JPH0716024B2 - Method for manufacturing semiconductor radiation detecting element - Google Patents

Method for manufacturing semiconductor radiation detecting element

Info

Publication number
JPH0716024B2
JPH0716024B2 JP62196913A JP19691387A JPH0716024B2 JP H0716024 B2 JPH0716024 B2 JP H0716024B2 JP 62196913 A JP62196913 A JP 62196913A JP 19691387 A JP19691387 A JP 19691387A JP H0716024 B2 JPH0716024 B2 JP H0716024B2
Authority
JP
Japan
Prior art keywords
hydrogen
semiconductor
amorphous silicon
layer
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62196913A
Other languages
Japanese (ja)
Other versions
JPS6439778A (en
Inventor
則忠 佐藤
康和 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62196913A priority Critical patent/JPH0716024B2/en
Publication of JPS6439778A publication Critical patent/JPS6439778A/en
Publication of JPH0716024B2 publication Critical patent/JPH0716024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素原子を用いて速中性子を検出する半導体放
射線検出素子に関する。
TECHNICAL FIELD The present invention relates to a semiconductor radiation detecting element for detecting fast neutrons using hydrogen atoms.

〔従来の技術〕[Conventional technology]

半導体放射線検出素子はpn接合型やショットキー接合型
などのダイオード構造を有し、この接合部に逆バイアス
を印加して空乏層を広げ、その空乏層中に放射線を入射
させ、その飛程に生ずる電子−正孔対をカウントして放
射線を検出するものである。この方法でα,β,γ,x線
のような電離作用を有する放射線の検出は可能である。
しかし、中性子は電荷を持たないため、核反応以外には
軌道電子や原子核のクーロン場にはなんらの作用も及ぼ
さず、従って電子−正孔対は生じない。それゆえ、上述
のような半導体放射線検出素子はそのままでは中性子の
検出には不適である。
The semiconductor radiation detection element has a diode structure such as a pn junction type or a Schottky junction type. A reverse bias is applied to this junction to expand the depletion layer, and the radiation is injected into the depletion layer to reduce the range. The generated electron-hole pairs are counted to detect radiation. With this method, it is possible to detect radiation having ionizing action such as α, β, γ, and x-rays.
However, since neutrons have no charge, they have no effect on the Coulomb field of orbital electrons and nuclei except for nuclear reactions, and thus electron-hole pairs do not occur. Therefore, the semiconductor radiation detection element as described above is not suitable for neutron detection as it is.

半導体中性子検出素子には、ほう素の同位元素10Bによ
10B(n,α)変換を用いたもののほかに、水素原子を
用いたものが知られている。これは(n,p)散乱反応を
利用して速中性子を検出する方法で、中性子は自分のエ
ネルギーの一部を陽子に与え、陽子の引き起こすイオン
の化現象,励起現象の結果を利用するものである。しか
し、このための水素原子を半導体基体中に固定すること
は簡単ではない。
Known semiconductor neutron detection elements include those using 10 B (n, α) conversion with the isotope 10 B of boron, and those using hydrogen atoms. This is a method to detect fast neutrons by using (n, p) scattering reaction. Neutrons give part of their energy to protons, and utilize the results of ionization and excitation phenomena of protons. Is. However, it is not easy to fix hydrogen atoms for this purpose in the semiconductor substrate.

