JPH07161534A - Static induction machine - Google Patents

Static induction machine

Info

Publication number
JPH07161534A
JPH07161534A JP5304997A JP30499793A JPH07161534A JP H07161534 A JPH07161534 A JP H07161534A JP 5304997 A JP5304997 A JP 5304997A JP 30499793 A JP30499793 A JP 30499793A JP H07161534 A JPH07161534 A JP H07161534A
Authority
JP
Japan
Prior art keywords
static electricity
static
tank
insulating liquid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304997A
Other languages
Japanese (ja)
Inventor
Takashi Shirane
隆志 白根
Sadao Furukawa
貞夫 古川
Yuzuru Kamata
譲 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5304997A priority Critical patent/JPH07161534A/en
Publication of JPH07161534A publication Critical patent/JPH07161534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To estimate the quantity of static electricity generated by fluid charging in a static induction machine accurately and to retard the generation of static electricity if there is any possibility of electrostatic trouble. CONSTITUTION:A relaxation tank 8, a fluid charge generating section 9, a static electricity detecting section 10, and a current meter 12 are arranged sequentially in the vicinity of the upper part of a tank 2 and a part of insulating fluid 1 is fed through them into a cooling circulation circuit 5 from above the tank 2. At a fluid charge generating section 9, an insulating liquid 1 is fluidized while applying an AC electric field to a duct 19 between the electrodes 17 coated with same insulator 16 as that being employed in the static induction machine. A comparing section 25 compares the fluid current measured at the detecting section 10 is compared with a value allowable under the conditions of current velocity, temperature, and AC electric field of the duct 19 and delivers an alarm if the measured value is higher than the allowable value. A mixing tank 33 filled with the insulating liquid 1 containing a charge retardant is installed in a bypass circuit 34 in the way of the cooling circulation circuit 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁性液体を強制循環さ
せる冷却方式の静止誘導電器に係り、特に、運転中の静
電気の監視及び発生を抑制する機能を備えた静止誘導電
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling-type static induction machine in which an insulating liquid is forcibly circulated, and more particularly, to a static induction machine having a function of monitoring and suppressing static electricity during operation.

【0002】[0002]

【従来の技術】一般に、絶縁性液体が流動する際に固体
との接触面において静電気の発生いわゆる、流動帯電が
起こることは公知の現象である。タンク内に巻線を収納
し絶縁性液体が充填された静止誘導電器では、発熱体で
ある巻線を冷却する目的で絶縁性液体を外部の冷却器と
タンクとの間で循環させるため、上記の流動帯電現象が
起こることが知られている。このような静止誘導電器の
代表的な例として強制冷却油入変圧器がある。この種の
変圧器では絶縁油の流動により変圧器を構成している構
造物との界面で静電気が発生し、静電気の発生が非常に
多い場合静電気放電が起こり、変圧器の絶縁破壊を招く
可能性がある。このため、運転中常時静電気量を監視
し、静電気障害の評価を行うことは変圧器の運転保守上
重要である。従来、変圧器内部の静電気発生量を直接測
定することができないため、それを推定する手段として
特公昭55−24686 号公報で示されるように外部に静電気
監視装置を設置し、運転中常時静電気量を監視すること
が提案されている。すなわち、変圧器本体と同一処理を
した絶縁物で囲まれた金属電極面に絶縁油を流動させ、
発生した静電気を金属電極の接地電流として検出する静
電気監視装置を冷却配管の一部あるいはバイパス回路に
配設するものである。
2. Description of the Related Art Generally, it is a well-known phenomenon that static electricity is generated at a contact surface with a solid when an insulating liquid flows, that is, flow charging occurs. In a static induction machine in which a winding is housed in a tank and filled with an insulating liquid, the insulating liquid is circulated between an external cooler and the tank for the purpose of cooling the winding, which is a heating element. It is known that the flow charging phenomenon of A forced cooling oil-filled transformer is a typical example of such a static induction generator. In this type of transformer, static electricity is generated at the interface with the structure that makes up the transformer due to the flow of insulating oil, and if there is a large amount of static electricity, electrostatic discharge occurs, which may lead to dielectric breakdown of the transformer. There is a nature. Therefore, it is important for the operation and maintenance of the transformer to constantly monitor the static electricity amount during operation and evaluate the static electricity failure. Conventionally, since it is not possible to directly measure the amount of static electricity generated inside a transformer, as a means for estimating it, an external static electricity monitoring device is installed as shown in Japanese Patent Publication No.55-24686, and the static electricity amount is constantly maintained during operation. It is proposed to monitor. That is, the insulating oil is made to flow on the metal electrode surface surrounded by the insulator that has been treated the same as the transformer body,
The static electricity monitoring device for detecting the generated static electricity as the ground current of the metal electrode is arranged in a part of the cooling pipe or in the bypass circuit.

