JPH0736447B2 - Semiconductor neutron detector - Google Patents

Semiconductor neutron detector

Info

Publication number
JPH0736447B2
JPH0736447B2 JP63176415A JP17641588A JPH0736447B2 JP H0736447 B2 JPH0736447 B2 JP H0736447B2 JP 63176415 A JP63176415 A JP 63176415A JP 17641588 A JP17641588 A JP 17641588A JP H0736447 B2 JPH0736447 B2 JP H0736447B2
Authority
JP
Japan
Prior art keywords
boron
rays
neutron
coating
depletion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63176415A
Other languages
Japanese (ja)
Other versions
JPH0227776A (en
Inventor
則忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63176415A priority Critical patent/JPH0736447B2/en
Publication of JPH0227776A publication Critical patent/JPH0227776A/en
Publication of JPH0736447B2 publication Critical patent/JPH0736447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱中性子線が入射した際ほう素の同位元素10
Bとの反応によって発生するα線を利用する半導体中性
子線検出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a boron isotope 10 when a thermal neutron beam is incident.
The present invention relates to a semiconductor neutron detection element that utilizes α rays generated by the reaction with B.

〔従来の技術〕[Conventional technology]

半導体放射線検出素子の原理は、pn接合や半導体−金属
ショットキー接合または単結晶半導体と非晶質半導体と
のヘテロ接合等、いずれかの方法でダイオード構造を形
成し、そのダイオードに逆バイアス電圧を印加し、これ
により半導体中に空乏層を拡げ、この空欠層中に飛来し
た放射線により発生する電子−正孔対を電流パルスとし
てカウントし検出するものである。
The principle of the semiconductor radiation detecting element is to form a diode structure by any method such as a pn junction, a semiconductor-metal Schottky junction, or a heterojunction between a single crystal semiconductor and an amorphous semiconductor, and apply a reverse bias voltage to the diode. The voltage is applied to expand the depletion layer in the semiconductor, and the electron-hole pairs generated by the radiation flying into the depletion layer are counted and detected as current pulses.

放射線でも、x線,α線,β線およびγ線は、半導体空
乏層内で直接電子−正孔対を生じさせるのでそのままで
放射線の検出が可能である。これに対して中性子線は電
荷をもっていないので、核反応以外には軌道電子や電子
核のクーロン場になんらの作用も及ぼさず、従って半導
体空乏層内で電子−正孔対は生じず、中性子線の検出は
上記の方法では不可能である。このため中性子線検知方
法として、中性子の吸収断面積の大きな物質に中性子線
を透過させ、中性子核変換反応によりα線を発生させ、
そのα線が半導体空乏層内で生成する電子−正孔対を検
知することによる方法がある。
Also with respect to radiation, x-rays, α-rays, β-rays and γ-rays directly generate electron-hole pairs in the semiconductor depletion layer, and therefore radiation can be detected as it is. On the other hand, since the neutron beam has no electric charge, it has no effect on the Coulomb field of the orbital electrons and electron nuclei except for the nuclear reaction, so that electron-hole pairs do not occur in the semiconductor depletion layer and the neutron beam Is not possible with the above method. Therefore, as a neutron ray detection method, neutron rays are transmitted through a substance having a large neutron absorption cross section, and α rays are generated by a neutron transmutation reaction,
There is a method by detecting the electron-hole pair generated by the α ray in the semiconductor depletion layer.

その具体的な例として、熱中性子線に対して散乱断面積
の大きなほう素の同位元素10Bを用い、下記の式で示す
反応に従って、熱中性子線が入射した際ほう素から発生
するα線(4He)と7Li核を検出する方法がある。10 B+n→7Li+α(4He) ……(1) 第2図はこの方法を用いた、例えば特開昭61-17477号公
報で公知の熱中性子線検出素子の断面構造と検出原理を
示すもので、n形シリコン基板21の上面を被覆する表面
保護膜24の窓部に、例えば特開昭59-218732号公報,特
開昭59-219462号公報により公知のように、プラズマCVD
法で成膜されたほう素被膜22が接触し、その下にp+層23
が形成され、ほう素被膜22の上面に電極25が、基板21の
下面に電極26が設けられている。この素子に逆バイアス
−VBを印加して空乏層27が生じた状態で熱中性子線1が
照射されると、ほう素被膜22に含まれる10Bとの間で
(1)式の中性子線変換反応が生じ、互いに180°をな
して飛ぶ実線で示すα線3または破線で示す7Li核4が
空乏層27に到達したとき電子−正孔対が生じ、これらが
図示していない増幅回路と計数回路を介して検出され
る。
As a specific example, using a boron isotope 10 B having a large scattering cross section for thermal neutron rays, according to the reaction shown by the following formula, α rays generated from boron when thermal neutron rays are incident There are methods to detect ( 4 He) and 7 Li nuclei. 10 B + n → 7 Li + α ( 4 He) (1) FIG. 2 shows the cross-sectional structure and detection principle of a thermal neutron beam detecting element using this method, which is known, for example, in Japanese Patent Laid-Open No. 61-17477. Then, as disclosed in, for example, Japanese Patent Laid-Open Nos. 59-218732 and 59-219462, plasma CVD is applied to the window portion of the surface protective film 24 covering the upper surface of the n-type silicon substrate 21.
Containing coating 22 is in contact more which is formed by law, p + layer 23 thereunder
Are formed, and an electrode 25 is provided on the upper surface of the boron coating film 22 and an electrode 26 is provided on the lower surface of the substrate 21. When a reverse bias of −V B is applied to this device and the thermal neutron beam 1 is irradiated in the state where the depletion layer 27 is generated, the neutron beam of the formula (1) is exchanged with 10 B contained in the boron film 22. When a conversion reaction occurs and α-rays 3 shown by solid lines or 7 Li nuclei 4 shown by broken lines which make 180 ° with each other reach the depletion layer 27, electron-hole pairs are generated, and these are not shown in the amplification circuit. Is detected through the counting circuit.