例えば、この原理を用いた半導体中性子検出素子として
は、水素原子を多量に含む板、例えばポリエチレン板を
半導体放射線検出素子の前面に載置したものがある。し
かし、これは構造が複雑になることや検出効率が悪いな
どの欠点がある。また、水素原子を多量に含むという点
から非晶質半導体を用いた半導体中性子検出器が特開昭
56−114382号公報により公知である。その公報には、水
素化非晶質シリコンあるいは非晶質ゲルマニウムが用い
られる非晶質半導体でp−i−n構造を作成した実施例
が開示されている。現在、非晶質シリコンは太陽電池を
はじめ各分野に用いられ、極めて容易に作成できるもの
となっているが、この非晶質シリコンは水素原子によっ
てダングリングボンドを補償し、多量の水素原子をとり
込んでいる。この点に着目した前記素子は極めて有効な
着想であり、水素原子が素子自体の中に固定されている
点でもすぐれている。
For example, as a semiconductor neutron detecting element using this principle, there is one in which a plate containing a large amount of hydrogen atoms, for example, a polyethylene plate is placed on the front surface of the semiconductor radiation detecting element. However, this has drawbacks such as a complicated structure and poor detection efficiency. Further, a semiconductor neutron detector using an amorphous semiconductor is disclosed in Japanese Patent Laid-Open Publication No.
No. 56-114382 is known. The publication discloses an embodiment in which a p-i-n structure is made of an amorphous semiconductor using hydrogenated amorphous silicon or amorphous germanium. At present, amorphous silicon is used in various fields such as solar cells and can be made very easily.This amorphous silicon compensates for dangling bonds by hydrogen atoms and creates a large amount of hydrogen atoms. It is taking in. The element focused on this point is a very effective idea, and is also excellent in that hydrogen atoms are fixed in the element itself.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、この非晶質半導体は空乏層幅が約1μm
と非常に薄く、またライフタイムも著しく短く半導体放
射線検出素子としては問題がある。すなわち、入射放射
線によって非晶質半導体の空乏層内で生成する電子−正
孔対の数が少なく、しかもライフタイムが短いため得ら
れる信号が小さくノイズ成分との判別が困難である。
However, this amorphous semiconductor has a depletion layer width of about 1 μm.
It is very thin and has a very short lifetime, which is problematic as a semiconductor radiation detecting element. That is, since the number of electron-hole pairs generated in the depletion layer of the amorphous semiconductor due to incident radiation is small and the lifetime is short, the obtained signal is small and it is difficult to distinguish it from the noise component.

本発明の目的は、非晶質半導体に含まれる水素原子を利
用して中性子を検出でき、かつ信号の大きい半導体放射
線検出素子を提供することにある。
An object of the present invention is to provide a semiconductor radiation detecting element which can detect neutrons by utilizing hydrogen atoms contained in an amorphous semiconductor and has a large signal.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明によれば、接合が
形成された結晶半導体素体の少なくとも一面上に、非晶
質半導体層を堆積する工程と、この非晶質半導体層に水
素プラズマをさらす工程とを、少なくとも3回、交互に
繰り返すこととする。
In order to achieve the above-mentioned object, according to the present invention, a step of depositing an amorphous semiconductor layer on at least one surface of a crystalline semiconductor element body on which a junction is formed, and hydrogen plasma in the amorphous semiconductor layer. And the step of exposing to at least 3 times are alternately repeated.

〔作用〕[Action]