【0003】[0003]

【発明が解決しようとする課題】従来のこのような静電
気監視の手段では、絶縁油の流速は変圧器内部と同じに
設定されているが、流動帯電に影響する他の変圧器内部
条件、すなわち、絶縁油の温度や絶縁油に加わる交流電
界については特に考慮されておらず、実際の変圧器内部
で発生している静電気量が正確に推定されていないとい
う問題がある。また、万一、静電気発生量が大きくて静
電気障害が発生する恐れがある場合、運転を停止するこ
となく静電気発生量を抑えるためには変圧器内部の絶縁
油の流速を下げることが有効であるが、流速を下げるこ
とは流量を減らすことであり、冷却性能の低下、すなわ
ち、変圧器の負荷容量の低下を招くことになる。このた
め変圧器の負荷容量を下げることなく、静電気障害を防
止することも要望されている。
According to the conventional means for monitoring static electricity, the flow velocity of the insulating oil is set to be the same as that in the transformer, but other internal conditions of the transformer that affect the flow electrification, namely, The temperature of the insulating oil and the AC electric field applied to the insulating oil are not particularly taken into consideration, and there is a problem in that the amount of static electricity generated inside the actual transformer is not accurately estimated. Also, in the unlikely event that static electricity is generated and there is a risk of static electricity failure, it is effective to reduce the flow rate of insulating oil inside the transformer in order to suppress static electricity generation without stopping the operation. However, lowering the flow velocity means reducing the flow rate, which leads to a reduction in cooling performance, that is, a reduction in load capacity of the transformer. Therefore, it is also required to prevent electrostatic damage without reducing the load capacity of the transformer.

【0004】本発明の目的は、静止誘導電器内部で流動
帯電により発生している静電気量を正確に推定し、静電
気障害が発生する恐れがあるとき静電気の発生量を抑制
するようにした静止誘導電器を提供することにある。
An object of the present invention is to accurately estimate the amount of static electricity generated by flow electrification inside a static induction electric device, and to suppress the amount of static electricity generated when there is a risk of electrostatic damage. It is to provide electric appliances.

【0005】[0005]

【課題を解決するための手段】本発明は絶縁性液体を強
制循環冷却する静止誘導電器で、流動帯電発生部とその
下流に設けた静電気検出部から構成される静電気監視装
置を静止誘導電器のタンク上部に近接して配置し、静電
気監視装置の流動帯電発生部は静止誘導電器タンク内に
使用されているものと同じ絶縁材料でカバーされ、かつ
交流電界が印加された電極間には静止誘導電器のタンク
上部から流入する絶縁性液体を流動させるようにしたも
のであり、さらに絶縁性液体の温度と流速を計測する手
段を設け、これらと流動帯電発生部の交流電界の大きさ
から定まる許容静電気発生量と静電気監視装置の静電気
検出部で測定された静電気発生量を比較し、前者より後
者の値が大きいとき警告を発する比較判定部を備える。
また、警告が発生されたとき絶縁性液体の冷却循環回路
の途中に高濃度な帯電抑制物質を含有する絶縁性液体を
注入する機構を備える。
SUMMARY OF THE INVENTION The present invention is a static induction device for forcibly circulating and cooling an insulating liquid, wherein a static electricity monitoring device comprising a static charge generation part and a static electricity detection part provided downstream thereof is provided as a static induction device. Placed close to the top of the tank, the static charge generator of the static electricity monitor is covered with the same insulating material used in the static induction electric tank, and static induction is applied between the electrodes to which an AC electric field is applied. It is designed to make the insulating liquid flowing from the upper part of the tank of the electric appliance flow.Furthermore, a means for measuring the temperature and flow velocity of the insulating liquid is provided, and the tolerance determined by the magnitude of the AC electric field of these and the flow electrification generation part A comparison / determination unit is provided which compares the static electricity generation amount with the static electricity generation amount measured by the static electricity detection unit of the static electricity monitoring device and issues a warning when the latter value is larger than the former value.
Further, a mechanism is provided for injecting an insulating liquid containing a high-concentration antistatic substance in the middle of the insulating liquid cooling circulation circuit when a warning is issued.

