JP2019075396A - Stationary induction system - Google Patents

Stationary induction system Download PDF

Info

Publication number
JP2019075396A
JP2019075396A JP2017198149A JP2017198149A JP2019075396A JP 2019075396 A JP2019075396 A JP 2019075396A JP 2017198149 A JP2017198149 A JP 2017198149A JP 2017198149 A JP2017198149 A JP 2017198149A JP 2019075396 A JP2019075396 A JP 2019075396A
Authority
JP
Japan
Prior art keywords
stationary induction
flow path
channel
electrode
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017198149A
Other languages
Japanese (ja)
Inventor
直哉 宮本
Naoya Miyamoto
直哉 宮本
市村 智
Satoshi Ichimura
智 市村
河村 憲一
Kenichi Kawamura
憲一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017198149A priority Critical patent/JP2019075396A/en
Publication of JP2019075396A publication Critical patent/JP2019075396A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a high-reliable and low cost stationary induction system.SOLUTION: The stationary induction system comprises: a stationary induction unit having a winding 11 coated with an electrical insulator; a tank 10 including the stationary induction unit; an insulating coolant 5 filed in the tank 10 for cooling the stationary induction unit; a radiator 12 disposed outside of the tank 10 for cooling the insulating coolant 5; and a piping 13 connecting the radiator 12 and the tank 10 therebetween. The piping 13 has a straight portion 14, and a flow pass of the insulating coolant 5 in the straight portion 14 includes: a coated electrode channel 101 formed of an electrode coated with the same electrical insulator as the winding 11; and a metal electrode 201 formed of a metal. The metal electrode 201 is positioned at the downstream side than the coated electrode channel 101.SELECTED DRAWING: Figure 2

Description

本発明は静止誘導電器に関するものであり、特に帯電特性変動を高感度に検出可能な静止誘導電器システムに関する。   The present invention relates to a stationary induction battery, and more particularly to a stationary induction battery system capable of detecting charging characteristic fluctuation with high sensitivity.

変圧器やリアクトル等の静止誘導電器において、損失密度が高い機器はポンプで絶縁冷媒を電器本体内に送って電器本体を冷却する場合が多い。例えば比較的大容量の送電系統向け変圧器では、変圧器本体と冷却器間に絶縁油をポンプで循環させ、電器を冷却している。絶縁油が流動すると変圧器内絶縁物との間で帯電が生じ、帯電が進行すると放電に至る、絶縁信頼性上のリスクとなることが知られている。この帯電は流動帯電と呼ばれ、変圧器における流動帯電の帯電量、帯電電荷極性といった特性は絶縁油、絶縁紙やプレスボードの経年変化や微量の添加物、混入物で変化し予測が難しいため、実器の絶縁油の諸特性を直接測定することで流動帯電のリスクを診断している。具体的には(イ)実器から絶縁油を採取して帯電特性を測定する、(ロ)実器の変圧器本体を通過した絶縁油が帯電していることから、変圧器本体通過後の絶縁油の帯電電位を測定する装置を設けて変圧器の個体としての帯電特性変化を測定する、(ハ)実器の絶縁油流路中に絶縁物で被覆された電極を配置し、被覆電極の電位や漏れ電流から被覆電極表面に蓄積される電荷量を評価する、(ニ)(ハ)において被覆電極を通過した絶縁油は、被覆電極の帯電極性とは逆極性に帯電していることから、絶縁油からの接地電流を測定する装置を設けて帯電量を評価する、といった方法が取られている。(イ)は変圧器停止を伴う定期的な診断となり、(ロ)(ハ)(ニ)は運転状態での常時監視が可能である。   In stationary induction devices such as transformers and reactors, devices with high loss density often use a pump to send an insulating refrigerant into the electric device body to cool the electric device body. For example, in a relatively large capacity transformer for transmission systems, insulating oil is circulated by a pump between the transformer body and the cooler to cool the appliance. It is known that the flow of the insulating oil causes charging with the insulator in the transformer, and the progress of charging causes a risk on insulation reliability leading to discharge. This electrification is called fluid electrification, and the characteristics such as the electrification amount of electrification of electrification of electrification of electrification of electrification and electrification charge polarity in transformer change with insulation oil, insulating paper and aging of aging paper and press board, trace additive, and it is difficult to predict By directly measuring the properties of the container's insulating oil, it diagnoses the risk of fluid electrification. Specifically, (a) Insulating oil is collected from the actual device to measure the charging characteristics, and (b) Since the insulating oil passing through the transformer body of the actual device is charged, after the transformer body has passed A device for measuring the charging potential of the insulating oil is provided to measure the change in charging characteristics of the transformer as an individual. (Iii) An insulator-coated electrode is disposed in the insulating oil flow path of the actual device, and a coated electrode The amount of electric charge accumulated on the surface of the coated electrode from the potential and leakage current of the (i) (iii) Insulating oil that has passed through the coated electrode is charged in the opposite polarity to the charged polarity of the coated electrode. There is a method of evaluating the charge amount by providing a device for measuring the ground current from the insulating oil. (A) is a periodic diagnosis accompanied by transformer shutdown, and (B) (C) can be constantly monitored in the operating state.

近年では、(ロ)(ハ)(ニ)といった手法を基にオンライン監視し、監視作業を省力化し、かつ経済的な機器更新計画の指針の一つとすることが求められている。いずれも監視のために測定する信号のSN比が小さいという課題がある。また(ロ)(ハ)に関しては、以下のような課題がある。   In recent years, on-line monitoring based on a method such as (b) (c) (c) has been required to reduce the labor of monitoring work and to be one of the guiding principles of an economical equipment renewal plan. Both have the problem that the SN ratio of the signal to be measured for monitoring is small. There are the following issues with regard to (b) and (c).

