JPH0127385B2 - - Google Patents

Info

Publication number
JPH0127385B2
JPH0127385B2 JP62135721A JP13572187A JPH0127385B2 JP H0127385 B2 JPH0127385 B2 JP H0127385B2 JP 62135721 A JP62135721 A JP 62135721A JP 13572187 A JP13572187 A JP 13572187A JP H0127385 B2 JPH0127385 B2 JP H0127385B2
Authority
JP
Japan
Prior art keywords
oil
insulating oil
transformer
insulating
static electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62135721A
Other languages
Japanese (ja)
Other versions
JPS63100371A (en
Inventor
Tetsuo Fukamachi
Naoya Yamada
Akio Kishi
Akio Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62135721A priority Critical patent/JPS63100371A/en
Publication of JPS63100371A publication Critical patent/JPS63100371A/en
Publication of JPH0127385B2 publication Critical patent/JPH0127385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

【発明の詳細な説明】 この発明は流路内の絶縁性流体の流動による流
動帯電を検知する装置、特に系統併入時における
送油冷却式変圧器の変圧器内の冷却用絶縁油の流
動による流動帯電の検知に好適する静電気監視装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for detecting flow charging due to the flow of insulating fluid in a flow path, and in particular to a device for detecting flow electrification caused by the flow of insulating fluid in a flow path. The present invention relates to a static electricity monitoring device suitable for detecting flow charge due to electrostatic discharge.

一般に、絶縁性流体が固体表面上を流動する
と、その流体中に正負電荷のいずれかの一部が選
択的に固体表面に吸着され、絶縁性流体が帯電す
るという、いわゆる流動帯電現象が起こる。送油
冷却式変圧器においても、絶縁性流体である絶縁
油が固体絶縁物、例えばプレスボード表面を流動
するとき、プレスボード表面に油中の負電荷の一
部が選択的に吸着され、絶縁油が正に帯電する流
動帯電が起こる。
Generally, when an insulating fluid flows over a solid surface, some of the positive and negative charges in the fluid are selectively adsorbed onto the solid surface, and the insulating fluid becomes electrically charged, a so-called flow charging phenomenon. In oil-cooled transformers, when insulating oil, which is an insulating fluid, flows over the surface of a solid insulator, such as a pressboard, some of the negative charges in the oil are selectively adsorbed on the pressboard surface, causing the insulation to deteriorate. Flow charging occurs in which the oil becomes positively charged.

特に、最近の送油冷却式変圧器の高電圧大容量
化に伴ない、絶縁油の処理、プレスボードの乾
燥、現地組立時の水分管理が高度となり、また油
流量が多くなつてきているため上記流動帯電はよ
り顕著なものとなる傾向にある。本願発明の発明
者等のモデル変圧器による実測にすれば、上述し
たような絶縁油の高度な処理に起因して、静電気
の電荷緩和時定数(絶縁油の固有抵抗ρと誘電率
εの積で、例えばρ=1014Ω・cmの絶縁油の場合
は約20秒である。)が増加した条件下では、油流
速が極めて高くなると流動帯電が顕著になり、電
荷の蓄積が多くなつて変圧器の内部で静電気放電
が生じ、延いては変圧器の絶縁破壊を起こす可能
性があることが判明した。従つて、変圧器の絶縁
信頼性の向上のため、流動帯電を抑制させる種々
の対策が打たれるようになつたが、これと並行し
て変圧器の静電気発生の診断技術も重要になつて
きている。
In particular, with the recent increase in high voltage and capacity of oil-cooled transformers, treatment of insulating oil, drying of press boards, and moisture management during on-site assembly have become more sophisticated, and oil flow rates have also increased. The above-mentioned flow charging tends to become more prominent. Actual measurements using a model transformer by the inventors of the present invention show that due to the advanced treatment of insulating oil as described above, the charge relaxation time constant of static electricity (the product of the specific resistance ρ and dielectric constant ε of the insulating oil) For example, in the case of insulating oil with ρ = 10 14 Ω・cm, it is about 20 seconds.) Under conditions where the oil flow rate is extremely high, flow charging becomes noticeable and a large amount of charge accumulates. It was found that electrostatic discharge could occur inside the transformer, which could eventually lead to insulation breakdown of the transformer. Therefore, in order to improve the insulation reliability of transformers, various measures have been taken to suppress flow charging, but at the same time, diagnostic technology for static electricity generation in transformers has also become important. ing.