【0006】[0006]

【作用】本発明では静電気監視装置の流動帯電発生部
は、静止誘導電器の内部により近い条件、すなわち、流
速のほか、温度や交流電界も考慮して流動帯電を起こさ
せ、その静電気発生量を静電気検出部で測定するので、
静止誘導電器内部の流動帯電を正確に推定することがで
きる。また、比較判定部で静電気障害発生の恐れがある
か否かを判断することができ、静電気障害発生の恐れが
あると判断された場合、帯電抑制物質が添加された絶縁
性液体を注入するので、静止誘導電器内部での静電気の
発生が抑えられ、電荷蓄積による静電気放電あるいはこ
れに起因する絶縁破壊事故を未然に防止できる。
According to the present invention, the static charge generating portion of the static electricity monitoring device causes static charge in consideration of the conditions closer to the inside of the static induction electric device, that is, in addition to the flow velocity, temperature and AC electric field, and the static charge generation amount is determined. Because it measures with the static electricity detection section,
It is possible to accurately estimate the flow charge inside the static induction electric device. Further, the comparison / determination unit can determine whether or not there is a possibility of occurrence of electrostatic trouble, and if it is judged that there is a possibility of occurrence of electrostatic trouble, the insulating liquid added with the antistatic substance is injected. The generation of static electricity inside the stationary induction device can be suppressed, and electrostatic discharge due to charge accumulation or a dielectric breakdown accident resulting therefrom can be prevented.

【0007】[0007]