(ロ)においては、変圧器本体通過後の絶縁油の帯電電位は絶縁油の特性の他、変圧器流路の構成と流路各部での絶縁油流速分布、変圧器や絶縁油の温度分布といった設計事項に依存するため、その変圧器個体として帯電特性が正常か否かを判断するには有用である。一方、絶縁油そのものの特性を得るには多くの仮定を基に推定する必要があり、変圧器流路上の絶縁物の帯電分布を定量的に予測し、放電に至るリスクを詳細に評価するのは困難である。   In (b), the charge potential of the insulating oil after passing through the transformer main body is not only the characteristics of the insulating oil but also the configuration of the transformer flow path and the insulating oil flow velocity distribution at each part of the flow path, and the temperature distribution of the transformer and insulating oil Because it depends on such design matters, it is useful for determining whether or not the charging characteristics are normal as the individual transformer. On the other hand, in order to obtain the characteristics of the insulating oil itself, it is necessary to estimate it based on many assumptions, quantitatively predict the charge distribution of the insulator on the transformer flow path, and evaluate the risk to discharge in detail. It is difficult.

(ハ)においては、変圧器流路において帯電し易いと予想されている流路構造を模した参照用の被覆電極流路を設け、直接当該流路構造での帯電状態を予測する方法があるが、当該流路構造を変圧器の原寸大で模すと被覆電極流路が大きくなる課題があり、流れの相似則を基に被覆電極流路を縮小した場合は相似則に従わない帯電特性があるため(ロ)同様定量評価が困難になる課題があり、予想していない流路内で帯電が進行する場合のリスク評価が難しい課題がある。   In (iii), there is a method of providing a coated electrode flow path for reference imitating a flow path structure expected to be easily charged in the transformer flow path, and directly predicting the charge state in the flow path structure. However, if the flow channel structure is simulated at the original size of the transformer, there is a problem that the coated electrode flow path becomes large, and if the coated electrode flow path is reduced based on the flow similarity law, the charging characteristics do not follow the similarity law Similarly, there is a problem that quantitative evaluation is difficult as well, and there is a problem in which it is difficult to evaluate the risk when electrification progresses in a channel which is not expected.

そこで、例えば特許文献1では、(ハ)(ニ)の手法を取りつつ、直線状の被覆電極流路中に絶縁油を流すことで、被覆電極流路内の流れが容易に予測できて被覆電極と絶縁油間の帯電特性と流れの相関を取ることができ、従って変圧器本体内部での流れの分布から帯電状態を予測するための絶縁油の基本特性を常時評価することが可能で、定量的に絶縁リスクを評価するための帯電特性を監視できる。しかし(ニ)の手法において、一般に被覆電極を通過した絶縁油の帯電状態の測定では、絶縁油の帯電電荷を接地電流として十分な大きさの信号を得るため、被覆電極を通過した絶縁油を接地電位にある容器(緩和タンクと呼ぶ)内に流入させ、絶縁油の電気的な時定数と同程度以上に長い時間緩和タンクに絶縁油がとどまるよう、具体的には緩和タンク容積を絶縁油流量で割った平均的な緩和タンク滞在時間が絶縁油の時定数と同程度以上に長くなるよう、大きな緩和タンクが必要となる課題がある。緩和タンクは絶縁油を電気的に中性にして(緩和と呼ぶ)変圧器流路に返す役割を持つ場合があり、特許文献1では被覆電極流入前の絶縁油を電気的に中性にする目的で緩和タンクを設けている。   Therefore, for example, in Patent Document 1, the flow in the coated electrode channel can be easily predicted by flowing the insulating oil in the linear coated electrode channel while taking the method of (c) (d). It is possible to correlate the charging characteristics and flow between the electrode and the insulating oil, so that it is possible to constantly evaluate the basic characteristics of the insulating oil for predicting the charged state from the flow distribution inside the transformer body, The charging characteristics can be monitored to quantitatively assess the insulation risk. However, in the method of (d), in general, in the measurement of the charge state of the insulating oil that has passed through the coated electrode, the insulating oil that has passed through the coated electrode is In order to flow into a container at a ground potential (referred to as a relaxation tank) and keep the insulation oil in the relaxation tank for a long time longer than or equal to the electrical time constant of the insulating oil, specifically There is a problem that a large relief tank is required so that the average relief tank stay time divided by the flow rate becomes longer than or equal to the time constant of the insulating oil. The relaxation tank may play a role in electrically insulating the insulating oil and returning it to the transformer flow path (referred to as relaxation). In Patent Document 1, the insulating oil before flowing into the coated electrode is electrically neutralized. A relaxation tank is provided for the purpose.

特開平7−161534号公報Japanese Patent Application Laid-Open No. 7-161534

静止誘導電器は、経済的な機器運用のため、絶縁信頼上のリスクを最小限の構成で常時定量的に監視できることが望ましい。   It is desirable for stationary induction appliances to be able to constantly and quantitatively monitor the risk of insulation reliability with a minimum configuration for economical equipment operation.

