JPH0716050B2 - Gas laser equipment - Google Patents

Gas laser equipment

Info

Publication number
JPH0716050B2
JPH0716050B2 JP2149754A JP14975490A JPH0716050B2 JP H0716050 B2 JPH0716050 B2 JP H0716050B2 JP 2149754 A JP2149754 A JP 2149754A JP 14975490 A JP14975490 A JP 14975490A JP H0716050 B2 JPH0716050 B2 JP H0716050B2
Authority
JP
Japan
Prior art keywords
gas laser
electrodes
anode
cathode
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2149754A
Other languages
Japanese (ja)
Other versions
JPH0443688A (en
Inventor
茂行 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2149754A priority Critical patent/JPH0716050B2/en
Publication of JPH0443688A publication Critical patent/JPH0443688A/en
Publication of JPH0716050B2 publication Critical patent/JPH0716050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はガスレーザ媒質を陰極と陽極とからなる主電
極で励起してレーザ光を発生させるガスレーザ装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a gas laser device for generating a laser beam by exciting a gas laser medium with a main electrode composed of a cathode and an anode.

(従来の技術) たとえば、放電方向に対してレーザ光が直交する方向に
放射されるTEACO2レーザやエキシマレーザなどのガスレ
ーザ装置は第3図に示すように構成さている。すなわ
ち、同図中1は内部にガスレーザ媒質が収容されたレー
ザ管である。このレーザ管1内には主電極を構成する陰
極2と陽極3とが上下方向に離間対向して配設されてい
る。上記陰極2の両側にはピーキングコンデンサ4を介
して上部ピン電極5が設けられ、上記陽極3の両側には
上記上部ピン電極5に対向して下部ピン電極6が設けら
れている。
(Prior Art) For example, a gas laser device such as a TEACO 2 laser or an excimer laser in which laser light is emitted in a direction orthogonal to the discharge direction is configured as shown in FIG. That is, reference numeral 1 in the figure denotes a laser tube having a gas laser medium accommodated therein. In the laser tube 1, a cathode 2 and an anode 3 which form a main electrode are arranged so as to face each other with a space in the vertical direction. Upper pin electrodes 5 are provided on both sides of the cathode 2 via peaking capacitors 4, and lower pin electrodes 6 are provided on both sides of the anode 3 so as to face the upper pin electrodes 5.

上記陰極2、陽極3、上部ピン電極5および下部ピン電
極6はそれぞれ高圧電源7に接続されている。この高圧
電源7がオンされて陰極2と陽極3との間に電気エネル
ギが供給されると、まず上部ピン電極5と下部ピン電極
6との間に放電が発生して陰極2と陽極3との間の放電
空間部が予備電離される。放電空間部の予備電離が十分
に進むと、陰極2と陽極3との間に主放電(グロー放
電)が点弧されてガスレーザ媒質が励起され、レーザ光
が放電方向と直交するレーザ管1の軸方向に沿って放射
されるようになっている。
The cathode 2, anode 3, upper pin electrode 5 and lower pin electrode 6 are each connected to a high voltage power supply 7. When this high-voltage power supply 7 is turned on and electric energy is supplied between the cathode 2 and the anode 3, first, a discharge is generated between the upper pin electrode 5 and the lower pin electrode 6, and the cathode 2 and the anode 3 are discharged. The discharge space between the two is preionized. When the preliminary ionization in the discharge space portion is sufficiently advanced, the main discharge (glow discharge) is ignited between the cathode 2 and the anode 3 to excite the gas laser medium, and the laser light of the laser tube 1 orthogonal to the discharge direction. It is radiated along the axial direction.