【実施例】以下、本発明を実施例に基づいて説明する。
図1は本発明の実施例を示す静止誘導電器の本体及び外
部のブロック図である。図1で絶縁性液体1が充填され
たタンク2の内部には鉄心3とそれに巻回された巻線4
が収納され、タンク2の外部には鉄心3と巻線4を冷却
するため冷却循環回路5を介してクーラ6及びポンプ7
が配置され、タンク2上部と冷却循環回路5との間には
タンク2上部に近接して緩和タンク8,流動帯電発生部
9と静電気検出部10で構成された静電気監視装置1
1,流速計12の順で配置され、タンク2内上部の絶縁
性液体1の一部がこれらを通って冷却循環回路5へ流入
するようになっている。なお、静電気監視装置11へ流
入する絶縁性液体1の液量の調整はバルブ13と冷却循
環回路5に設けたバルブ14の開閉量を変えて行うよう
になっている。一方、図2は流動帯電発生部9と静電気
検出部10からなる静電気監視装置11の具体的な構成
図を示したものである。図2において流動帯電発生部9
は、接地された収納容器15内に静止誘導電器の本体に
用いられているものと同じ絶縁物16で被覆された電極
17が対向して配置され、支持絶縁物18によって電極
17が固定されるとともに絶縁性液体1が絶縁物16に
面したダクト19を通して流れるようになっている。ま
た、一方の電極17aには交流電源装置20により高圧
端子21を介して交流高電圧が印加され、他方の電極1
7bは接地され、電極17間には所定の交流電界が加わ
るようになっており、この交流電界の大きさは交流電源
装置20内で電気信号に変換され、信号線22を通して
図1に示したように比較判定部23に取り込まれるよう
になっている。また、収納容器15には絶縁性液体1の
温度を検出する温度センサ24が備えられており、ここ
で測定された温度は電気信号に変換され、信号線25を
通して図1に示したように比較判定部23に取り込まれ
るようになっている。流動帯電は図2内のダクト19の
部分で発生し、帯電した絶縁性液体1は流動帯電発生部
9の下流に設けられた静電気検出部10へ流入し、絶縁
体26で周囲と絶縁された緩和容器27で滞留し、ここ
で絶縁性液体1内の帯電電荷は電流計28を通して大地
へ漏洩していく。このとき測定される電流、いわゆる、
流動電流の大きさは電流計28で電気信号に変換され信
号線29を通して図1に示したように比較判定部23に
取り込まれるようになっている。また、図1において流
速計12ではダクト19内の流速に換算した値が測定さ
れるようになっており、その測定値は電気信号に変換さ
れて信号線30を通して図1に示したように比較判定部
23に取り込まれるようになっている。図1で示した比
較判定部23は上述のようにダクト19内における交流
電界の大きさ、絶縁性液体1の温度と流速,流動電流の
大きさを情報として取り込むとともに、あらかじめダク
ト19で絶縁性液体1の温度と流速および交流電界の大
きさによって定まる流動電流の許容値、すなわち、流動
帯電による静止誘導電器本体の静電気放電が発生しない
条件を満足する流動電流の大きさが入力されており、こ
の比較判定部23は絶縁性液体1の温度と流速および交
流電界の大きさによって定まる流動電流の許容値と測定
値を比較し、前者よりも後者の値が大きいとき警報を発
する機能を備えている。一方、タンク2とポンプ7との
間の冷却循環回路5の途中にはバルブ31,32を介し
て高濃度の帯電抑制物質を含有した絶縁性液体1が充填
された混合タンク33を配置したバイパス回路34が設
けられている。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a block diagram of a main body and an external part of a static induction generator showing an embodiment of the present invention. In FIG. 1, an iron core 3 and windings 4 wound around the iron core 3 are provided inside a tank 2 filled with an insulating liquid 1.
Is stored in the tank 2, and a cooler 6 and a pump 7 are provided outside the tank 2 via a cooling circulation circuit 5 for cooling the iron core 3 and the windings 4.
The static electricity monitoring device 1 is provided between the upper part of the tank 2 and the cooling circulation circuit 5 and is arranged in the vicinity of the upper part of the tank 2 and includes a relaxation tank 8, a flow electrification generation part 9 and an electrostatic detection part 10.
1, the flowmeter 12 is arranged in this order, and a part of the insulating liquid 1 in the upper part of the tank 2 flows into the cooling circulation circuit 5 through them. The amount of the insulating liquid 1 flowing into the static electricity monitoring device 11 is adjusted by changing the opening / closing amount of the valve 13 and the valve 14 provided in the cooling circulation circuit 5. On the other hand, FIG. 2 shows a specific configuration diagram of the static electricity monitoring device 11 including the flow charge generation unit 9 and the static electricity detection unit 10. In FIG. 2, the flow charge generation unit 9