従来、この種の変圧器の静電気発生の診断技術
の一例としては、変圧器内部で起こる静電気発生
量を変圧器コイルから大地へ流出する、静電気に
起因する漏洩電流を測定するという方法があつ
た。
Conventionally, one example of diagnostic technology for the generation of static electricity in this type of transformer was to measure the amount of static electricity generated inside the transformer by measuring the leakage current caused by the static electricity flowing from the transformer coil to the ground. .

しかしながらこのような従来方法では、工場試
験や据付時等における現地での確認試験には適す
るが、変圧器が電力系統に併入された状態では不
適切であることが多かつた。
However, although such conventional methods are suitable for factory tests and on-site verification tests during installation, they are often inappropriate when the transformer is connected to a power system.

この発明は上記のような実情に鑑みてなされた
もので、絶縁性流体の流動による流動帯電、静電
気発生を監視、特に系統併入時における送油冷却
式変圧器の流動帯電を、その絶縁油の静電気発生
を診断することによつて検知し、上記変圧器の静
電気放電による絶縁破壊事故を未然に防止できる
ようにした静電気監視装置を提供することを目的
とする。
This invention was made in view of the above-mentioned circumstances, and it monitors the generation of static electricity and static electricity due to the flow of insulating fluid.In particular, it monitors the flow charging of oil-fed cooled transformers when they are connected to the system. An object of the present invention is to provide a static electricity monitoring device capable of detecting the occurrence of static electricity by diagnosing the occurrence of static electricity in the transformer, and thereby preventing insulation breakdown accidents caused by electrostatic discharge of the transformer.

以下第1図及び第2図を参照してこの発明の実
施例を説明する。第1図はこの発明による静電気
監視装置が適用される送油冷却式変圧器の一例を
一部破断して示す概略図で、図中一点鎖線より左
側部分Aは変圧器本体、右側部分Bは冷却装置で
ある。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a partially cutaway schematic diagram showing an example of an oil-feed cooling type transformer to which the static electricity monitoring device according to the present invention is applied. It is a cooling device.

すなわち、絶縁油は、変圧器内の下部油スペー
ス1からコイルグループ2および鉄心3等で構成
される変圧器内部構成要素に配設された冷却ダク
ト4を図中矢印で示すように通過して上部油スペ
ース5に至り冷却を行う。このとき油中の負電荷
の一部が冷却ダクト4の両面に吸着されるので絶
縁油は正に帯電して冷却ダクト4から上部油スペ
ース5に流れ込む。そのため上部油スペース5内
における油中の電荷密度は図示するように冷却ダ
クト4の出口近傍において最も高い。しかし上部
油スペース5内の帯電油が冷却装置Bに至るまで
には通常、上記電荷緩和時間の数倍以上の滞留時
間を要する。従つて、上部油スペース5内の帯電
油は、この時間内にその電荷をほぼ完全に緩和消
失するので冷却装置Bに流入する際には無帯電と
みなすことができる。
That is, the insulating oil passes from the lower oil space 1 in the transformer through the cooling duct 4 disposed in the internal components of the transformer including the coil group 2, iron core 3, etc., as shown by the arrow in the figure. It reaches the upper oil space 5 and performs cooling. At this time, some of the negative charges in the oil are adsorbed on both sides of the cooling duct 4, so that the insulating oil becomes positively charged and flows from the cooling duct 4 into the upper oil space 5. Therefore, the charge density in the oil in the upper oil space 5 is highest near the outlet of the cooling duct 4 as shown. However, before the charged oil in the upper oil space 5 reaches the cooling device B, it usually takes a residence time that is several times longer than the charge relaxation time. Therefore, the charged oil in the upper oil space 5 almost completely relaxes and loses its charge within this time, so that when it flows into the cooling device B, it can be considered as uncharged.