ライフタイムの長い結晶質半導体素体に形成された接合
により生ずる空乏層に放射線が入射により生成する電子
−正孔対は数が多いので放射線検収効率が高く、また表
面上に被着された非晶質半導体層は水素の侵入により高
い水素原子濃度を有するので速中性子と水素原子との反
応を起きる確率が高く、速中性子に対しても高い感度を
有する。特に、非晶質半導体層形成工程と、この層に水
素をさらす工程とを繰り返すことにより、全体として、
厚さが厚く且つより水素濃度の高い水素化非晶質半導体
層が得られる。
Since the number of electron-hole pairs generated by the incidence of radiation into the depletion layer formed by the junction formed in the crystalline semiconductor element body having a long lifetime is large, the radiation detection efficiency is high, and the non-deposited layer deposited on the surface is high. Since the crystalline semiconductor layer has a high hydrogen atom concentration due to the penetration of hydrogen, it has a high probability of causing a reaction between fast neutrons and hydrogen atoms, and has high sensitivity to fast neutrons. In particular, by repeating the amorphous semiconductor layer forming step and the step of exposing this layer to hydrogen, as a whole,
A hydrogenated amorphous semiconductor layer having a large thickness and a higher hydrogen concentration can be obtained.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、例えば内部にpn接合
を有するシリコン基板1の両面に電極2,3が設けられ、
それぞれにリード線21,31が接続されている。基板1の
一方の面には電極2を覆って非晶質シリコン層41,42,43
が積層されている。各非晶質シリコン層はそれぞれ基板
から遠い側に水素原子侵入層5を有する。なお、電極2
に接続されたリード線21は非晶質シリコン層41〜43に明
けられた窓6から引き出されている。第2図はこのよう
な水素原子侵入層5を有する非晶質シリコン層の作成の
ための装置を示す。これは通常のプラズマ発生装置であ
り、モノシラン含有水素ガスまたは水素ガスを反応槽内
に導き直流電圧によりプラズマを発生させる。そのため
に、反応槽11内に上部電極板12、下部電極板13を配置し
て直流電源14に接続し、また、反応槽11にはモノシラン
含有水素ガスボンベ15および水素ガスボンベ16,排気系1
7,真空計18が接続され、下部電極板13にはヒータ19を備
えている。予めpn接合などを形成したシリコン基板1を
下部電極13の上に載置し、ヒータ19により、例えば200
℃に加熱する。排気系17により真空にした反応槽11の内
部圧力を、先ず例えば4torrにするため、ガスボンベ15
からモノシラン(SiH4)を10%含有する水素ガスを導入
し、電極12,13の間に電源14を用いて、例えば800Vを印
加する。この電圧印加によりモノシランのプラズマが発
生し、前記シリコン基板1の表面に、第1図に示すよう
に非晶質シリコン層41が堆積する。次に、このモノシラ
ン含有水素ガスボンベ15からのモノシランガスの供給を
止め、水素ガスボンベ16から水素ガスを導入し、反応槽
11の内部圧力を、例えば4torrにし、電極12,13の間に80
0Vを印加する。この電圧印加により、電極12,13の間に
水素プラズマが発生し、上記の非晶質シリコン層41の表
面から多量の水素原子が侵入する。次に水素ガスの反応
槽11への供給を止めたのち、再びガスボンベ15からモノ
シランガスを反応槽11に導入し、前記の方法で非晶質シ
リコン層42を表面に水素原子侵入層5を有する非晶質シ
リコン層41上に堆積させる。この非晶質シリコン層42の
形成後、再び前記の方法で水素ガスを導入し非晶質シリ
コン層42上に多量の水素を侵入させる。このように電極
12,13間にモノシランのプラズマと水素ガスによるプラ
ズマを交互に発生させると、極めて水素原子濃度の高い
水素添加水素化非晶質シリコン層が、しかも数μm以上
の厚みで容易に得られる。本実施例では、モノシラン含
有水素ガスボンベ15と水素ガスボンベ16に、電気信号に
より圧縮空気で作動する図示していない開閉弁を取りつ
け、自動的に所定の回数のガス導入が得られるようにし
てある。例えば、10分間ガスボンベ15の弁を開き、反応
槽11内にモノシランガスを供給したのち、ガスボンベ15
の弁を閉じ、次に30分間ガスボンベ16の弁を開くという
操作を10回行うと、反応槽11の圧力を4torr,電極12,13
間の電圧を800Vに保持した場合、厚みが約2μmの水素
添加水素化非晶質シリコン層が得られた。
FIG. 1 shows an embodiment of the present invention. For example, electrodes 2 and 3 are provided on both surfaces of a silicon substrate 1 having a pn junction inside,
Lead wires 21 and 31 are connected to each. The amorphous silicon layer 41, 42, 43 is formed on one surface of the substrate 1 so as to cover the electrode 2.
Are stacked. Each amorphous silicon layer has a hydrogen atom penetration layer 5 on the side far from the substrate. The electrode 2
The lead wire 21 connected to the above is drawn out from the window 6 opened in the amorphous silicon layers 41 to 43. FIG. 2 shows an apparatus for producing an amorphous silicon layer having such a hydrogen atom penetration layer 5. This is an ordinary plasma generator, which introduces monosilane-containing hydrogen gas or hydrogen gas into the reaction tank to generate plasma by a DC voltage. For that purpose, the upper electrode plate 12 and the lower electrode plate 13 are arranged in the reaction tank 11 and connected to the DC power source 14, and the reaction tank 11 also includes a monosilane-containing hydrogen gas cylinder 15 and a hydrogen gas cylinder 16 and an exhaust system 1.
7. A vacuum gauge 18 is connected, and a heater 19 is provided on the lower electrode plate 13. The silicon substrate 1 on which a pn junction or the like is formed in advance is placed on the lower electrode 13, and the heater 19 is used to
Heat to ℃. In order to set the internal pressure of the reaction tank 11 that has been evacuated by the exhaust system 17 to, for example, 4 torr, the gas cylinder 15
Then, hydrogen gas containing 10% of monosilane (SiH 4 ) is introduced and 800 V, for example, is applied between the electrodes 12 and 13 by using a power supply 14. By applying this voltage, monosilane plasma is generated, and an amorphous silicon layer 41 is deposited on the surface of the silicon substrate 1 as shown in FIG. Next, the supply of monosilane gas from the monosilane-containing hydrogen gas cylinder 15 was stopped, hydrogen gas was introduced from the hydrogen gas cylinder 16, and the reaction tank
The internal pressure of 11 is set to, for example, 4 torr and 80 between the electrodes 12 and 13.
Apply 0V. By applying this voltage, hydrogen plasma is generated between the electrodes 12 and 13, and a large amount of hydrogen atoms penetrate from the surface of the amorphous silicon layer 41. Next, after the supply of hydrogen gas to the reaction tank 11 is stopped, the monosilane gas is again introduced into the reaction tank 11 from the gas cylinder 15, and the amorphous silicon layer 42 is formed on the surface of the amorphous silicon layer 42 by the above-described method. Deposit on the crystalline silicon layer 41. After the formation of the amorphous silicon layer 42, hydrogen gas is again introduced by the above method to inject a large amount of hydrogen on the amorphous silicon layer 42. Electrodes like this
By alternately generating plasma of monosilane and plasma of hydrogen gas between 12 and 13, a hydrogenated hydrogenated amorphous silicon layer having an extremely high hydrogen atom concentration can be easily obtained with a thickness of several μm or more. In the present embodiment, the monosilane-containing hydrogen gas cylinder 15 and the hydrogen gas cylinder 16 are provided with an on-off valve (not shown) which is operated by compressed air by an electric signal so that the gas can be introduced a predetermined number of times automatically. For example, after opening the valve of the gas cylinder 15 for 10 minutes and supplying monosilane gas into the reaction tank 11, the gas cylinder 15
The valve of the gas tank 16 is closed for 30 minutes, and then the valve of the gas cylinder 16 is opened for 10 times.
When the voltage was kept at 800 V, a hydrogenated hydrogenated amorphous silicon layer having a thickness of about 2 μm was obtained.

