body 23, and the force for pressing the pressure body 23 in the axial direction is moved by the control cam (not shown). The pressure applied to the contact point 34 can be changed approximately with respect to the theoretical value by being configured to be changed according to According to this pressurizing mechanism, the pressurizing disk 21 is configured to be uniformly pressed by the nine pressurizing balls 26 provided in the circumferential shape, and therefore, the four shafts (that is, the drive shafts) of the present embodiment. The present invention is not limited to the configuration of one driven shaft to three), and a desired effect can be obtained even when applied to a configuration of one driven shaft to one drive shaft.

【0025】図18は加圧機構のさらに別の実施例を3
軸(即ち、駆動軸1本に対して従動軸2本)の無段変速
機に適用した状態を示す無段変速機の概略正面図であ
る。加圧機構以外の駆動軸及び従動軸等の関係は図2に
示した実施例の場合と同様であるので共通する部分には
同じ符号を付けて詳しい説明は省略する。図中1は駆動
軸は示しており、駆動軸1には複数の駆動用円板4及び
スペーサ(図示せず)が交互にスプライン嵌合されてい
る。また、図中6は従動軸を示しており、従動軸6には
複数の従動用円板7及びスペーサ(図示せず)が交互に
スプライン嵌合されている。これらの従動軸6は駆動軸
1の両側に駆動用円板4と従動用円板7とが交互に重な
るように各々配置され、図2の実施例と同様、隣接した
駆動用円板4と従動用円板7との間に挟まるように複数
枚の動力伝達用環体9が設けられている。図中11,1
2は制御用カムを示しており、この制御用カム11,1
2は図20における左右方向に平行に移動可能にされ、
動力伝達用環体9の位置を制御する。従って、駆動軸1
が矢印a’方向に回転すると両側の従動軸6は動力伝達
用環体9によって得られる接触点10(図示せず)を介
して動力が伝達され、各々矢印b’方向に回転する。図
中40は基礎枠を示しており、駆動軸1はこの基礎枠4
0に設けられた適当な支持部材(図示せず)に回動自在
に軸支され、一端が例えばモータやエンジンのクランク
等の動力源(図示せず)に接続されている。従動軸6は
その両端部付近が各々支持板41,42に回動自在に軸
支されている。前記支持板41,42は同じ形状に形成
されており、3本の棒状部材43,43,43で連結さ
れ、一体になっている。この支持板41,42は基礎枠
40に設けられた上下の支持体44,45で支持されて
いる。
FIG. 18 shows a third embodiment of the pressing mechanism.
FIG. 1 is a schematic front view of a continuously variable transmission showing a state in which it is applied to a continuously variable transmission having a shaft (that is, one driven shaft and two driven shafts). The relationship between the drive shaft and the driven shaft other than the pressurizing mechanism is the same as in the case of the embodiment shown in FIG. 2, so common parts are designated by the same reference numerals and detailed description thereof is omitted. In FIG. 1, reference numeral 1 denotes a drive shaft, and a plurality of drive discs 4 and spacers (not shown) are alternately spline-fitted to the drive shaft 1. Reference numeral 6 in the drawing denotes a driven shaft, and a plurality of driven disks 7 and spacers (not shown) are alternately spline-fitted to the driven shaft 6. These driven shafts 6 are respectively arranged on both sides of the drive shaft 1 so that the driving discs 4 and the driven discs 7 are alternately overlapped with each other, and like the embodiment of FIG. A plurality of power transmission ring bodies 9 are provided so as to be sandwiched between the driven disc 7 and the driven disc 7. 11, 1 in the figure
Reference numeral 2 denotes a control cam, and the control cams 11 and 1
2 is movable parallel to the left-right direction in FIG.
The position of the power transmission ring 9 is controlled. Therefore, drive shaft 1
When is rotated in the direction of arrow a ', power is transmitted to the driven shafts 6 on both sides via contact points 10 (not shown) obtained by the power transmission ring 9, and they rotate in the direction of arrow b'. In the figure, reference numeral 40 indicates a basic frame, and the drive shaft 1 is the basic frame 4
0 is rotatably supported by an appropriate support member (not shown) provided at 0, and one end thereof is connected to a power source (not shown) such as a motor or a crank of an engine. The driven shaft 6 is rotatably supported by the support plates 41 and 42 near both ends thereof. The support plates 41, 42 are formed in the same shape and are connected by three rod-shaped members 43, 43, 43 to be integrated. The support plates 41 and 42 are supported by upper and lower supports 44 and 45 provided on the base frame 40.