冷却装置Bは、上部冷却器弁6、上部配管7、
冷却器8、下部配管9、油ポンプ10および下部
冷却器弁11で構成されるが、これらの各構成要
素においても若干の流動帯電が生ずる。しかしこ
の流動帯電による油中電荷は変圧器本体Aでのそ
れに比べて小さく、従つて下部油スペース1内の
油中電荷密度は低いことが確認されている。
The cooling device B includes an upper cooler valve 6, an upper pipe 7,
It is composed of a cooler 8, a lower piping 9, an oil pump 10, and a lower cooler valve 11, and some flow electrification occurs in each of these components as well. However, it has been confirmed that the charge in the oil due to this flow charging is smaller than that in the transformer main body A, and therefore the charge density in the oil in the lower oil space 1 is low.

第2図はこの発明装置の実施例を一部破断して
示す図で、ここでは、金属パイプ17を絶縁チエ
ーブ18により電気的に絶縁した状態で同軸的に
内蔵した流動帯電評価部タンク19を、電磁ポン
プ20と共に備えた絶縁油循環路21の始端と終
端を図示するように冷却装置構成要素のいずれ
か、例えば下部配管9に連結させると共に、上記
金属パイプ17に接続され、上記評価部タンク1
9上に、この評価部タンク19とは電気的に絶縁
して設けられた測定端子22にケーブル13を介
して微小電流計測器15を接続したものである。
14は微小電流計測器15及びケーブル13のシ
ースを接地する接地線である。
FIG. 2 is a partially cutaway view showing an embodiment of the device of the present invention. Here, a fluid charge evaluation unit tank 19 is coaxially built in with a metal pipe 17 electrically insulated by an insulating tube 18. The starting and ending ends of the insulating oil circulation path 21 provided together with the electromagnetic pump 20 are connected to any of the components of the cooling system, for example, the lower piping 9 as shown in the figure, and are also connected to the metal pipe 17, and connected to the evaluation section tank. 1
A microcurrent measuring device 15 is connected via a cable 13 to a measurement terminal 22 provided on the evaluation section tank 19 and electrically insulated from the evaluation section tank 19 .
14 is a grounding wire that grounds the microcurrent measuring device 15 and the sheath of the cable 13.

すなわち、絶縁油は、電磁ポンプ20により図
中矢印方向に循環し、金属パイプ17において流
動帯電する。この金属パイプ17は絶縁チユーブ
18により評価部タンク19から絶縁されている
ので、金属パイプ17からの静電気漏洩電流を測
定端子22を介して測定でき、これにより変圧器
本体Aでの流動帯電を測定することができる。
That is, the insulating oil is circulated in the direction of the arrow in the figure by the electromagnetic pump 20, and is charged while flowing in the metal pipe 17. Since this metal pipe 17 is insulated from the evaluation unit tank 19 by an insulating tube 18, the electrostatic leakage current from the metal pipe 17 can be measured via the measurement terminal 22, and thereby the flow charging in the transformer body A can be measured. can do.

この場合、循環油流量は、その流動帯電の計測
に必要な最少量に抑えられるので、下部配管9の
油流量に比べて無視される程に少ない。また、絶
縁油循環路21にはオリフイス23が挿入されて
おり、金属パイプ17内の油流速の算出に必要な
油流量の測定に供せられている。さらに、図示し
ないが、評価部タンク19に直流電圧を印加し、
その際の金属パイプ17に流入する導電電流を計
測することにより絶縁油の固有抵抗を測定し、絶
縁油の帯電特性の総合的な評価を行うことも可能
である。また、上記静電測定結果をあらかじめ設
定されたレベルと比較して警報を発するように構
成することもできる。
In this case, the circulating oil flow rate is suppressed to the minimum amount necessary for measuring the flow charge, so it is so small that it can be ignored compared to the oil flow rate of the lower pipe 9. Further, an orifice 23 is inserted into the insulating oil circulation path 21, and is used to measure the oil flow rate necessary for calculating the oil flow rate within the metal pipe 17. Furthermore, although not shown, a DC voltage is applied to the evaluation unit tank 19,
By measuring the conductive current flowing into the metal pipe 17 at this time, it is also possible to measure the specific resistance of the insulating oil and comprehensively evaluate the charging characteristics of the insulating oil. Further, the electrostatic measurement result may be compared with a preset level and an alarm may be issued.