特許文献1に記載された発明は、静止誘導電器の絶縁信頼性上のリスクのひとつである流動帯電を定量的に評価するもので、静止誘導電器の配管系の一部に絶縁物で被覆された電極で構成される直線上の被覆電極流路を設け、被覆電極流路の下流に絶縁冷媒中電荷測定用の緩和タンクを設け、被覆電極流路内に静止誘導電器内を循環して電器本体を冷却する絶縁冷媒を流し、絶縁冷媒中の電荷が絶縁物の被覆に吸着されることで絶縁冷媒と絶縁物に逆極性の帯電が生じ、被覆電極流路内で帯電した絶縁冷媒の電荷量を、絶縁冷媒中電荷測定用の緩和タンクの接地電流として評価することで、絶縁冷媒と絶縁物の間の帯電量を流れとの相関のある値として定量的に評価することができる。しかし、緩和タンクに流入した絶縁冷媒の電荷を接地電流として十分に観測するためには、絶縁冷媒が緩和タンク内にとどまる時間(滞留時間)が絶縁冷媒の時定数(103〜105秒オーダ)と同等以上に大きい必要があり、滞留時間は緩和タンク容積を絶縁冷媒の流量で割ったもので見積もられるため、大きな緩和タンクが必要となる。 The invention described in Patent Document 1 quantitatively evaluates the flow electrification, which is one of the risks on the insulation reliability of a stationary induction appliance, and a part of the piping system of the stationary induction appliance is covered with an insulator. A covered electrode flow path on a straight line composed of the separated electrodes is provided, a relaxation tank for measuring the charge in the insulating refrigerant is provided downstream of the covered electrode flow path, and the stationary induction battery is circulated in the coated electrode flow path to Insulating refrigerant that cools the main body flows, and the electric charge in the insulating refrigerant is absorbed by the coating of the insulator, whereby the insulating refrigerant and the insulator are charged in the reverse polarity, and the charge of the insulating refrigerant charged in the coating electrode flow path By evaluating the amount as the ground current of the relaxation tank for measuring the charge in the insulating refrigerant, it is possible to quantitatively evaluate the charge amount between the insulating refrigerant and the insulator as a value having a correlation with the flow. However, in order to sufficiently observe the charge of the insulating refrigerant flowing into the relaxation tank as the ground current, the time during which the insulating refrigerant stays in the relaxation tank (residence time) is the time constant of the insulating refrigerant (on the order of 10 3 to 10 5 seconds) Since the residence time is estimated as the relaxation tank volume divided by the flow rate of the insulating refrigerant, a large relaxation tank is required.

そこで、本発明では絶縁信頼性が高くかつ経済性を考慮した静止誘導電器システムを提供することを目的とする。   Therefore, it is an object of the present invention to provide a stationary induction appliance system having high insulation reliability and economical efficiency.

上記の課題を解決するために、本発明に係る静止誘導電器システムは、絶縁物で被覆された巻線を有する静止誘導電器と、前記静止誘導電器を備えるタンクと、前記タンク内に充填され前記静止誘導電器を冷却する絶縁冷媒と、前記タンクの外部に備えられ前記絶縁冷媒を冷却する冷却器と、前記冷却器と前記タンクとを接続する配管と、を有し、前記配管は直線部を有し、前記直線部内部の前記絶縁冷媒の流路は前記巻線と同じ絶縁物で被覆された電極から成る被覆電極流路と、金属から成る金属電極流路とから構成され、前記金属電極流路は前記被覆電極流路よりも下流側に位置する。   In order to solve the above problems, in a stationary induction appliance system according to the present invention, a stationary induction appliance having a winding coated with an insulator, a tank including the stationary induction appliance, and the tank filled with the tank It has an insulated refrigerant which cools a stationary induction appliance, a cooler which is provided outside the tank and cools the insulated refrigerant, and a pipe which connects the cooler and the tank, and the pipe is a straight portion. The flow path of the insulating refrigerant inside the straight portion is composed of a covered electrode flow path made of an electrode covered with the same insulator as the winding, and a metal electrode flow path made of metal, the metal electrode The flow channel is located downstream of the coated electrode flow channel.

本発明によれば、本発明では絶縁信頼性が高くかつ経済性を考慮した静止誘導電器システムを提供することが可能になる。   According to the present invention, the present invention makes it possible to provide a stationary induction appliance system with high insulation reliability and economical efficiency.

本発明を適用する静止誘導電器の一般的な構成例を示したものである。The example of a general structure of a stationary induction appliance which applies this invention is shown. 本発明を適用した実施例1における流動帯電の帯電特性検出部と設置箇所の構成を示したものである。The structure of the electrification characteristic detection part of fluid charging and the installation location in Example 1 to which the present invention is applied is shown. 本発明を適用した実施例1の流動帯電の帯電特性検出部の構成における、絶縁冷媒中の電荷移動経路を示したものである。The charge transfer path | route in the insulation refrigerant | coolant in the structure of the electrification characteristic detection part of the flow electrical charging of Example 1 to which this invention is applied is shown. 従来の静止誘導電器における流動帯電の帯電特性検出設備の構成例と絶縁冷媒中の電荷移動経路を示したものである。The structural example of the electrification characteristic detection installation of the flow electrification in the conventional stationary induction appliance, and the charge transfer course in the insulating refrigerant are shown. 実施例1での帯電特性検出部において流路位置口に整流格子を設けた例を示したものである。13 shows an example in which a flow straightening passage is provided in the flow passage position port in the charging characteristic detection unit in the first embodiment. 実施例1での帯電特性検出部において測定値として被覆電極の接地電流と金属電極の接地電流を得る構成を示したものである。The structure which obtains the earthing current of a coating electrode and the earthing current of a metal electrode as a measured value in the charge characteristic detection part in Example 1 is shown. 本発明の静止誘導電器の適用部位について、図1と別の形態例を示したものである。About the application site | part of the stationary induction battery of this invention, FIG. 1 and another example of a form are shown. 本発明を適用した実施例1における流動帯電の帯電特性検出部と設置箇所の構成を示したものである。The structure of the electrification characteristic detection part of fluid charging and the installation location in Example 1 to which the present invention is applied is shown. 実施例2での帯電特性検出部において流路位置口に整流格子を設けた例を示したものである。17 illustrates an example in which a flow straightening passage is provided in the flow path position port in the charging characteristic detection unit in the second embodiment. 実施例2での帯電特性検出部において測定値として被覆電極の接地電流と金属電極の接地電流を得る構成を示したものである。The structure which obtains the earthing current of a coating electrode and the earthing current of a metal electrode as a measured value in the charge characteristic detection part in Example 2 is shown.