【0026】図19は上記した加圧機構の原理説明図で
ある。駆動軸1が矢印a’方向に回転すると動力伝達用
環体9によって得られる接触点を介して駆動用円板4の
回転力が従動用円板7に伝達されるのであるが、この時
に接触点10は右側の従動軸6を下方に左側の従動軸6
を上方に押す。従動軸6の支点qを軸中心とを結ぶ線は
垂直線Bに対して角度θがあるので、これらの垂直線B
を各々従動軸6を下方、上方に押す力のベクトルと考え
ると、各々駆動軸1側に向かう分力F3が生ずる。接触
点10は隣接する駆動用円板4と従動用円板7との間に
動力伝達用環体9が挟まれて、それらが接触する所で得
られるので、上記したように従動軸6が駆動軸1側に押
されてわずかに駆動軸1側に動くと丁度その接触点10
に加圧力が加わることになる。この加圧機構では上述の
ように従動軸が加圧のために若干動く必要があるので、
従動軸の出力部分には自在継手等を取り付けるのが好ま
しい。上記加圧機構によれば、接触点10における摩擦
駆動力に比例して加圧力が変化するので無駄がなく、か
つ、常に接触点10の部分に加圧力をかけることができ
るという効果を奏する。
FIG. 19 is an explanatory view of the principle of the above-mentioned pressing mechanism. When the drive shaft 1 rotates in the direction of the arrow a ′, the rotational force of the drive disk 4 is transmitted to the driven disk 7 via the contact point obtained by the power transmission ring body 9. The point 10 is that the driven shaft 6 on the right side is moved downward and the driven shaft 6 on the left side is
Press upward. Since the line connecting the fulcrum q of the driven shaft 6 and the axis center has an angle θ with respect to the vertical line B, these vertical lines B
Is a vector of forces pushing the driven shaft 6 downward and upward, a component force F3 toward the drive shaft 1 side is generated. The contact point 10 is obtained when the power transmission ring 9 is sandwiched between the driving disc 4 and the driven disc 7 which are adjacent to each other, and they come into contact with each other. When it is pushed to the drive shaft 1 side and slightly moves to the drive shaft 1 side, the contact point 10
The pressure will be applied to. In this pressurizing mechanism, the driven shaft needs to move slightly for pressurization, as described above,
It is preferable to attach a universal joint or the like to the output portion of the driven shaft. According to the above-mentioned pressurizing mechanism, since the pressing force changes in proportion to the frictional driving force at the contact point 10, there is no waste, and it is possible to constantly apply the pressing force to the contact point 10.