以上のようにこの発明によれば、冷却装置の絶
縁油流路に分岐して流動帯電評価部タンクを接続
し、該タンク内に絶縁して金属パイプを設置し、
この金属パイプと接地間に微小電流計を接続して
いる。従つて、金属パイプ内に絶縁油を流通させ
た際の金属パイプの帯電量を微小電流計の電流値
によつて測定し、これによつて冷却装置側の絶縁
油の流動帯電量を検出することができ、これに伴
つて変圧器本体側の流動帯電量を検出することが
できる。このため、系統併入時における送油冷却
式変圧器の静電発生量を検出することができ、変
圧器の静電気放電による絶縁破壊事故を未満に防
止することができる。又、評価部タンク内に金属
パイプを設けたことにより、評価部タンクに直流
電圧を印加し、その際に金属パイプに流入する導
電々流を計測することによつて絶縁油の固有抵抗
を計測することもでき、絶縁油の帯電特性の総合
的な評価を行うことができる。
As described above, according to the present invention, a fluid charge evaluation unit tank is branched to the insulating oil flow path of the cooling device, and an insulated metal pipe is installed inside the tank.
A microcurrent meter is connected between this metal pipe and ground. Therefore, when the insulating oil flows through the metal pipe, the amount of charge on the metal pipe is measured by the current value of a microammeter, and the amount of charge flowing in the insulating oil on the cooling device side is thereby detected. Accordingly, the amount of flowing charge on the transformer main body side can be detected. Therefore, it is possible to detect the amount of static electricity generated in the oil-fed cooling type transformer when it is connected to the system, and it is possible to prevent dielectric breakdown accidents due to electrostatic discharge of the transformer to a minimum. In addition, by installing a metal pipe inside the evaluation tank, we can measure the specific resistance of the insulating oil by applying a DC voltage to the evaluation tank and measuring the conductive current flowing into the metal pipe. It is also possible to perform a comprehensive evaluation of the charging characteristics of the insulating oil.

さらに、金属パイプは絶縁油の流動帯電及び固
有抵抗の測定の双方に用いることができ、構成を
簡単にすることができる。
Furthermore, the metal pipe can be used for both flow charging of insulating oil and measurement of specific resistance, and the configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による静電気監視装置が適用
される従来の送油冷却式変圧器の一部破断概略
図、第2図はこの発明による静電気監視装置の一
部破断概略図である。 A……変圧器本体、B……冷却装置、7……上
部配管、8……冷却器、9……下部配管、13…
…測定ケーブル、14……接地線、15……微小
電流計測器、17……金属パイプ、18……絶縁
チユーブ、19……流量帯電評価部タンク、21
……絶縁油循環路。尚、図中同一符号は同一又は
相当部分を示す。
FIG. 1 is a partially cutaway schematic diagram of a conventional oil feed cooling type transformer to which a static electricity monitoring device according to the present invention is applied, and FIG. 2 is a partially cutaway schematic diagram of a static electricity monitoring device according to the present invention. A...Transformer body, B...Cooling device, 7...Upper piping, 8...Cooler, 9...Lower piping, 13...
...Measurement cable, 14...Grounding wire, 15...Minimum current measuring device, 17...Metal pipe, 18...Insulation tube, 19...Flow rate charge evaluation unit tank, 21
...Insulating oil circulation path. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 変圧器本体に冷却器を有する冷却装置を接続
し、変圧器本体と冷却装置との間に絶縁油を循環
させるようにした送油冷却式変圧器において、冷
却装置の絶縁油流路に分岐して接続さされるとと
もに絶縁油の固有抵抗測定時に直流電圧を印加さ
れる流動帯電評価部タンクと、流動帯電評価部タ
ンク内に絶縁されかつ絶縁油を通流するよう同軸
状に設置された金属パイプと、この金属パイプと
接地間に接続された微小電流計を備えたことを特
徴とする静電気監視装置。
1 In an oil-feed cooling type transformer in which a cooling device with a cooler is connected to the transformer body and insulating oil is circulated between the transformer body and the cooling device, a branch to the insulating oil flow path of the cooling device is used. A fluid charge evaluation section tank is connected to the insulating oil and DC voltage is applied when measuring the specific resistance of the insulating oil, and a metal is insulated within the fluid charge evaluation section tank and installed coaxially so that the insulating oil flows through it. A static electricity monitoring device comprising a pipe and a microammeter connected between the metal pipe and ground.
JP62135721A 1987-05-28 1987-05-28 Electrostatic monitoring device Granted JPS63100371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135721A JPS63100371A (en) 1987-05-28 1987-05-28 Electrostatic monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135721A JPS63100371A (en) 1987-05-28 1987-05-28 Electrostatic monitoring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10949379A Division JPS5633540A (en) 1979-08-27 1979-08-27 Monitoring device for static electricity