以下、本発明を実施する上で好適な実施例について図面を用いて説明する。下記はあくまでも実施の例に過ぎず、発明の実施態様を限定する趣旨ではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The following is merely an example of implementation and is not intended to limit the embodiments of the invention.

図1に静止誘導電器の全体的な構造を示す。静止誘導電器は、本体タンク10内に絶縁紙などの絶縁物で被覆された導体を巻き回してなる巻線11を備えた静止誘導電器本体が収納される。本体タンク10内に絶縁冷媒5が封入され静止誘導電器本体が絶縁冷媒5によって浸される。巻線11は絶縁冷媒5が流れる巻線冷却流路を備え、巻線冷却流路は前記本体タンクの外部に設けられた冷却器12に配管13で接続され、絶縁冷媒5は配管13上に設けられたポンプ6により、静止誘導電器本体と冷却器12を循環している。配管13上のいずれかに直線部14を設けている。   Figure 1 shows the overall structure of the stationary induction appliance. In the stationary induction battery, a stationary induction battery main body provided with a winding 11 formed by winding a conductor coated with an insulating material such as insulating paper in a main body tank 10 is accommodated. The insulating refrigerant 5 is sealed in the main body tank 10, and the stationary induction battery main body is immersed by the insulating refrigerant 5. The winding 11 is provided with a winding cooling flow passage through which the insulating refrigerant 5 flows, and the winding cooling flow passage is connected by a pipe 13 to a cooler 12 provided outside the main tank, and the insulating refrigerant 5 is on the pipe 13 The stationary induction battery body and the cooler 12 are circulated by the provided pump 6. The straight portion 14 is provided on any of the pipes 13.

図1の静止誘導電器本体の構成は、本体タンク10内に静止誘導電器本体として巻線11ひとつを備えた構成を示しているが、静止誘導電器本体は巻線11が複数個ある構成、鉄心を備えてひとつ乃至複数の巻線11が鉄心の周りに巻き回される構成を取り得る。   Although the configuration of the stationary induction device main body in FIG. 1 shows a configuration in which one winding 11 is provided as the stationary induction device main body in the main body tank 10, the configuration of the stationary induction device main body has a plurality of windings 11; And one or more windings 11 may be wound around an iron core.