【0027】以上説明した多板式無段変速機における円
板の枚数は本実施例に限定されることなく、伝達する力
の大きさ、即ち駆動軸の馬力に応じて、適宜変えること
ができることは勿論である。また、加圧機構を設ける軸
も本実施例に限定されることなく、動力伝達用環体と隣
接する円板とを加圧接触できるように圧縮できれば必要
に応じて任意の軸に設けてよく、例えば従動軸側に設け
てもよい。さらに、動力伝達用環体を設ける軸も本実施
例に限定されることなく動力伝達用環体の一部が隣接す
る円板の間に形成された隙間に位置し、加圧機構によっ
て加圧することによって隣接する円板と加圧接触するよ
うに設ければ任意の軸でよく、例えば必要に応じて駆動
軸側に設けてもよい。本実施例の多板式無段変速機は、
複数枚の駆動用円板及び従動用円板を櫛状に重ねて動力
伝達用環体9を介して動力を伝導するように構成されて
いるので、この駆動用円板及び従動用円板を増減するだ
けで、簡単に加圧接触面積を増減して伝達トルクの大き
さを調節することができるという効果をそうする。ま
た、本実施例の多板式無段変速機は円板4,7の枚数と
動力伝達用環体9の枚数が多ければ多い程、動力伝達を
行う接触点が増えるため、高トルクを伝達することがで
きるのであるが、本実施例に係る多板式無段変速機にお
いては、動力伝達用環体9の枚数に関係なく、制御用カ
ム11,12を左右方向に適当な距離だけ移動するため
の僅かな制御力があれば、駆動軸1から従動軸5への伝
達ギヤ比を変えることができる、即ち、僅かな力で、大
馬力の回転を自由に制御することができるという効果を
奏する。また、本実施例の多板式無段変速機は円板4,
7を軸方向に交互に櫛状に重ね、これらを軸方向に加圧
することによって動力伝達用環体との接触点を得るよう
に構成しているので、伝達トルクを大きくするために円
板の枚数を増やしたとしても加圧力もそれに比例して増
やすことはないという効果を奏する。
The number of discs in the multi-plate continuously variable transmission described above is not limited to this embodiment, and can be appropriately changed according to the magnitude of the force to be transmitted, that is, the horsepower of the drive shaft. Of course. Further, the shaft on which the pressurizing mechanism is provided is not limited to the present embodiment, and may be provided on any shaft as needed as long as it can be compressed so that the power transmission ring and the adjacent disk can be pressed and contacted. For example, it may be provided on the driven shaft side. Further, the shaft on which the power transmission ring is provided is not limited to the present embodiment, and a part of the power transmission ring is located in the gap formed between the adjacent discs and is pressed by the pressure mechanism. Any shaft may be provided as long as it is provided so as to be in pressure contact with an adjacent disc, and for example, it may be provided on the drive shaft side if necessary. The multi-plate continuously variable transmission of this embodiment is
Since a plurality of drive discs and driven discs are stacked in a comb shape so as to transmit power through the power transmission ring 9, the drive discs and the driven discs are The effect is that the magnitude of the transmission torque can be adjusted by simply increasing or decreasing the pressure contact area by simply increasing or decreasing. Further, in the multi-plate type continuously variable transmission of the present embodiment, the larger the number of the disks 4, 7 and the number of the power transmission ring 9 are, the more the contact points for power transmission are increased, and thus the high torque is transmitted. However, in the multi-plate continuously variable transmission according to the present embodiment, the control cams 11 and 12 are moved in the left-right direction by an appropriate distance regardless of the number of the power transmission ring bodies 9. With a small amount of control force, the transmission gear ratio from the drive shaft 1 to the driven shaft 5 can be changed, that is, the rotation of large horsepower can be freely controlled with a small force. . In addition, the multi-plate continuously variable transmission of this embodiment has a circular disc 4,
7 are alternately stacked in the axial direction in a comb shape, and these are pressed in the axial direction to obtain the contact points with the power transmission ring body. Therefore, in order to increase the transmission torque, the disc Even if the number of sheets is increased, the pressing force is not proportionally increased.

【0028】[0028]