上記レーザ管1の軸方向両端には図示しないが光共振器
を形成する高反射ミラーと出力ミラーとが配置されてい
る。したがって、陰極2と陽極3との間で放射されたレ
ーザ光は上記光共振器で増幅されて所定の強度に達する
と、上記出力ミラーから発振されるようになっている。
また、レーザ管1内にはガスレーザ媒質を循環させるた
めの送風機9と、ガスレーザ媒質の温度を一定に保つた
めの熱交換器8とが設けられている。
Although not shown, a high-reflecting mirror and an output mirror that form an optical resonator are arranged at both ends of the laser tube 1 in the axial direction. Therefore, when the laser light emitted between the cathode 2 and the anode 3 is amplified by the optical resonator and reaches a predetermined intensity, it is oscillated from the output mirror.
Further, in the laser tube 1, a blower 9 for circulating the gas laser medium and a heat exchanger 8 for keeping the temperature of the gas laser medium constant are provided.

従来、上記陰極2と陽極3としては、主放電を安定して
発生させる平等電界を形成することができるよう第5図
と第6図とに示されるようなチャン形の電極が用いられ
ていた。すなわち、電極2、3の幅方向をX、長手方向
をY、高さ方向をZとすると、断面形状は、 X=u+k・cos v・sinhu …(1)式 Z=v+k・sin v・coshu …(2)式 で決定されるもので、これによってX方向においては平
等電界を得ることができる。なお、上記各式において、
uは電気力線の値、kは形状を決定するパラメータ、v
はkによって定まる値で、 v=cos-1(−k) …(3)式 によって求めることができる。
Conventionally, as the cathode 2 and the anode 3, Chang-shaped electrodes as shown in FIGS. 5 and 6 have been used so as to form an equal electric field for stably generating a main discharge. . That is, when the width direction of the electrodes 2 and 3 is X, the longitudinal direction is Y, and the height direction is Z, the cross-sectional shape is X = u + k · cos v · sinhu (1) Formula Z = v + k · sin v · coshu It is determined by the equation (2), and a uniform electric field can be obtained in the X direction. In the above equations,
u is the value of the line of electric force, k is the parameter that determines the shape, v
Is a value determined by k, and can be calculated by the equation: v = cos −1 (−k) (3).

一方、電極2、3の長手方向であるY方向にもチャン形
の式を適用すると、その長手方向中央部分から両端部に
ゆくにしたがってZ方向の値が徐々に小さくなるため、
主放電は電極2、3の長手方向中央部分でしか点弧しな
くなってしまう。そのため、通常は第5図に示されるよ
うY方向に対しては広い領域でZの値を一定にし、“D"
にて示す端部の範囲を上記(1)式と(2)式とで定義
されるチャン型の形状に設定していた。すなわち、“D"
にて示される寸法は電極2、3のX方向に沿う幅寸法の
1/2に設定され、かつその端部のY方向に沿う曲率mは
X方向に沿う曲率m′と同じに設定されていた。
On the other hand, if the Chang-type formula is applied also to the Y direction, which is the longitudinal direction of the electrodes 2 and 3, the value in the Z direction gradually decreases from the central portion in the longitudinal direction toward both ends.
The main discharge is ignited only at the central portions of the electrodes 2 and 3 in the longitudinal direction. Therefore, normally, as shown in FIG. 5, the value of Z is made constant in a wide area with respect to the Y direction, and "D" is set.
The range of the end portion indicated by is set to the Chan-shaped shape defined by the equations (1) and (2). That is, "D"
Is the width of the electrodes 2 and 3 along the X direction.
The curvature m was set to 1/2 and the end of the curvature m along the Y direction was set to be the same as the curvature m ′ along the X direction.

しかしながら、このような電極2、3においては、Y方
向の全長に対して“D"の寸法は非常に小さいため、Z方
向の寸法が急激に変化するd0点に電界が集中し、安定し
たグロー放電が得られないということがあった。たとえ
ば、標準的な値では、全長600mmの電極では“D"の寸法
が20mm程度と小さく、d0点におけるZ方向の寸法の変化
が急激となるから、d0点に大きな電界集中が発生しやす
かった。
However, in such electrodes 2 and 3, since the dimension of "D" is very small with respect to the entire length in the Y direction, the electric field is concentrated and stabilized at the point d 0 where the dimension in the Z direction changes rapidly. There were times when glow discharge could not be obtained. For example, in the standard value, the size of “D” is as small as about 20 mm in an electrode with a total length of 600 mm, and the size change in the Z direction at the point d 0 is rapid, so that a large electric field concentration occurs at the point d 0. It was easy.