第一の実施例を図2から図5を用いて説明する。まず静止誘導電器における従来の流動帯電測定機構例について、図4に管軸方向の断面を概念図として示す。図4に示すように、配管13上に巻線11と同じ絶縁物1bで被覆された被覆電極1で流路を構成した被覆電極流路101を設け、被覆電極流路101の下流に金属製の緩和タンク16を接続している。被覆電極流路101と緩和タンク16は、それぞれプレスボードや樹脂などの絶縁物で構成される絶縁物流路7によって、配管13に固定され、また配管13と被覆電極流路101と緩和タンク16とが絶縁物流路7により電気的に絶縁されている。被覆電極1と接地間に電位差検出器3を設け、緩和タンク16と接地間に電流検出器8を設けている。これらの従来の構成に寄れば、例えば絶縁物1bが絶縁紙、絶縁冷媒5が変圧器油の場合、被覆電極流路101において絶縁冷媒5中の負電荷18が絶縁物1b上に吸着されて被覆電極1が負に帯電し、絶縁冷媒5中には正電荷17が残って絶縁冷媒5が正に帯電し、絶縁冷媒5中の正電荷17は被覆電極流路101が直管で絶縁冷媒の流れ4が発達した層流である場合または発達した乱流で層流境界層内に正電荷17が分布する場合、被覆電極1近傍の遅い流れに乗って正電荷移動経路15のように移動して、それ以外の場合は絶縁冷媒の流れ4の分布に従って(多くはみだれにより撹拌されて平均的な流速に乗って)移動して、緩和タンク16内に流入し、正電荷17は緩和タンク16内で拡散されて絶縁冷媒5の電気的時定数に従って緩和タンク16を介し接地電流として接地電位へ移動する。従って被覆電極1の電位および緩和タンク16からの接地電流を流動帯電の特性量として静止誘導電器の運転中に測定・監視可能である。しかし、絶縁冷媒5の電気的時定数が一般に大きく(103〜105秒オーダ)、緩和タンク16で正電荷17を接地電流として十分に測定するためには、緩和タンク16中に正電荷17がとどまる時間が絶縁冷媒5の電気的時定数と同程度以上である必要があり、緩和タンク16中に正電荷17がとどまる時間は緩和タンク16の体積を絶縁冷媒5の平均流速で除したものであるから、緩和タンク16を大きくする必要がある。また、一般に被覆電極1の電位および緩和タンク16からの接地電流はSN比が小さく、シールドなど高度な技術が必要である。 The first embodiment will be described with reference to FIGS. 2 to 5. First, FIG. 4 shows a cross-sectional view in the axial direction of the tube as a conceptual diagram in a conventional example of a flow charge measurement mechanism in a stationary induction battery. As shown in FIG. 4, a covered electrode flow path 101 having a flow path formed of a covered electrode 1 covered with the same insulator 1 b as the winding 11 is provided on the pipe 13, and metal is made downstream of the covered electrode flow path 101. Mitigation tank 16 is connected. The coated electrode flow path 101 and the relaxation tank 16 are fixed to the pipe 13 by the insulator flow path 7 formed of an insulator such as a press board and a resin, and the pipe 13 and the coated electrode flow path 101 and the relaxation tank 16 Are electrically isolated by the insulator channel 7. A potential difference detector 3 is provided between the covering electrode 1 and the ground, and a current detector 8 is provided between the relaxation tank 16 and the ground. According to these conventional configurations, for example, when the insulator 1b is insulating paper and the insulating refrigerant 5 is a transformer oil, the negative charge 18 in the insulating refrigerant 5 is adsorbed onto the insulator 1b in the coated electrode flow path 101 The coated electrode 1 is negatively charged, the positive charge 17 remains in the insulating refrigerant 5 and the insulating refrigerant 5 is positively charged, and the positive charge 17 in the insulating refrigerant 5 is an insulating refrigerant because the covered electrode flow path 101 is a straight pipe. When the positive charge 17 is distributed in the laminar boundary layer when the laminar flow 4 is developed or in the developed turbulent flow, it travels like the positive charge transfer path 15 on the slow flow near the coated electrode 1 And move according to the distribution of the flow 4 of the insulating refrigerant (otherwise stirred by meandering and riding the average flow velocity), and flow into the relaxation tank 16, and the positive charge 17 is absorbed by the relaxation tank. 16 is diffused according to the electrical time constant of the insulating refrigerant 5 To move to the ground potential as a ground current through the sum tank 16. Therefore, the potential of the coated electrode 1 and the ground current from the relaxation tank 16 can be measured and monitored during operation of the stationary induction appliance as a characteristic quantity of fluid charging. However, the electrical time constant of the insulating refrigerant 5 is generally large (on the order of 10 3 to 10 5 seconds), and in order to sufficiently measure the positive charge 17 in the relaxation tank 16 as the ground current, the positive charge 17 in the relaxation tank 16 is The time during which the gas remains is equal to or greater than the electrical time constant of the insulating refrigerant 5, and the time during which the positive charge 17 remains in the relaxation tank 16 is the volume of the relaxation tank 16 divided by the average flow velocity of the insulating refrigerant 5 Therefore, it is necessary to make the mitigation tank 16 larger. Also, in general, the electric potential of the coated electrode 1 and the ground current from the relaxation tank 16 have a small SN ratio, and advanced techniques such as shielding are required.

第一の実施例は図1で示した配管13上の直線部14に適用される。図2は本実施例を適用した直線部14の管軸方向の断面を示している。図2に示すように直線部14に巻線11と同じ絶縁物1bで被覆された被覆電極1で流路を構成した直菅状の被覆電極流路101を設け、被覆電極流路101の下流に被覆のない金属または金属酸化物の電極2で流路を構成した金属電極流路201を接続している。被覆電極流路101と金属電極流路201は、それぞれプレスボードや樹脂などの絶縁物で構成される絶縁物流路7によって、直線部14内に支持され、また直線部14と被覆電極流路101と金属電極流路201とが絶縁物流路7により電気的に絶縁されている。被覆電極流路101と金属電極流路201及び絶縁物流路7は流路断面形状を同じとしている。絶縁物流路7のうち被覆電極流路101の上流に位置する流路は、流路断面と絶縁冷媒5の平均流速から求められる助走距離以上に設計される。被覆電極1と金属電極2間には電位差を測定する電位差検出器3を設けている。   The first embodiment is applied to the straight portion 14 on the pipe 13 shown in FIG. FIG. 2 shows a cross section in the tube axis direction of the straight portion 14 to which the present embodiment is applied. As shown in FIG. 2, the straight portion 14 is provided with a straight coated electrode flow path 101 having a flow path formed of the covered electrode 1 covered with the same insulator 1 b as the winding 11. The metal electrode flow path 201 which has formed the flow path is connected by the electrode 2 of the metal or metal oxide which does not have a coating. The coated electrode flow path 101 and the metal electrode flow path 201 are supported in the straight portion 14 by the insulator flow path 7 formed of an insulator such as pressboard or resin, and the straight portion 14 and the coated electrode flow path 101 And the metal electrode channel 201 are electrically insulated by the insulator channel 7. The coated electrode channel 101, the metal electrode channel 201, and the insulator channel 7 have the same channel cross-sectional shape. The flow path of the insulator flow path 7 located upstream of the coated electrode flow path 101 is designed to be equal to or more than the running distance obtained from the flow path cross section and the average flow velocity of the insulating refrigerant 5. A potential difference detector 3 for measuring a potential difference is provided between the coating electrode 1 and the metal electrode 2.