【発明の効果】本発明の多板式無段変速機は、周方向に
向かって先薄のテーパ状に形成した少なくとも一つの円
板を備えた少なくとも一つの第1軸と、前記円板と相似
形状に形成した円板を前記第1軸より一枚多く備えた第
2軸とを、並列に配置して各軸の円板が交互に配列さ
れ、かつ、隣接した円板のテーパ状部分が互いに一定の
間隔を置いて対向するようにし、少なくとも前記円板よ
り直径が大きく形成された動力伝達用環体を、一部分が
隣接した円板の間に位置するように何れか一方側の軸に
設け、また、第2軸に軸方向に円板を加圧する加圧機構
を設けて、動力伝達用環体を隣接する円板に加圧接触さ
せ、該加圧接触点の摩擦駆動力により動力伝達用環体を
介して第1軸と第2軸との間で動力伝達を行うようにし
ているので、従来の可撓性のあるVベルト等を使用した
無段変速機に比べて耐久性が向上し、高速回転で高トル
クを伝達できる他、動力伝達用環体を、それが設けられ
ている軸に対して偏心することのできる手段を設けて、
動力伝達用環体を回転中に偏心させたときの、動力伝達
用環体がその回転中心を第1軸と第2軸との軸中心を結
ぶ線上に戻して回転を安定させるようにする運動を利用
して動力伝達用環体を移動し、変速を行うので、従来の
バイエル式無段変速機のように変速時に大きな力を必要
とせず、装置を小型化することができ、かつ、変速の制
御もやりやすくなるという効果を奏する。第1軸及び第
2軸に相似形状の円板を設け、それらが一定の間隔をお
いて部分的に対向するように配置し、隣接した円板の間
で押圧されるように動力伝達用環体を設けて、第1軸と
第2軸との間で動力伝達ができるように構成しているの
で、伝達したい駆動力の大きさに応じて円板の枚数及び
動力伝達用環体の枚数を適宜変更することによって摩擦
面を変更し必要最低限の大きさで駆動力の伝達ができる
という効果を奏する。
The multi-plate continuously variable transmission of the present invention is similar to at least one first shaft provided with at least one disk formed in a taper shape which is tapered in the circumferential direction. A second shaft having one more disk formed in a shape larger than the first shaft is arranged in parallel so that the disks of the respective axes are alternately arranged, and the tapered portions of the adjacent disks are To be opposed to each other at a constant interval, at least a power transmission ring having a diameter larger than that of the disk is provided on one of the shafts so that a part thereof is located between the adjacent disks, Further, the second shaft is provided with a pressurizing mechanism for axially pressing the disc, and the power transmission ring is brought into pressure contact with the adjacent disc, and the friction drive force at the pressure contact point is used for power transmission. Since power is transmitted between the first shaft and the second shaft via the ring body, Compared with a continuously variable transmission that uses a flexible V-belt, the durability is improved, high torque can be transmitted at high speed, and a power transmission ring is attached to the shaft on which it is provided. By providing a means that can be eccentric,
Movement for stabilizing the rotation by returning the center of rotation of the power transmission ring to the line connecting the axes of the first shaft and the second shaft when the power transmission ring is eccentric during rotation Since the power transmission annulus is used to shift gears, it does not require a large force when shifting, unlike the conventional Bayer type continuously variable transmission, and it is possible to downsize the device. This also has the effect of making it easier to control. Discs of similar shape are provided on the first shaft and the second shaft, and the discs are arranged so as to partially oppose each other with a constant interval, and a power transmission ring is arranged so as to be pressed between the adjacent discs. Since it is provided so that power can be transmitted between the first shaft and the second shaft, the number of disks and the number of power transmission rings are appropriately set according to the magnitude of the driving force to be transmitted. By changing the frictional surface, the driving force can be transmitted with the minimum necessary size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の多板式無段変速機の一実施例を示す
概略正面図
FIG. 1 is a schematic front view showing an embodiment of a multi-plate continuously variable transmission according to the present embodiment.

【図2】2つの従動軸を省略した本実施例の多板式無段
変速機の一実施例を示す概略平面図
FIG. 2 is a schematic plan view showing an embodiment of the multi-plate continuously variable transmission of this embodiment in which two driven shafts are omitted.

【図3】(a)はスペーサの平面図 (a)のA−A断面図3A is a plan view of a spacer, and FIG. 3A is a cross-sectional view taken along line AA of FIG.

【図4】図1の多板式無段変速機の動力伝達部分の概略
拡大図
FIG. 4 is a schematic enlarged view of a power transmission portion of the multi-plate continuously variable transmission shown in FIG.

【図5】図4におけるB−B断面図5 is a sectional view taken along line BB in FIG.

【図6】制御用カムを移動した直後の状態を示す図5に
対応する図
FIG. 6 is a diagram corresponding to FIG. 5 showing a state immediately after moving the control cam.

【図7】動力伝達用環体が移動を終了した後の状態を示
す図5に対応する図
FIG. 7 is a view corresponding to FIG. 5 showing a state after the power transmission ring has finished moving.

【図8】動力伝達用環体の単品の斜視図FIG. 8 is a perspective view of a single power transmission ring body.

【図9】(a),(b)共に動力伝達用環体が移動する
原理を説明するための原理図
9 (a) and 9 (b) are principle diagrams for explaining the principle of movement of the power transmission ring.

【図10】(a)ガイド部材の部分拡大図 (b)動力伝達用環体が移動した後のガイド部材の状態
を示す(a)に対応する部分拡大図
FIG. 10A is a partially enlarged view of a guide member, and FIG. 10B is a partially enlarged view corresponding to FIG. 10A showing a state of the guide member after the power transmission ring has moved.