このような電極2、3を使用してレーザ動作をさせる
と、これら電極2、3に印加される電圧が低い場合は比
較的安定に動作するが、印加電圧を上昇させ、放電空間
部へ注入されるエネルギを増大させると、第4図に曲線
イで示されるようにある値以上でレーザエネルギが低下
するということが生じる。これは、上述したように電極
2、3の端部のd0点に電界が集中し、アーク放電が発生
するためである。
When the laser operation is performed using the electrodes 2 and 3 as described above, when the voltage applied to the electrodes 2 and 3 is low, the operation is relatively stable, but the applied voltage is increased and injected into the discharge space. Increasing the applied energy causes the laser energy to decrease above a certain value as shown by curve a in FIG. This is because, as described above, the electric field concentrates at the point d 0 at the ends of the electrodes 2 and 3, and arc discharge occurs.

(発明が解決しようとする課題) このように、従来のガスレーザ装置の電極は、長手方向
端部においても幅方向と同様チャン型の形状を採用して
いたので、その端部での高さ寸法の変化が急激となって
電界集中によるアーク放電の発生を招くということがあ
った。
(Problems to be Solved by the Invention) As described above, since the electrodes of the conventional gas laser device employ the chan shape also in the widthwise direction at the ends in the longitudinal direction, the height dimension at that end is measured. In some cases, the electric field concentration suddenly changes, which causes arc discharge due to electric field concentration.

この発明は上記事情にもとずきなされたもので、その目
的とするところは、電極の長手方向端部において電界集
中によるアーク放電が発生しずらいようにしたガスレー
ザ装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas laser device in which arc discharge due to electric field concentration is less likely to occur at the longitudinal ends of electrodes. .

[発明の構成] (課題を解決するための手段及び作用) 上記課題を解決するために発明は、内部にガスレーザ媒
質が収容されたレーザ管と、このレーザ管内に離間対向
して配設され幅方向に沿う断面形状が上記離間対向する
空間をほぼ平等な電界にする形状に形成された陰極と陽
極とからなる主電極と、この主電極に電気エネルギを供
給して上記ガスレーザ媒質を励起するための主放電を発
生させる高圧電源とを具備し、上記陰極と陽極との少な
くとも一方は、長手方向端部における長手方向に沿う断
面形状が上記幅方向に沿う断面形状よりもゆるやかなカ
ーブの曲面に形成されていることを特徴とする。
[Structure of the Invention] (Means and Actions for Solving the Problems) In order to solve the above problems, the invention is directed to a laser tube in which a gas laser medium is housed, and a width which is provided in the laser tube so as to face each other with a space therebetween. To excite the gas laser medium by supplying a main electrode composed of a cathode and an anode, the main electrode of which is formed in a shape whose cross-sectional shape along the direction makes the separated and opposed spaces into a substantially even electric field, and by supplying electric energy to the main electrode. A high-voltage power supply for generating a main discharge of, at least one of the cathode and the anode, the cross-sectional shape along the longitudinal direction at the longitudinal end is a curved surface gentler than the cross-sectional shape along the width direction. It is characterized by being formed.

このような構造の電極によれば、長手方向端部における
高さ寸法の変化が幅方向の高さ寸法の変化に比べてなだ
らかになるから、長手方向端部において電界集中による
アーク放電が発生しずらくなる。
According to the electrode having such a structure, the change in the height dimension at the longitudinal end portion becomes gentler than that in the width direction, so that the arc discharge due to the electric field concentration occurs at the longitudinal end portion. It gets harder.