図3では本実施例の絶縁冷媒中の電荷移動経路を示したものである。被覆電極流路101において絶縁冷媒5中の負電荷18が絶縁物1b上に吸着されて被覆電極1が負に帯電し、絶縁冷媒5中には正電荷17が残って絶縁冷媒5が正に帯電し、被覆電極流路101内の絶縁冷媒の流れ4が発達した流れになるため、正電荷17は被覆電極1近傍の遅い流れに乗って正電荷移動経路15のように移動して金属電極2表面近傍に到達し、金属電極流路201内でも電荷17は被覆電極1近傍の遅い流れに乗って移動するため、従来の緩和タンク16と比較し小さな金属電極2で十分吸着される。従って、本実施例の構成によれば、緩和タンク16のような大きな構造を省くことができる。また被覆電極1と金属電極2の電位差を測定することで、片方の電極の対地電位を測定する場合より大きな信号を得てSN比を増加することができる。別の言い方をすれば、静止誘導電器の配管に設けられた被覆電極流路で絶縁冷媒と絶縁物の間で発生する流動帯電の帯電量を測定する静止誘導電器の監視設備において、被覆電極表面近傍に位置する帯電した絶縁冷媒は、被覆電極表面近傍の層流境界層の遅い流れにのって下流の金属電極表面に移動し、金属電極表面近傍でも同じ層流境界層の遅い流れにのって移動し、前記被覆電極表面近傍および金属電極表面近傍の層流境界層の流速は絶縁媒体の平均流速に対し非常に遅いことから、帯電した絶縁冷媒の帯電電荷が短い距離の金属電極表面で接地電流として回収可能であるため、緩和タンクのような大きな構造を省くことができる。また被覆電極と金属電極の電位差を測定することで、片方の電極の電位を測定する場合より大きな信号を得てSN比を増加することができる。   FIG. 3 shows the charge transfer path in the insulating refrigerant of this embodiment. The negative charge 18 in the insulating refrigerant 5 is adsorbed on the insulator 1b in the covering electrode flow path 101, and the covering electrode 1 is negatively charged, and the positive charge 17 remains in the insulating refrigerant 5 and the insulating refrigerant 5 becomes positive. As the flow 4 of the insulating refrigerant in the coated electrode flow path 101 becomes charged, the positive charge 17 moves on the slow flow near the coated electrode 1 and moves like the positive charge transfer path 15 to be a metal electrode. Since the electric charges 17 reach near the surface 2 and move in the slow flow near the coated electrode 1 even in the metal electrode flow path 201, they are sufficiently adsorbed by the small metal electrode 2 as compared with the conventional relaxation tank 16. Therefore, according to the configuration of the present embodiment, a large structure such as the mitigation tank 16 can be omitted. Further, by measuring the potential difference between the coated electrode 1 and the metal electrode 2, a larger signal can be obtained and the SN ratio can be increased than in the case of measuring the ground potential of one of the electrodes. In other words, in the monitoring equipment of the stationary induction battery for measuring the charge amount of the fluid charge generated between the insulating refrigerant and the insulator in the coating electrode flow path provided in the piping of the stationary induction battery, the coated electrode surface The charged insulating refrigerant located in the vicinity moves to the downstream metal electrode surface following the slow flow of the laminar boundary layer near the surface of the coated electrode and moves to the same laminar boundary layer slow flow near the metal electrode surface. The flow velocity of the laminar boundary layer in the vicinity of the surface of the coated electrode and in the vicinity of the surface of the metal electrode is very slow relative to the average flow velocity of the insulating medium. Since it can be recovered as a ground current, a large structure such as a relaxation tank can be omitted. In addition, by measuring the potential difference between the coated electrode and the metal electrode, it is possible to obtain a larger signal than in the case of measuring the potential of one of the electrodes and to increase the SN ratio.

本実施例では、図5に示すように絶縁物流路7の流入口に整流格子9を設置して直線部14より上流からの流れの影響を低減するようにしてもよい。また被覆電極1と金属電極2間の電位差を測定する代わりに、図6に示すように被覆電極1と金属電極2の対地電流をそれぞれ測定し、信号を足し合わせるなどそれぞれの測定値を元に帯電特性を評価してもよい。図4、図6はスイッチなどで測定回路を切り替えることで同時に構成してもよい。特に図示しないが、測定値を表示したり、測定値に閾値を用いて視覚、聴覚に警告を示す出力装置を設けたり、測定値を収集して解析する記憶装置および計算機を設けてもよい。また、説明の都合上、被覆電極流路101、金属電極流路201及び絶縁物流路7の流路断面は直線部14に対し小さくなっているが、圧損を抑えるため断面積は大きい方が望ましい。   In the present embodiment, as shown in FIG. 5, a rectifying grid 9 may be installed at the inlet of the insulator flow path 7 to reduce the influence of the flow from the upstream side of the linear portion 14. Also, instead of measuring the potential difference between the coated electrode 1 and the metal electrode 2, as shown in FIG. 6, the ground current of the coated electrode 1 and the metal electrode 2 is measured, and the signals are added. The charging characteristics may be evaluated. 4 and 6 may be simultaneously configured by switching the measurement circuit with a switch or the like. Although not particularly illustrated, an output device may be provided which displays measurement values, uses a threshold value for the measurement values to indicate visual or auditory warnings, and may have a storage device and computer for collecting and analyzing the measurement values. Further, although the cross section of the coated electrode channel 101, the metal electrode channel 201 and the insulator channel 7 is smaller than that of the straight portion 14 for convenience of explanation, it is desirable that the cross sectional area be large in order to suppress pressure loss. .

本実施例では図1で示した配管13上の直線部14に適用される例を示したが、図7のように配管13のバイパス流路として構成したバイパス直線部14bを設けて適用してもよい。   Although the present embodiment shows an example applied to the straight portion 14 on the pipe 13 shown in FIG. 1, a bypass straight portion 14b configured as a bypass flow path of the pipe 13 as shown in FIG. It is also good.