第3図は、このようにして得られた水素添加水素化非晶
質シリコン層に含まれる水素原子濃度を二次イオン質量
分析装置(SIMS)を用いて測定した結果である。上述の
モノシランガス(10%SiH4水素ベース)を用いて形成し
た水素化非晶質シリコン層には約5×1020原子/cm3
水素原子が含まれているが、この非晶質シリコン層をさ
らに水素ガスプラズマ中にさらすことより高濃度の水素
侵入層5が得られる。第3図からわかるように非晶質シ
リコン層の表面で約2×1022原子/cm3,平均約9×10
21原子/cm3の水素原子が含まれる非晶質シリコン層が
得られる。
FIG. 3 shows the results of measuring the hydrogen atom concentration contained in the hydrogenated hydrogenated amorphous silicon layer thus obtained, using a secondary ion mass spectrometer (SIMS). The hydrogenated amorphous silicon layer formed by using the above monosilane gas (10% SiH 4 hydrogen base) contains about 5 × 10 20 atoms / cm 3 of hydrogen atoms. Is further exposed to hydrogen gas plasma, a high-concentration hydrogen penetration layer 5 can be obtained. As can be seen from FIG. 3, the surface of the amorphous silicon layer is about 2 × 10 22 atoms / cm 3 , and the average is about 9 × 10.
An amorphous silicon layer containing 21 atoms / cm 3 of hydrogen atoms is obtained.

第4図は本発明の別の実施例で、シリコン基板の裏面に
も水素侵入層5を備えた水素化非晶質シリコン層44,45,
46を形成したもので、速中性子感度のより高い水素が得
られるという利点がある。
FIG. 4 shows another embodiment of the present invention, which is a hydrogenated amorphous silicon layer 44, 45, which also has a hydrogen penetration layer 5 on the back surface of the silicon substrate.
Formed 46 has the advantage that hydrogen with higher fast neutron sensitivity can be obtained.

なお、第1図および第4図に示すシリコン基板1には、
pn接合のかわりに表面障壁接合あるいはヘテロ接合を形
成しても、でき上がった検出素子の特性に変化は認めら
れなかった。これは200℃の低温で水素添加水素化非晶
質シリコン層が形成されるためである。
The silicon substrate 1 shown in FIG. 1 and FIG.
Even if a surface barrier junction or a heterojunction was formed instead of the pn junction, no change was observed in the characteristics of the finished detection element. This is because the hydrogenated hydrogenated amorphous silicon layer is formed at a low temperature of 200 ° C.