The electrode 17 covered with the same insulator 16 as that used in the main body of the stationary induction device is arranged to face each other in the grounded storage container 15, and the electrode 17 is fixed by the support insulator 18. At the same time, the insulating liquid 1 is allowed to flow through the duct 19 facing the insulator 16. Further, an AC high voltage is applied to the one electrode 17a by the AC power supply device 20 through the high voltage terminal 21, and the other electrode 1a
7b is grounded, and a predetermined AC electric field is applied between the electrodes 17, and the magnitude of this AC electric field is converted into an electric signal in the AC power supply device 20 and shown in FIG. In this way, the comparison and determination section 23 is loaded. Further, the storage container 15 is provided with a temperature sensor 24 for detecting the temperature of the insulating liquid 1. The temperature measured here is converted into an electric signal and is compared through a signal line 25 as shown in FIG. It is adapted to be taken into the determination unit 23. The flow charge is generated in the duct 19 portion in FIG. 2, and the charged insulating liquid 1 flows into the static electricity detection unit 10 provided downstream of the flow charge generation unit 9 and is insulated from the surroundings by the insulator 26. It stays in the relaxation container 27, where the charged electric charge in the insulating liquid 1 leaks to the ground through the ammeter 28. The current measured at this time, the so-called
The magnitude of the flowing current is converted into an electric signal by the ammeter 28 and taken into the comparison / determination unit 23 through the signal line 29 as shown in FIG. Further, in FIG. 1, the velocity meter 12 measures the value converted into the velocity in the duct 19, and the measured value is converted into an electric signal and is compared through the signal line 30 as shown in FIG. It is adapted to be taken into the determination unit 23. As described above, the comparison / determination unit 23 shown in FIG. 1 fetches the magnitude of the AC electric field in the duct 19, the temperature and flow velocity of the insulating liquid 1, and the magnitude of the flowing current as information, and the duct 19 pre-insulates the insulation property. The allowable value of the flowing current determined by the temperature and the flow velocity of the liquid 1 and the magnitude of the alternating electric field, that is, the magnitude of the flowing current satisfying the condition that the static induction of the static induction electric device main body due to the flow charging does not occur is input, The comparison / determination unit 23 has a function of comparing the allowable value of the flowing current determined by the temperature and flow velocity of the insulating liquid 1 and the magnitude of the alternating electric field with the measured value, and issuing an alarm when the latter value is larger than the former value. There is. On the other hand, in the middle of the cooling circulation circuit 5 between the tank 2 and the pump 7, a bypass is provided in which a mixing tank 33 filled with the insulating liquid 1 containing a high-concentration antistatic substance is placed via valves 31 and 32. A circuit 34 is provided.