第二の実施例を適用した直線部14の管軸方向の断面を図8に示す。第二の実施例も図1の直線部14に適用され、第一の実施例に対し、被覆電極流路101、金属電極流路201、絶縁物流路7を直線部14の管壁から離して構成し、被覆電極流路101、金属電極流路201は絶縁物流路7を介して支柱など(図示せず)で直線部14に固定されており、第一の実施例の機能をそのままで、被覆電極流路101、金属電極流路201、絶縁物流路7の流路断面積によらず、直線部14の流路断面積を確保しているため直線部14の圧損を抑えることができる。   The cross section in the tube axis direction of the straight portion 14 to which the second embodiment is applied is shown in FIG. The second embodiment is also applied to the straight portion 14 of FIG. 1, and the coated electrode flow passage 101, the metal electrode flow passage 201, and the insulator flow passage 7 are separated from the tube wall of the straight portion 14 with respect to the first embodiment. The coated electrode flow path 101 and the metal electrode flow path 201 are fixed to the straight portion 14 with a support (not shown) or the like via the insulator flow path 7, and the function of the first embodiment is maintained as it is. Since the flow passage cross-sectional area of the straight portion 14 is secured regardless of the flow passage cross-sectional area of the coated electrode flow passage 101, the metal electrode flow passage 201, and the insulator flow passage 7, the pressure loss of the straight portion 14 can be suppressed.

第二の実施例においても、図9に示すように絶縁物流路7の流入口に整流格子9を設置して直線部14より上流からの流れの影響を低減するようにしてもよい。また被覆電極1と金属電極2間の電位差を測定する代わりに、図10に示すように被覆電極1と金属電極2の対地電流をそれぞれ測定し、信号を足し合わせるなどそれぞれの測定値を元に帯電特性を評価してもよい。特に図示しないが、測定値を表示したり、測定値に閾値を用いて視覚、聴覚に警告を示す出力装置を設けたり、測定値を収集して解析する記憶装置および計算機を設けてもよい。図8、図10はスイッチなどで測定回路を切り替えることで同時に構成してもよい。   Also in the second embodiment, as shown in FIG. 9, a rectifying grid 9 may be installed at the inlet of the insulator flow path 7 to reduce the influence of the flow from the upstream side of the straight portion 14. Also, instead of measuring the potential difference between the coated electrode 1 and the metal electrode 2, as shown in FIG. 10, the ground current of the coated electrode 1 and the metal electrode 2 is measured, and the signals are added. The charging characteristics may be evaluated. Although not particularly illustrated, an output device may be provided which displays measurement values, uses a threshold value for the measurement values to indicate visual or auditory warnings, and may have a storage device and computer for collecting and analyzing the measurement values. 8 and 10 may be simultaneously configured by switching the measurement circuit with a switch or the like.

本実施例では図1で示した配管13上の直線部14に適用される例を示したが、図7のように配管13のバイパス流路として構成したバイパス直線部14bを設けて適用してもよい。   Although the present embodiment shows an example applied to the straight portion 14 on the pipe 13 shown in FIG. 1, a bypass straight portion 14b configured as a bypass flow path of the pipe 13 as shown in FIG. It is also good.

1:被覆電極
1b:絶縁物
2:金属電極
3:電位差検出器
4:絶縁冷媒の流れ
5:絶縁冷媒
6:ポンプ
7:絶縁物流路
8:電流検出器
9:整流格子
10:本体タンク
11:巻線
12:冷却器
13:配管
14:直線部
14b:バイパス直線部
15:正電荷移動経路
16:緩和タンク
17:正電荷
18:負電荷
101:被覆電極流路
201:金属電極流路
1: Coating electrode 1b: Insulating material 2: Metal electrode 3: Potentiometric detector 4: Insulating refrigerant flow 5: Insulating refrigerant 6: Pump 7: Insulating flow path 8: Current detector 9: Rectifying grid 10: Main body tank 11: Winding wire 12: Cooler 13: Piping 14: Straight portion 14b: Bypass straight portion 15: Positive charge transfer path 16: Relaxation tank 17: Positive charge 18: Negative charge 101: Coated electrode flow path 201: Metal electrode flow path

Claims (8)