【図11】(a)駆動軸の加圧用円板の周辺の拡大図 (b)加圧用円板と継手との間に設けられた孔とボール
の拡大図 (c)加圧用円板と継手とがずれて加圧力Fが生じた状
態を示す(b)に対応する拡大図
FIG. 11A is an enlarged view of the periphery of a drive shaft pressurizing disc; FIG. 11B is an enlarged view of holes and balls provided between the pressurizing disc and the joint; and FIG. 11C is a pressurizing disc and joint. An enlarged view corresponding to (b) showing a state in which the pressing force F is generated due to the deviation

【図12】動力伝達用環体が加圧用円板の小径部分に移
動した時に加圧力の伝わりかたを示す図11(a)に対
応する図
FIG. 12 is a view corresponding to FIG. 11 (a) showing how pressure is transmitted when the power transmission ring moves to the small diameter portion of the pressurizing disc.

【図13】加圧機構の別の実施例を採用した多板式無段
変速機の部分拡大図
FIG. 13 is a partially enlarged view of a multi-plate continuously variable transmission adopting another embodiment of a pressure mechanism.

【図14】(a)加圧用円板の概略上面図 (b)図13におけるC−C断面図 (c)ずれt’が生じた後の状態を示す図14(b)に
対応する図
14A is a schematic top view of a pressurizing disc, FIG. 14B is a cross-sectional view taken along line CC of FIG. 13, and FIG. 14C is a view corresponding to FIG. 14B showing a state after a displacement t ′ has occurred.

【図15】(a),(b),(c)共、接触点10の位
置に応じた加圧用円板2’の変形状態の一例を示す図
15 (a), (b), and (c) are diagrams showing an example of a deformed state of the pressure disk 2'according to the position of the contact point 10. FIG.

【図16】加圧機構のさらに別の実施例を示す概略断面
FIG. 16 is a schematic sectional view showing still another embodiment of the pressurizing mechanism.

【図17】(a),(b)共に図16に開示した実施例
の原理説明図
17 (a) and (b) are explanatory diagrams of the principle of the embodiment disclosed in FIG.

【図18】加圧機構のさらに別の実施例を示す無段変速
機の概略正面図
FIG. 18 is a schematic front view of a continuously variable transmission showing still another embodiment of the pressurizing mechanism.

【図19】図18に示した実施例の原理説明図FIG. 19 is an explanatory view of the principle of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 駆動軸 1a オイル通路 1b ナット 2 加圧用円板 2’ 加圧用円板 2a 孔 2a' 溝 3 加圧用円板 3a ストッパー 4 駆動用円板 4’軸中心 5 スペーサ 6 従動軸 7 従動用円板 7’軸中心 8 スペーサ 9 動力伝達用環体 9’回転中心 10 接触点 11 制御用カム 11a 支持面 11b アーム 11c アーム 11d ピストン 11e ピストン 11f オイル通路 12 制御用カム 12a 支持面 13 ガイド部材 13a ガイド体 13b ガイド体 13c オイル溜め 13d 孔 14 ガイド部材 15 継手 15' 継手 15a フランジ部 15a'フランジ部 15b 孔 15b'溝 16a 支持部材 16b 支持部材 17 加圧球 17' 加圧棒 X 軸線:駆動用円板と従動用円板との軸中心を結ん
だ線 Y 接触点の軌跡 L1 制御用カムの移動距離 a 駆動軸の回転方向 b 従動軸の回転方向 c 制御用カムの移動可能方向 D 従動軸の有効回転半径 d 駆動軸の有効回転半径 f 加圧力 F 加圧方向 L ガイド体13aの移動方向 R ガイド体13bの移動方向 20 駆動軸 21 加圧用円板 22 駆動用円板 23 加圧体 23a 溝 24 継手 25 ナット 26 加圧プレート 26a ギヤ 27 加圧球 27a 中心 28 軸 29 ギヤ体 30 筒体 30a ギヤ 30b カムピン 31 カム体 32 従動用円板 33 動力伝達用環体 34 接触点 40 基礎枠 41 支持板 42 支持板 43 棒状部材 44 支持体 45 支持体 p 支持板の支持方向 q 支持板の支持方向 F3 加圧力
1 Drive shaft 1a Oil passage 1b Nut 2 Pressurizing disc 2'Pressurizing disc 2a Hole 2a 'Groove 3 Pressurizing disc 3a Stopper 4 Drive disc 4'Axis center 5 Spacer 6 Driven shaft 7 Driven disc 7'axis center 8 spacer 9 power transmission ring 9'rotation center 10 contact point 11 control cam 11a support surface 11b arm 11c arm 11d piston 11e piston 11f oil passage 12 control cam 12a support surface 13 guide member 13a guide body 13b Guide body 13c Oil sump 13d hole 14 Guide member 15 Fitting 15 'Fitting 15a Flange part 15a' Flange part 15b Hole 15b 'Groove 16a Support member 16b Support member 17 Pressurizing ball 17' Pressurizing rod X axis: Drive disk Line connecting the shaft centers of the driven disc and the driven disc Y The locus of the contact point L1 The moving distance of the control cam a The rotational direction of the drive shaft b The rotational direction of the driven shaft c The movable direction of the control cam D The effective of the driven shaft Radius of rotation d Effective half rotation of drive shaft Diameter f Pressing force F Pressing direction L Moving direction of guide body 13a R Moving direction of guide body 13b 20 Drive shaft 21 Pressing disk 22 Driving disk 23 Pressing body 23a Groove 24 Joint 25 Nut 26 Pressing plate 26a Gear 27 Pressurizing ball 27a Center 28 Shaft 29 Gear body 30 Cylindrical body 30a Gear 30b Cam pin 31 Cam body 32 Driven disc 33 Power transmission ring 34 Contact point 40 Base frame 41 Support plate 42 Support plate 43 Rod-like member 44 Support Body 45 Support p Support direction of support plate q Support direction of support plate F3 Applied pressure