【0008】図1,図2で示した本発明の構成では、流
動帯電発生部9におけるダクト19内の流動帯電の発
生、静電気検出部10における静電気量の測定の過程は
以下のようになる、先ず、タンク2内上部から緩和タン
ク8へ流入した絶縁性液体1は、ここで正負イオンの中
和や大地への電荷の漏洩により、ほぼ無帯電の状態とな
り、続いて流動帯電発生部9のダクト19内へ流入し、
このとき絶縁物16との界面では電荷の分離、すなわ
ち、電気二重層が形成され、絶縁物16と絶縁性液体1
は相反する極性に帯電する。例えば油入変圧器では絶縁
性液体である鉱油は正に、プレスボード等の絶縁物は負
に帯電することが知られている。このように一方の極性
に帯電した絶縁性液体1は、下流の静電気検出部10へ
流入し、緩和容器27内で滞留するが、このとき絶縁性
液体1の体積抵抗率と誘電率の積で表される緩和時間よ
り十分長く滞留するように緩和容器27の容量を定めて
おけば絶縁性液体1中の電荷はほとんど電流計28を通
して大地へ漏洩していくことになり、この測定される流
動電流の大きさはダクト19で発生した静電気量、すな
わち、流動帯電の大きさを示していることになる。とこ
ろで静止誘導電器内部の流動帯電の大きさを支配する因
子は運転条件、すなわち、絶縁性液体の種類,絶縁物の
種類,絶縁性液体の温度と流速,絶縁性液体と絶縁物の
界面に加わる交流電界の大きさである。本発明における
流動帯電発生部9のダクト19内では絶縁性液体の種
類,絶縁物の種類,絶縁性液体の温度と流速,絶縁性液
体と絶縁物の界面に加わる交流電界の大きさを静止誘導
電器内部の運転条件とほぼ等しく設定できるため、静電
気検出部10で測定された流動電流の大きさは静止誘導
電器内部の流動帯電の大きさを相対的ではあるが精度良
く推定しているといえる。また、比較判定部23にはあ
らかじめ実験的に調べた絶縁性液体の温度,流速,AC
電界の条件と流動電流の許容値、すなわち、静止誘導電
器内部で静電気放電が発生する条件における流動電流の
下限値より余裕をみた低い値との関係が入力されてお
り、実測された流動電流がこの値より大きいとき比較判
定部23は警報を発生するようにしているので、静止誘
導電器内部の流動帯電による静電気放電の発生を予測で
きる。また、比較判定部23で警報が発せられたら、バ
ルブ31,32を開けて混合タンク33内の帯電抑制物
質が含有した絶縁性液体1′を冷却循環回路5の絶縁性
液体1へ注入することにより、帯電抑制物質を含んだ絶
縁性液体1がタンク2内部へ流入し、この帯電抑制物質
により鉄心3や巻線4などの本体内部で発生する流動帯
電が抑制されることになる。例えば、油入変圧器で用い
られる鉱油における帯電抑制物質の代表的なものとして
はベンゾトリアゾールがあげられる。
In the configuration of the present invention shown in FIGS. 1 and 2, the process of the generation of the flow charge in the duct 19 of the flow charge generation unit 9 and the measurement of the static electricity amount in the static electricity detection unit 10 is as follows. First, the insulating liquid 1 that has flowed from the upper part of the tank 2 into the relaxation tank 8 is in a substantially non-charged state due to the neutralization of positive and negative ions and the leakage of charges to the ground. Flowing into the duct 19,
At this time, charge separation, that is, an electric double layer is formed at the interface with the insulator 16, and the insulator 16 and the insulating liquid 1 are formed.
Are charged with opposite polarities. For example, it is known that in oil-filled transformers, mineral oil, which is an insulating liquid, is positively charged, and insulators such as pressboards are negatively charged. The insulating liquid 1 thus charged to one of the polarities flows into the static electricity detection unit 10 on the downstream side and stays in the relaxation container 27. At this time, the product of the volume resistivity and the dielectric constant of the insulating liquid 1 is obtained. If the capacity of the relaxation container 27 is set so as to stay sufficiently longer than the relaxation time represented, almost all the charges in the insulating liquid 1 will leak to the ground through the ammeter 28, and this measured flow The magnitude of the current indicates the amount of static electricity generated in the duct 19, that is, the magnitude of the flow charge. By the way, the factors that control the magnitude of the flow charge inside the static induction device are the operating conditions, that is, the type of insulating liquid, the type of insulating material, the temperature and flow velocity of the insulating liquid, and the interface between the insulating liquid and the insulating material. It is the magnitude of the alternating electric field. In the duct 19 of the flow electrification generation unit 9 of the present invention, the type of insulating liquid, the type of insulating material, the temperature and flow velocity of the insulating liquid, and the magnitude of the AC electric field applied to the interface between the insulating liquid and the insulating material are statically induced. Since it can be set to be almost equal to the operating condition inside the electric appliance, the magnitude of the flowing current measured by the static electricity detection unit 10 can be said to accurately estimate the magnitude of the flowing electric charge inside the static induction electric appliance, though relatively. . Further, the comparison / determination unit 23 has a temperature, a flow velocity, an AC
The relationship between the condition of the electric field and the allowable value of the flowing current, that is, the value lower than the lower limit value of the flowing current with a margin under the condition that electrostatic discharge occurs inside the static induction device is input, and the measured flowing current is When the value is larger than this value, the comparison / determination unit 23 issues an alarm, so that it is possible to predict the occurrence of electrostatic discharge due to flow electrification inside the stationary induction machine. Further, when an alarm is issued by the comparison / determination unit 23, the valves 31 and 32 are opened to inject the insulating liquid 1 ′ containing the antistatic substance in the mixing tank 33 into the insulating liquid 1 of the cooling circulation circuit 5. As a result, the insulating liquid 1 containing the charge suppressing substance flows into the tank 2, and the charge suppressing substance suppresses the flow charge generated inside the main body such as the iron core 3 and the winding 4. For example, benzotriazole is a typical example of the antistatic substance in mineral oil used in oil-filled transformers.