絶縁物で被覆された巻線を有する静止誘導電器と、
前記静止誘導電器を備えるタンクと、
前記タンク内に充填され前記静止誘導電器を冷却する絶縁冷媒と、
前記タンクの外部に備えられ前記絶縁冷媒を冷却する冷却器と、
前記冷却器と前記タンクとを接続する配管と、を有し、
前記配管は直線部を有し、
前記直線部内部の前記絶縁冷媒の流路は前記巻線と同じ絶縁物で被覆された電極から成る被覆電極流路と、金属性物質から成る金属電極流路とから構成され、前記金属電極流路は前記被覆電極流路よりも下流側に位置する静止誘導電器システム。
A stationary induction appliance having a winding coated with an insulator;
A tank comprising the stationary induction appliance;
An insulating refrigerant which is filled in the tank and cools the stationary induction battery;
A cooler provided outside the tank for cooling the insulating refrigerant;
Piping connecting the cooler and the tank;
The piping has a straight portion,
The flow path of the insulating refrigerant inside the straight portion is composed of a covered electrode flow path made of an electrode covered with the same insulator as the winding, and a metal electrode flow path made of a metallic material, and the metal electrode flow A stationary induction system, wherein a channel is located downstream of the coated electrode channel.
請求項1に記載の静止誘導電器システムであって、
前記被覆電極流路及び前記金属電極流路に電位差検出器が接続されている静止誘導電器システム。
The stationary induction appliance system according to claim 1, wherein
A stationary induction appliance system in which a potential difference detector is connected to the coated electrode channel and the metal electrode channel.
請求項1または2に記載の静止誘導電器システムであって、
前記被覆電極流路及び前記金属電極流路に電流検出器が接続されている静止誘導電器システム。
The stationary induction appliance system according to claim 1 or 2, wherein
A stationary induction appliance system in which a current detector is connected to the coated electrode channel and the metal electrode channel.
請求項1ないし3のいずれか1項に記載の静止誘導電器システムであって、
前記直線部に絶縁物から成る絶縁物流路を有し、前記被覆電極流路、前記金属電極流路及び前記絶縁物流路の流路断面形状が同一である静止誘導電器システム。
The stationary induction appliance system according to any one of claims 1 to 3, wherein
The stationary induction device system having an insulator flow path made of an insulator in the straight portion and the same cross-sectional shape of the coated electrode flow path, the metal electrode flow path, and the insulator flow path.
請求項4に記載の静止誘導電器システムであって、
前記被覆電極流路よりも上流に位置する前記絶縁物流路の長さは、前記流路の流路断面と前記絶縁冷媒の平均流速から求められる助走距離以上である静止誘導電器システム。
The stationary induction appliance system according to claim 4, wherein
The static induction appliance system according to claim 1, wherein a length of the insulator flow channel located upstream of the coated electrode flow channel is equal to or more than a running distance obtained from a flow channel cross section of the flow channel and an average flow velocity of the insulating refrigerant.
請求項5に記載の静止誘導電器システムであって、
前記絶縁物流路上流近傍に整流格子を備える静止誘導電器システム。
The stationary induction appliance system according to claim 5, wherein
A stationary induction appliance system comprising a rectifying grid near the upstream side of the insulator flow path.
請求項1ないし6のいずれか1項に記載の静止誘導電器システムであって、
前記被覆電極流路、前記金属電極流路及び前記絶縁物流路が前記直線部の外壁から内方向へ離れて配置されている静止誘導電器システム。
The stationary induction appliance system according to any one of claims 1 to 6, wherein
The stationary induction appliance system in which the covering electrode channel, the metal electrode channel, and the insulator channel are disposed inwardly away from the outer wall of the straight portion.
請求項1ないし7のいずれか1項に記載の静止誘導電器システムであって、
前記直線部に接続され並行するように配置されるバイパス直線部を備える静止誘導電器システム。
The stationary induction appliance system according to any one of claims 1 to 7, wherein
A stationary induction appliance system comprising bypass straight parts connected and parallel to the straight parts.
JP2017198149A 2017-10-12 2017-10-12 Stationary induction system Pending JP2019075396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017198149A JP2019075396A (en) 2017-10-12 2017-10-12 Stationary induction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198149A JP2019075396A (en) 2017-10-12 2017-10-12 Stationary induction system

Publications (1)

Publication Number Publication Date
JP2019075396A true JP2019075396A (en) 2019-05-16

Family

ID=66543280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198149A Pending JP2019075396A (en) 2017-10-12 2017-10-12 Stationary induction system

Country Status (1)

Country Link
JP (1) JP2019075396A (en)

Similar Documents

Publication Publication Date Title
JP4689413B2 (en) Method and apparatus for detecting quench of superconducting conductor
JP5837211B2 (en) Anti-corrosion performance deterioration detection sensor and hot water heating / heating system provided with the same
CN208570199U (en) A kind of water leakage monitoring electric wire
Gustavsen et al. Voltages and AC corrosion on metallic tubes in umbilical cables caused by magnetic induction from power cable charging currents
JP2007303890A (en) Apparatus for diagnosing charge density of insulating fluid and its method
Jamali-Abnavi et al. Harmonic-based thermal analysis of electric arc furnace's power cables considering even current harmonics, forced convection, operational scheduling, and environmental conditions
CN107462815B (en) Cable insulation thermal breakdown voltage determining method and device
CN103703350B (en) The expression of the winding temperature of electric power transformer and display
JP2019075396A (en) Stationary induction system
KR101103677B1 (en) Oil filled transformer functioned as detecting device a partial dischargein in using and method for detecting a partial dischargein
US3405356A (en) System including two pairs of voltage electrodes for detecting discontinuities in insulation coatings on conductive conduit
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
JP2007294551A (en) Flow charge diagnostic device for transformer
JP2005259785A (en) Oil-filled electric apparatus
El-Adawy et al. Experimental determination of space charge density associated with flow electrification phenomenon: Application to power transformers
Yamada et al. Model approach to the static electrification phenomena induced by the flow of oil in large power transformers
Paillat et al. Electrostatic Hazard in High-Power Transformers: Results of Ten Years of Experience With ${P}^{\prime} $ Capacitive Sensor
Adedeji et al. GUI-Based AC induced corrosion monitoring for buried pipelines near HVTLs
KR20150081651A (en) Thermocouple of generator water cooling coil and Temperature measurement using the same
JPS5830553B2 (en) Static electricity monitoring device for transformers, etc.
Jamali-Abnavi et al. Harmonic-based expected life estimation of electric arc furnace's high voltage polymeric insulated cables based on electro-thermal stresses considering sheath bonding methods and transient over-voltages
JPS5815067B2 (en) Static electricity monitoring device for transformers, etc.
RU2011110C1 (en) Device for locating leaks in pipe line
US3264561A (en) Tubular electrical corrosion probe with coolant pump means and resistance measuring circuit
Taklaja et al. Test setup for measuring medium voltage power cable and joint temperature in high current tests using thermocouples