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 周方向に向かって先薄のテーパ状に形成
した少なくとも一つの円板を備えた少なくとも一つの第
1軸と、前記円板と相似形状に形成した円板を前記第1
軸より一枚多く備えた第2軸とを、並列に配置し、各軸
の円板を交互に配列するとともに、隣接した円板のテー
パ状部分が互いに一定の間隔を置いて対向するように
し、少なくとも前記円板より直径が大きく形成された動
力伝達用環体を、一部分が隣接した円板の間に位置する
ように何れか一方側の軸に設け、また、第2軸に軸方向
に円板を加圧する加圧機構を設けて、動力伝達用環体を
隣接する円板に加圧接触させ、該加圧接触点の摩擦駆動
力により動力伝達用環体を介して第1軸と第2軸との間
で動力伝達を行うようにするとともに、動力伝達用環体
をそれが設けられた軸に対して偏心させて、隣接する円
板が対向している範囲内で加圧接触点を変位させる手段
を設けたことを特徴とする多板式無段変速機。
1. At least one first shaft having at least one disk formed in a taper shape which is tapered toward the circumferential direction, and a disk formed in a similar shape to the disk.
The second shaft, which is provided with one more than the shaft, is arranged in parallel, the discs of the respective shafts are alternately arranged, and the taper portions of the adjacent discs are opposed to each other at a constant interval. A shaft for power transmission having a diameter at least larger than that of the disc is provided on one of the shafts so that a part thereof is located between the adjacent discs, and the disc is axially arranged on the second shaft. A pressurizing mechanism for pressurizing the power transmission ring body is brought into pressure contact with an adjacent disk, and the friction drive force at the pressure contact point causes the power transmission ring body to pass through the first shaft and the second shaft. In addition to transmitting power to the shaft, the power transmission ring is eccentric with respect to the shaft on which it is provided, and the pressure contact point is set within the range where the adjacent disks face each other. A multi-plate continuously variable transmission characterized in that it is provided with means for displacing it.
【請求項2】 第1軸が駆動軸で第2軸が従動軸である
ことを特徴とする請求項1に記載の多板式無段変速機。
2. The multi-plate continuously variable transmission according to claim 1, wherein the first shaft is a drive shaft and the second shaft is a driven shaft.
【請求項3】 第1軸が従動軸で第2軸が駆動軸である
ことを特徴とする請求項1に記載の多板式無段変速機。
3. The multi-plate continuously variable transmission according to claim 1, wherein the first shaft is a driven shaft and the second shaft is a drive shaft.
【請求項4】 動力伝達用環体が第1軸側に設けられて
いることを特徴とする請求項1から3の何れか一項に記
載の多板式無段変速機。
4. The multi-plate continuously variable transmission according to claim 1, wherein the power transmission ring is provided on the first shaft side.
【請求項5】 動力伝達用環体が第2軸側に設けられて
いることを特徴とする請求項1から3の何れか一項に記
載の多板式無段変速機。
5. The multi-plate continuously variable transmission according to claim 1, wherein the power transmission ring is provided on the second shaft side.
【請求項6】 加圧機構が、動力伝達用環体と隣接する
円板との加圧接触点の摩擦駆動力に対応した加圧力を加
圧接触点に作用させるように構成されていることを特徴
とする請求項1から5の何れか一項に記載の多板式無段
変速機。
6. The pressurizing mechanism is configured to apply a pressing force corresponding to a frictional driving force at a pressurizing contact point between the power transmission ring and the adjacent disk to the pressurizing contact point. The multi-plate type continuously variable transmission according to any one of claims 1 to 5.
【請求項7】 加圧機構が、軸方向に沿ってたわむよう
に形成した加圧板と、動力伝達用環体と隣接する円板と
の加圧接触点の変位に対応した位置において加圧板を押
圧し、加圧接触点の摩擦駆動力に対応した加圧力を加圧
接触点に作用させる押圧部材とからなることを特徴とす
る請求項1から5の何れか一項に記載の多板式無段変速
機。
7. The pressure mechanism includes a pressure plate at a position corresponding to displacement of a pressure contact point between the pressure plate formed to bend along the axial direction and the disc adjacent to the power transmission ring body. 6. The multi-plate type none according to any one of claims 1 to 5, further comprising: a pressing member that presses and applies a pressing force corresponding to a frictional driving force of the pressing contact point to the pressing contact point. Gearbox.
JP31380993A 1993-12-14 1993-12-14 Multi-disc type continuously variable transmission Pending JPH07167239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31380993A JPH07167239A (en) 1993-12-14 1993-12-14 Multi-disc type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31380993A JPH07167239A (en) 1993-12-14 1993-12-14 Multi-disc type continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH07167239A true JPH07167239A (en) 1995-07-04