【0009】[0009]

【発明の効果】本発明によれば静止誘導電器内部の流動
帯電の大きさを精度良く推定し、静電気放電の発生の予
測が可能であり、また、静電気放電の発生の恐れがある
場合、冷却循環する絶縁性液体の流量を減少することな
く、注入した帯電抑制物質により静止誘導電器内部の流
動帯電の発生を抑制できる。従って、静止誘導電器にお
いて冷却性能を損なうことなく、流動帯電による静電気
放電の発生が起因となるを絶縁破壊事故を未然に防止で
きる。
According to the present invention, it is possible to accurately estimate the magnitude of flow electrification inside a static induction electric generator, predict the occurrence of electrostatic discharge, and cool the electrostatic discharge if it is suspected. It is possible to suppress the generation of flow electrification inside the static induction electric device by the injected electrification suppressing substance without reducing the flow rate of the circulating insulating liquid. Therefore, it is possible to prevent a dielectric breakdown accident from occurring due to the occurrence of electrostatic discharge due to flow electrification without impairing the cooling performance in the static induction machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す静止誘導電器のブロック
図。
FIG. 1 is a block diagram of a static induction generator showing an embodiment of the present invention.

【図2】本発明における静電気監視装置の説明図。FIG. 2 is an explanatory diagram of a static electricity monitoring device according to the present invention.

【符号の説明】[Explanation of symbols]

1…絶縁性液体、2…タンク、4…巻線、5…冷却循環
回路、8…緩和タンク、9…流動帯電発生部、10…静
電気検出部、11…静電気監視装置、12…流速計、1
6…絶縁物、17…電極、20…交流電源装置、23…
比較判定部、24…温度センサ、27…緩和容器、28
…電流計、33…混合タンク。
DESCRIPTION OF SYMBOLS 1 ... Insulating liquid, 2 ... Tank, 4 ... Winding, 5 ... Cooling circulation circuit, 8 ... Relaxation tank, 9 ... Flow electrification generation part, 10 ... Static electricity detection part, 11 ... Static electricity monitoring device, 12 ... Velocity meter, 1
6 ... Insulator, 17 ... Electrode, 20 ... AC power supply device, 23 ...
Comparison / determination unit, 24 ... Temperature sensor, 27 ... Relaxation container, 28
... ammeter, 33 ... mixing tank.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】巻線を収納したタンクと外部の冷却器との
間を冷却配管を介して絶縁性液体が強制循環され、タン
ク外部には流動帯電により発生する静電気を監視する静
電気監視装置が備えられている静止誘導電器において、
前記静電気監視装置は流動帯電発生部とその下流に設け
た静電気検出部から構成され、前記タンクの上部に接近
して前記タンクと冷却配管との間に配置されたことを特
徴とする静止誘導電器。
1. A static electricity monitoring device for forcibly circulating an insulating liquid between a tank accommodating a winding wire and an external cooler via a cooling pipe, and for monitoring static electricity generated by flow electrification outside the tank. In the static induction equipment provided,
The static electricity monitoring device comprises a static charge generation unit and a static electricity detection unit provided downstream of the flow static electricity generation unit, and is arranged between the tank and a cooling pipe close to the upper portion of the tank. .
【請求項2】請求項1において、前記静電気監視装置の
流動帯電発生部は、前記タンク内部と同じ絶縁物で被覆
されて対向した電極と、前記電極間に絶縁性液体が流動
するダクトと、一方の電極に交流電圧を印加し他方の電
極を接地する高電圧装置から構成された静止誘導電器。
2. The static electrification generating section of the static electricity monitoring device according to claim 1, wherein electrodes facing each other are covered with the same insulator as the inside of the tank, and a duct through which an insulating liquid flows between the electrodes. A static induction generator composed of a high-voltage device that applies an AC voltage to one electrode and grounds the other electrode.
【請求項3】請求項1において、前記静電気監視装置と
前記タンクの上部との間に接地され、かつ絶縁性液体が
滞留する緩和タンクを設けた静止誘導電器。
3. The static induction machine according to claim 1, further comprising a relaxation tank which is grounded between the static electricity monitoring device and an upper portion of the tank and in which an insulating liquid is retained.
【請求項4】請求項1において、前記静電気監視装置の
下流に絶縁性液体の温度と流速を測定し、これらの値と
前記流動帯電発生部の電極間に加わる交流電界を情報と
して取り込み、これらの条件に対応して予め定められた
静電気発生量の許容値と前記静電気検出部で測定される
静電気量を比較し、前者の値より後者の値が大きいとき
警告を発する比較判定部を備えた静止誘導電器。
4. The temperature and flow velocity of an insulating liquid are measured downstream of the static electricity monitoring device according to claim 1, and these values and an AC electric field applied between electrodes of the flow electrification generating unit are taken in as information, A comparison determination unit that compares the allowable value of the static electricity generation amount that is determined in advance with the static electricity amount measured by the static electricity detection unit and issues a warning when the latter value is larger than the former value is provided. Stationary induction device.
【請求項5】請求項1において、前記比較判定部より警
告が発せられたら、あらかじめ保管されている高濃度の
帯電抑制物質を含有した絶縁液体を静止誘導電器本体の
絶縁性液体に注入させる機能を前記冷却配管の途中に備
えた静止誘導電器。
5. The function of injecting an insulating liquid containing a high-concentration antistatic substance, which is stored in advance, into the insulating liquid of a main body of a static induction electric device when a warning is issued by the comparison / determination unit according to claim 1. A static induction electric device having the cooling pipe in the middle thereof.
JP5304997A 1993-12-06 1993-12-06 Static induction machine Pending JPH07161534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304997A JPH07161534A (en) 1993-12-06 1993-12-06 Static induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304997A JPH07161534A (en) 1993-12-06 1993-12-06 Static induction machine