Publications (2)

Publication Number Publication Date
JPS63100371A JPS63100371A (en) 1988-05-02
JPH0127385B2 true JPH0127385B2 (en) 1989-05-29

Family

ID=15158328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135721A Granted JPS63100371A (en) 1987-05-28 1987-05-28 Electrostatic monitoring device

Country Status (1)

Country Link
JP (1) JPS63100371A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480198A (en) * 1977-12-08 1979-06-26 Mitsubishi Electric Corp Static electricity generating test apparatus for liquid
JPS5482022A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JPS5482021A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480198A (en) * 1977-12-08 1979-06-26 Mitsubishi Electric Corp Static electricity generating test apparatus for liquid
JPS5482022A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JPS5482021A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers

Also Published As

Publication number Publication date
JPS63100371A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
US4771355A (en) System and method for arc detection in dynamoelectric machines
US5276401A (en) Method for diagnosing an insulation deterioration of an electric apparatus
Schober et al. Oil conductivity–an important quantity for the design and the condition assessment of HVDC insulation systems
Peyraque et al. Static electrification and partial discharges induced by oil flow in power transformers
JPH0127385B2 (en)
Torkaman et al. Influence of ambient and test conditions on insulation resistance/polarization index in HV electrical machines-a survey
CN109085451B (en) Method and device for detecting iron core grounding in transformer and storage medium
US8854068B2 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
JPH01191406A (en) Stationary induction electric apparatus
US4309661A (en) Device for measuring quantity of electric charges on electrified fluid
JPS627503B2 (en)
Johnson A maintenance inspection program for large rotating machines
Huh et al. Streaming electrification of thin insulating pipes under electric field
JPS5930490Y2 (en) Electric charge measuring device for transformer insulating oil
JPS5830553B2 (en) Static electricity monitoring device for transformers, etc.
Brubaker et al. Streaming electrification measurements in a 1/4-scale transformer model
JPS5930491Y2 (en) Electric charge measuring device for transformer insulating oil
JPH07161534A (en) Static induction machine
Howells et al. Static electrification effects in transformer oil circulating pumps
Li et al. Analysis and Treatment of Transformer Heating Based on Infrared Thermometric Technology
JPS5830551B2 (en) Static electricity monitoring device for transformers, etc.
JP2612366B2 (en) Diagnosis method for insulation deterioration of power cable
Paillat et al. Flow electrification in transformers: correlation between winding leakage current and pressboard charge accumulation
Brustle et al. Progress in the evaluation of solid-core high-voltage bushings
Wagenaar et al. EHV transformer dielectric specification improvements