第5図は本発明により得られた素子に速中性子を照射し
た時のスペクトル図である。スペクトル51は非晶質シリ
コン層が2層の場合、スペクトル52は非晶質シリコン層
が10層の場合で、ほぼ非晶質シリコン層の厚み、すなわ
ち水素原子の含有量に比例して速中性子の感度が高くな
ることがわかる。また、ここで使用した速中性子標準線
源は252Cfで、中性子のほかにγ線も同時に放出してい
るため、γ線の成分も観測されるが、速中性子成分との
弁別が可能であることもわかる。
FIG. 5 is a spectrum diagram when the device obtained by the present invention is irradiated with fast neutrons. The spectrum 51 is for two amorphous silicon layers, and the spectrum 52 is for 10 amorphous silicon layers, and the fast neutrons are almost proportional to the thickness of the amorphous silicon layer, that is, the content of hydrogen atoms. It can be seen that the sensitivity of is higher. In addition, the fast neutron standard radiation source used here is 252 Cf, and since γ-rays are simultaneously emitted in addition to neutrons, the γ-ray component is also observed, but it can be distinguished from the fast neutron component. I also understand that.

本発明による検出素子は、半導体表面に多量の水素原子
が含まれている非晶質半導体層を有することを除いて通
常の半導体放射線検出素子と同様の構成を有するので、
速中性子のほかにα,β,γ,x線を検出できることは自
明である。また、単結晶シリコンに限らず、GaAs,CdTe
などの化合物半導体の結晶を用いて作製することも可能
である。
Since the detection element according to the present invention has the same structure as a normal semiconductor radiation detection element except that it has an amorphous semiconductor layer containing a large amount of hydrogen atoms on the semiconductor surface,
It is obvious that α, β, γ, x-rays can be detected in addition to fast neutrons. Not only single crystal silicon but also GaAs, CdTe
It is also possible to manufacture using a crystal of a compound semiconductor such as.

〔発明の効果〕〔The invention's effect〕

本発明によれば、上記の方法を採用した結果、水素原子
濃度の高い層が素体上に形成され、速中性子を高感度で
検出する放射線検出器を半導体化することができた。非
晶質半導体としては非晶質ゲルマニウムなども用いるこ
とができるが、とくに非晶質シリコンは単結晶シリコン
にくらべ水素原子の侵入深さが2〜3倍深いので、非晶
質シリコン層には多量の水素原子が固定でき感度をより
高くすることができる。本発明による検出素子は、従来
の半導体中性子検出器のように半導体検出素子の周囲に
パラフィンやポリエチレンなどの水素含有物質を設置す
る必要がないため、極めて軽量でしか簡単な構造のもの
が得られる。この結果、従来は重量的に不可能であった
ポケットタイプの速中性子も検出できる放射線被爆線量
計が得られるようになった。そのほかに、非晶質半導体
層の被着は200℃の低温で行われるため、予め半導体素
体に形成された接合の特性劣化がほとんど生じない。従
って任意の素体の表面への水素の固定が可能である利点
をもつ。
According to the present invention, as a result of adopting the above method, a layer having a high hydrogen atom concentration is formed on an element body, and a radiation detector for detecting fast neutrons with high sensitivity can be made into a semiconductor. Although amorphous germanium or the like can be used as the amorphous semiconductor, in particular, amorphous silicon has a depth of penetration of hydrogen atoms that is 2-3 times deeper than that of single crystal silicon. Since a large amount of hydrogen atoms can be fixed, the sensitivity can be increased. Since the detection element according to the present invention does not need to install a hydrogen-containing substance such as paraffin or polyethylene around the semiconductor detection element like a conventional semiconductor neutron detector, a very lightweight and simple structure can be obtained. . As a result, it has become possible to obtain a radiation exposure dosimeter that can detect pocket-type fast neutrons, which was conventionally impossible in terms of weight. In addition, since the deposition of the amorphous semiconductor layer is performed at a low temperature of 200 ° C., the characteristics of the junction previously formed on the semiconductor element body hardly deteriorate. Therefore, it has an advantage that hydrogen can be fixed on the surface of any element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の断面図、第2図は本発明の
実施のために用いるプラズマ発生装置の断面図、第3図
は本発明による水素原子導入の非晶質シリコン層の厚さ
方向の水素濃度分布図、第4図は本発明の別の実施例の
断面図、第5図は本発明による素子に速中性子を照射し
たときのスペクトル図である。 1:シリコン基板、2,3:電極、41〜46:非晶質シリコン
層、5:水素原子侵入層。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of a plasma generator used for carrying out the present invention, and FIG. 3 is a hydrogen atom-introduced amorphous silicon layer according to the present invention. FIG. 4 is a hydrogen concentration distribution diagram in the thickness direction, FIG. 4 is a sectional view of another embodiment of the present invention, and FIG. 5 is a spectrum diagram when the device according to the present invention is irradiated with fast neutrons. 1: Silicon substrate, 2, 3: Electrode, 41 to 46: Amorphous silicon layer, 5: Hydrogen atom penetration layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】接合が形成された結晶質半導体素体の少な
くとも一面上に、非晶質半導体層を堆積する工程と、こ
の非晶質半導体層に水素プラズマをさらす工程とを、少
なくとも3回、交互に繰り返すことを特徴とする半導体
放射線検出素子の製造方法。
1. A step of depositing an amorphous semiconductor layer on at least one surface of a crystalline semiconductor element body having a junction, and a step of exposing the amorphous semiconductor layer to hydrogen plasma at least three times. , A method for manufacturing a semiconductor radiation detecting element, characterized in that the method is repeated alternately.
JP62196913A 1987-08-06 1987-08-06 Method for manufacturing semiconductor radiation detecting element Expired - Lifetime JPH0716024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62196913A JPH0716024B2 (en) 1987-08-06 1987-08-06 Method for manufacturing semiconductor radiation detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62196913A JPH0716024B2 (en) 1987-08-06 1987-08-06 Method for manufacturing semiconductor radiation detecting element