(実施例) 以下、この発明の一実施例を第1図と第2図を参照して
説明する。なお、ガスレーザ装置の全体構成は第3図に
示される構成と同じであり、この発明は陰極2と陽極3
との形状が従来と異なるだけであるから、その形状につ
いてだけ説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The overall structure of the gas laser device is the same as that shown in FIG.
Since the shapes of and are different from the conventional ones, only the shape will be described.

すなわち、この発明の陰極2と陽極3とは、幅方向であ
るX方向に沿う断面形状は従来と同じチャン型に形成さ
れているものの、長手方向であるY方向の端部10の形状
は、そのY方向に沿う曲率Mが幅方向に沿う曲率m′よ
りも小さく設定されている。つまり、端部10の長手方向
に沿う曲面は幅方向に沿う曲面に比べてゆるやかなカー
ブに設定されている。それによって、高さ寸法であるZ
方向の寸法が変化する端部10のY方向の長さEは、従来
のように端部にX方向と同様のチャン型の曲率を適用し
た場合の長さDに比べて長くすることができる。
That is, although the cathode 2 and the anode 3 of the present invention have the same cross-sectional shape along the X direction, which is the width direction, as in the conventional case, the shape of the end portion 10 in the Y direction, which is the longitudinal direction, is: The curvature M along the Y direction is set smaller than the curvature m ′ along the width direction. That is, the curved surface along the longitudinal direction of the end portion 10 is set to be a gentle curve as compared with the curved surface along the width direction. As a result, the height dimension Z
The length E in the Y direction of the end portion 10 in which the dimension in the direction changes can be made longer than the length D in the case where a Chang-shaped curvature similar to that in the X direction is applied to the end portion as in the conventional case. .

上記陰極2と陽極3との端部10の形状は以下のように設
定されている。つまり、上記端部10における長さEは電
極2、3の全長の5〜10%の範囲で設定されている。そ
して、Z方向の寸法が変化し始める点E0のY方向とZ方
向の座標を(0,0)とし、長さEを4等分し、そのとき
の各点をE0〜E4とする。また、E0点における電極2、3
の高さ(端部10以外の箇所における高さ)をZ0とした場
合、E1の高さは E2の高さは E3の高さは E4の高さはZ0とする。したがって、E0〜E4の各点におけ
るY方向とZ方向の座標は、E0(0,0)、 E4(E,Z0)となる。
The shapes of the ends 10 of the cathode 2 and the anode 3 are set as follows. That is, the length E of the end portion 10 is set within the range of 5 to 10% of the total length of the electrodes 2 and 3. Then, assuming that the coordinates of the point E 0 where the dimension in the Z direction starts to change in the Y direction and the Z direction are (0, 0), the length E is divided into four, and the respective points at that time are designated E 0 to E 4 . To do. Also, the electrodes 2, 3 at point E 0
If the height (height at the location other than the end portion 10) as a Z 0, the height of the E 1 is The height of E 2 is The height of E 3 is The height of E 4 is Z 0 . Therefore, the coordinates in the Y and Z directions at the points E 0 to E 4 are E 0 (0,0), It becomes E 4 (E, Z 0 ).