Family

ID=18045779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31380993A Pending JPH07167239A (en) 1993-12-14 1993-12-14 Multi-disc type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH07167239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159407A1 (en) * 2022-02-22 2023-08-31 江苏大学 Gear-hydraulic-multiple-disc integrated multi-mode combined transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159407A1 (en) * 2022-02-22 2023-08-31 江苏大学 Gear-hydraulic-multiple-disc integrated multi-mode combined transmission device

Similar Documents

Publication Publication Date Title
WO2012111562A1 (en) Toroidal type continuously variable transmission
JPH03149442A (en) Friction type continuously variable transmission
US5679090A (en) Half-toroidal-type continuously variable transmission having two sets of three rollers
US7465249B2 (en) Toroidal type continuously variable transmission
JPH07167239A (en) Multi-disc type continuously variable transmission
JP2015218778A (en) Toroidal continuously variable transmission
JP3165665B2 (en) Traction drive mechanism
JP6331449B2 (en) Toroidal continuously variable transmission
JP4605495B2 (en) Toroidal continuously variable transmission
JP3480034B2 (en) Toroidal type continuously variable transmission
JP2001304366A (en) Toroidal-type continuously variable transmission
JP6003732B2 (en) Toroidal continuously variable transmission
JP5772026B2 (en) Toroidal continuously variable transmission
JPH11141635A (en) Toroidal continuously variable transmission
JP6458443B2 (en) Toroidal continuously variable transmission
JP2002206605A (en) Continuously variable transmission
JP6311452B2 (en) Toroidal continuously variable transmission
JP6421647B2 (en) Toroidal continuously variable transmission
JP3128944B2 (en) Gear ratio control device for toroidal type continuously variable transmission
JP4513008B2 (en) Continuously variable transmission
JP6492614B2 (en) Toroidal continuously variable transmission
JP4379708B2 (en) Toroidal continuously variable transmission
JP3461876B2 (en) Inverter continuously variable transmission
JP6364961B2 (en) Toroidal continuously variable transmission
JP4605497B2 (en) Toroidal continuously variable transmission