Publications (2)

Publication Number Publication Date
JPS6439778A JPS6439778A (en) 1989-02-10
JPH0716024B2 true JPH0716024B2 (en) 1995-02-22

Family

ID=16365743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62196913A Expired - Lifetime JPH0716024B2 (en) 1987-08-06 1987-08-06 Method for manufacturing semiconductor radiation detecting element

Country Status (1)

Country Link
JP (1) JPH0716024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140052B2 (en) * 1990-04-27 2001-03-05 株式会社日立製作所 Neutron detector
JP2500886B2 (en) * 1992-02-25 1996-05-29 アロカ株式会社 Neutron detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156774A (en) * 1984-12-27 1986-07-16 Fuji Electric Co Ltd Semiconductor radiation detector
JPS61174778A (en) * 1985-01-30 1986-08-06 Fuji Electric Co Ltd Semiconductor radiation detector

Also Published As

Publication number Publication date
JPS6439778A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
Bormashov et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes
Robertson et al. A class of boron-rich solid-state neutron detectors
RU2452060C2 (en) Beta radiation-to-electrical energy semiconductor converter
JPH06101577B2 (en) Semiconductor radiation detector
Xue et al. Methods for improving the power conversion efficiency of nuclear-voltaic batteries
US5156979A (en) Semiconductor-based radiation-detector element
JPH0716024B2 (en) Method for manufacturing semiconductor radiation detecting element
RU169457U1 (en) NEUTRON DETECTOR BASED ON SYNTHETIC DIAMOND
McKenzie Development of the semiconductor radiation detector
Krasnov et al. Development and investigation of silicon converter beta radiation 63Ni isotope
JPH0447993B2 (en)
JPS6135384A (en) Neutron detector
EP3887869B1 (en) Hydrogenated amorphous silicon detector
JPS61174778A (en) Semiconductor radiation detector
CN110869810B (en) X-ray and gamma-ray photodiodes
Sato et al. Plasma CVD-grown 10B-enriched boron films for Si neutron detectors
JPH0736447B2 (en) Semiconductor neutron detector
WO2000033106A1 (en) Boron-carbide solid state neutron detector and method of using same
JPH0473636B2 (en)
JPH01164071A (en) Manufacture of semiconductor neutron-beam detecting element
RU2821300C2 (en) Thermal neutron diamond detector
Bhattarai Amorphous Hydrogenated Boron Carbide for Solid-State Direct-Conversion Thermal Neutron Detection
JPS61156774A (en) Semiconductor radiation detector
Despeisse Hydrogenated Amorphous Silicon Radiation Detectors
JPS63239868A (en) Manufacture of semiconductor radiation detector