上記E0〜E4の5点を最小二乗法によって2次以上の多項
式を近似する。たとえば、全長(Y寸法)が720mm、高
さ(Z方向)が20mmの電極では、“E"を全長の10%とす
ると、各点の座標は、E0(0,0)、E1(18,1)、E2(36,
3.3)、E3(54,8)、E4(72,20)となる。これを最小二
乗法で3次式近似すると、 Z=−5.42×10-2+0.113Y−3.88×10-3Y2+8.573×10
-5Y3 …(3)式 となる。したがって、E0〜E4における断面形状を上記
(3)式で決定すれば、電極2、3の端部10をチャン型
に比べてY方向に沿うカーブがゆるやかな曲面に形成す
ることができる。
The above-mentioned five points E 0 to E 4 are approximated to a polynomial of a second degree or higher by the method of least squares. For example, in an electrode with a total length (Y dimension) of 720 mm and a height (Z direction) of 20 mm, if "E" is 10% of the total length, the coordinates of each point are E 0 (0,0), E 1 ( 18,1), E 2 (36,
3.3), E 3 (54,8) and E 4 (72,20). When this is approximated by the cubic method using the least squares method, Z = −5.42 × 10 −2 + 0.113Y−3.88 × 10 −3 Y 2 + 8.573 × 10
-5 Y 3 … Equation (3). Therefore, if the cross-sectional shape at E 0 to E 4 is determined by the above formula (3), the end portions 10 of the electrodes 2 and 3 can be formed to have a curved surface along the Y direction that is gentler than that of the Chang type. .

このように、電極2、3の端部10を幅方向に比べてゆる
やかなカーブの曲面に形成すれば、E0点におけるZ方向
の変化もゆるやかになるから、端部10のE0点に電界が集
中しずらくなる。その結果、第4図に曲線ロで示すよう
に曲線イに比べ高いレーザエネルギを得ることができ
る。つまり、印加電圧を上昇させても、アーク放電が発
生しずらい電極2、3を形成することができる。
Thus, if the end portions 10 of the electrodes 2 and 3 are formed in a curved surface having a gentler curve than in the width direction, the change in the Z direction at the E 0 point also becomes gentle, so that the E 0 point of the end portion 10 is set. It becomes difficult for the electric field to concentrate. As a result, it is possible to obtain a higher laser energy as compared with the curve a as shown by the curve b in FIG. That is, it is possible to form the electrodes 2 and 3 in which arc discharge is unlikely to occur even when the applied voltage is increased.

この発明は上記一実施例に限定されるものでなく、種々
変形可能である。たとえば上記一実施例では一対の電極
の両端部をそれぞれチャン型に比べて大きな曲率にした
が、どちらか一方の電極だけにこの発明を適用するよう
にしてもよい。
The present invention is not limited to the above-mentioned one embodiment and can be variously modified. For example, in the above-described one embodiment, both ends of the pair of electrodes have a curvature larger than that of the Chan type, but the present invention may be applied to only one of the electrodes.

また、電極は、幅方向に沿う断面形状がチャン形だけで
なく、円柱形、ロゴスキー形、エルンスト形などでもよ
く、要はレーザ管内で離間対向する空間をほぼ平等な電
界にする形状であればよい。
Further, the electrode may have a cross-sectional shape along the width direction not only in a Chang shape, but also in a cylindrical shape, a Rogowski shape, an Ernst shape, or the like. Good.