Publications (1)

Publication Number Publication Date
JPH07161534A true JPH07161534A (en) 1995-06-23

Family

ID=17939842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304997A Pending JPH07161534A (en) 1993-12-06 1993-12-06 Static induction machine

Country Status (1)

Country Link
JP (1) JPH07161534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231978A (en) * 2008-03-19 2009-10-08 Sharp Corp Charging detection device and document reading apparatus equipped therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231978A (en) * 2008-03-19 2009-10-08 Sharp Corp Charging detection device and document reading apparatus equipped therewith

Similar Documents

Publication Publication Date Title
CN107797041A (en) A kind of gas insulated electric apparatus inner sensor Environmental compatibility test system
Chothani et al. Real-time monitoring & protection of power transformer to enhance smart grid reliability
Nelson Dielectric fluids in motion
Gustavsen et al. Voltages and AC corrosion on metallic tubes in umbilical cables caused by magnetic induction from power cable charging currents
JP2007303890A (en) Apparatus for diagnosing charge density of insulating fluid and its method
JPH07161534A (en) Static induction machine
JP2005259785A (en) Oil-filled electric apparatus
Schober et al. Oil conductivity–an important quantity for the design and the condition assessment of HVDC insulation systems
JPH01191406A (en) Stationary induction electric apparatus
US20110084716A1 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
Paillat et al. Electrostatic Hazard in High-Power Transformers: Results of Ten Years of Experience With ${P}^{\prime} $ Capacitive Sensor
Yamada et al. Model approach to the static electrification phenomena induced by the flow of oil in large power transformers
JPS627503B2 (en)
Nelson et al. Tandem-chamber charge density monitor
Huh et al. Streaming electrification of thin insulating pipes under electric field
JP2006032651A (en) Electric apparatus
JPH0127385B2 (en)
JPS5815067B2 (en) Static electricity monitoring device for transformers, etc.
Lee et al. Flow-induced electrification and partial discharge measurements in transformer duct structures
JPS5930490Y2 (en) Electric charge measuring device for transformer insulating oil
JPS5830553B2 (en) Static electricity monitoring device for transformers, etc.
JP2019075396A (en) Stationary induction system
JPS5830552B2 (en) Static electricity monitoring device for transformers, etc.
JP2014118152A (en) Foreign matter mixing detector
Paillat et al. Flow electrification in transformers: correlation between winding leakage current and pressboard charge accumulation