[発明の効果] 以上述べたようにこの発明は、陰極と陽極との少なくと
も一方の電極の長手方向端部における長手方向に沿う断
面形状を、幅方向に沿う断面形状よりもゆるやかなカー
ブの曲面に形成した。そのため、電極の端部の長手方向
に沿う形状の変化は従来に比べてゆるやかになるから、
電界集中によるアーク放電が発生しずらくなる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the cross-sectional shape along the longitudinal direction at the longitudinal end portion of at least one of the cathode and the anode is a curved surface gentler than the cross-sectional shape along the width direction. Formed. Therefore, the change in shape along the longitudinal direction of the end portion of the electrode becomes gentler than in the conventional case.
Arc discharge due to electric field concentration is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す電極の端部の側面
図、第2図は同じく斜視図、第3図は一般的なガスレー
ザ装置の構成図、第4図は電極に印加する電圧とレーザ
エネルギとの関係のグラフ、第5図は従来の電極の側面
図、第6図は同じく幅方向に沿う断面図である。 1……レーザ管、2……陰極、3……陽極、7……高圧
電源、10……電極の端部。
FIG. 1 is a side view of an end portion of an electrode showing an embodiment of the present invention, FIG. 2 is a perspective view of the same, FIG. 3 is a configuration diagram of a general gas laser device, and FIG. 4 is a voltage applied to the electrode. And FIG. 5 is a side view of a conventional electrode, and FIG. 6 is a sectional view along the width direction. 1 ... Laser tube, 2 ... Cathode, 3 ... Anode, 7 ... High-voltage power supply, 10 ... End of electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部にガスレーザ媒質が収容されたレーザ
管と、このレーザ管内に離間対向して配設され幅方向に
沿う断面形状が上記離間対向する空間をほぼ平等な電界
にする形状に形成された陰極と陽極とからなる主電極
と、この主電極に電気エネルギを供給して上記ガスレー
ザ媒質を励起するための主放電を発生させる高圧電源と
を具備し、上記陰極と陽極との少なくとも一方は、長手
方向端部における長手方向に沿う断面形状が上記幅方向
に沿う断面形状よりもゆるやかなカーブの曲面に形成さ
れていることを特徴とするガスレーザ装置。
1. A laser tube in which a gas laser medium is housed, and a cross-sectional shape along the width direction, which is arranged in the laser tube so as to be opposed to each other with a space therebetween, are formed into a shape in which an electric field having a substantially uniform electric field is formed. At least one of the cathode and the anode, and a high-voltage power source for supplying electric energy to the main electrode to generate a main discharge for exciting the gas laser medium. The gas laser device is characterized in that the cross-sectional shape along the longitudinal direction at the end portion in the longitudinal direction is formed into a curved surface with a gentler curve than the cross-sectional shape along the width direction.
JP2149754A 1990-06-11 1990-06-11 Gas laser equipment Expired - Lifetime JPH0716050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149754A JPH0716050B2 (en) 1990-06-11 1990-06-11 Gas laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149754A JPH0716050B2 (en) 1990-06-11 1990-06-11 Gas laser equipment

Publications (2)

Publication Number Publication Date
JPH0443688A JPH0443688A (en) 1992-02-13
JPH0716050B2 true JPH0716050B2 (en) 1995-02-22

Family

ID=15482021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149754A Expired - Lifetime JPH0716050B2 (en) 1990-06-11 1990-06-11 Gas laser equipment

Country Status (1)

Country Link
JP (1) JPH0716050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818763B2 (en) * 2006-03-17 2011-11-16 株式会社小松製作所 Preionization electrode for gas laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE REVIEN OF SCIENTIFIC INSTRUMENT=1978 *

Also Published As

Publication number Publication date
JPH0443688A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
US4481634A (en) RF Excited metal waveguide laser
US5255282A (en) Open waveguide excimer laser
JP4459455B2 (en) Surface preionization for gas lasers.
JPH0716050B2 (en) Gas laser equipment
JP2680441B2 (en) Gas laser device
JPH02130973A (en) Laser oscillator
JPS63292686A (en) Laser oscillating apparatus
JP2666149B2 (en) Ultraviolet preionization electrode for discharge-excited gas laser device.
JPH01194481A (en) Gas laser oscillating apparatus
JP2631480B2 (en) Gas laser device
JP2831807B2 (en) Pulse laser equipment
JPS5855653Y2 (en) gas laser equipment
JPS631086A (en) Gas laser oscillator
JPH07235713A (en) Gas laser apparatus
JPH07162060A (en) Gas laser
JPS63216394A (en) Co2 gas laser equipment
JPS6022621Y2 (en) gas laser discharge tube
JPS63228776A (en) Gas laser device
JPH04139778A (en) Pulse laser equipment
JPH0746737B2 (en) Laser oscillator
JPH02148778A (en) Laser oscillator
JPS6113679A (en) Gas laser device
JPH04139777A (en) Pulse laser equipment
JPS62126683A (en) Gas laser device
JPH04199583A (en) Gas laser oscillator