この素子の中性子感度を高めるためには(1)式からわ
かるように10Bの量を高めればよい。前記公報で公知の
プラズマCVD法で成膜したほう素被膜中のほう素濃度は
1.0×1023原子/cm2でほぼほう素濃度の原子密度に近い
値に達している。したがって、別の本出願人の特許出願
に係る特願昭62-323240号公報明細書に記載した濃縮10B
を含むジボランガスよりほう素被膜を厚く形成すれば高
感度の中性子線検出素子が得られる。
To increase the neutron sensitivity of this device, the amount of 10 B should be increased as can be seen from the equation (1). The boron concentration in the boron film formed by the plasma CVD method known in the above publication is
At 1.0 × 10 23 atoms / cm 2 , it has reached a value close to the atomic density of boron concentration. Therefore, the enrichment 10 B described in the specification of Japanese Patent Application No. 62-323240 relating to another applicant's patent application
If the boron film is formed thicker than diborane gas containing, a highly sensitive neutron beam detection element can be obtained.

濃縮した10Bを用いる方法としては、例えば、濃縮した
10Bを含む溶液をシリコンウエハに刷毛で塗布したの
ち、熱処理をしてpn接合を形成し、(1)式の反応を用
いて熱中性子を検出する方法がH.M.Mann and F.J.Janar
ekにより米国雑誌IRE Trans."NS-9,No3(1962)200ペー
ジ、10Bをシリコン基板表面にイオン注入法で注入した
のち熱処理を施してpn接合を形成する方法がI.G.Gver d
tsiteliその他によりソ連雑誌Prib.Tekh.Eksp."No.3,
(1979)81ページに述べられている。
Examples of the method using concentrated 10 B include, for example, concentrated
HM Mann and FE Janar is a method of applying a solution containing 10 B to a silicon wafer with a brush and then heat-treating it to form a pn junction and detecting thermal neutrons using the reaction of equation (1).
IGG ver d is a method of forming pn junction by implanting 10 B into the silicon substrate surface by the ion implantation method and then heat-treating it by ek by US magazine IRE Trans. "NS-9, No3 (1962) page 200.
tsiteli and others by Soviet magazine Prib.Tekh.Eksp. "No.3,
(1979) page 81.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のような方法で10Bを多く含む被膜を形成し、
(1)式によるα線を多く発生させた上にさらに感度を
高めるためには、α線または7Li核空乏層内に達して生
ずる電子−正孔対の数を多くしなければならない。
A film containing a large amount of 10 B is formed by the above method,
In order to generate a large amount of α rays according to the formula (1) and further increase the sensitivity, it is necessary to increase the number of electron-hole pairs that reach the α ray or 7 Li nucleus depletion layer.

本発明の目的は、α線および7Li核を多く発生させる手
段ばかりでなく、発生したα線あるいは7Li核を電子−
正孔対の生成のために有効に利用する半導体中性子線検
出素子を提供することにある。
The purpose of the present invention is not only to generate a large amount of α-rays and 7 Li nuclei, but also to generate α-rays or 7 Li nuclei by electron-
An object of the present invention is to provide a semiconductor neutron beam detecting element that is effectively used for generating hole pairs.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題の達成のために、本発明は、n形半導体基体
上に濃縮した同位元素10Bを含むほう素被膜が被着さ
れ、その被膜の下にp形ドーピング層を有する中性子線
検出素子において、ほう素被膜の厚さがα線のほう素被
膜中での飛程より薄いものとする。
In order to achieve the above object, the present invention provides a neutron beam detecting element having a boron film containing concentrated isotope 10 B deposited on an n-type semiconductor substrate and having a p-type doping layer under the film. In, the thickness of the boron coating is thinner than the range of α rays in the boron coating.

〔作用〕[Action]

ほう素被膜中のα線の飛程は約4.4μm、7Li核の飛程は
約1.4μmと極めて短いので、ほう素被膜は厚過ぎる
と、ほう素被膜の表面近傍で生じたα線と7Li核は単に
ほう素被膜中に吸収され空乏層に達しない。そこでほう
素被膜の厚さを7Li核の場合より長いα線のほう素被膜
の飛程より薄くすれば、少なくとも空乏層側に飛ぶα線
のほとんどすべてが電子−正孔対の生成に寄与し、中性
子線感度が向上する。
The range of α-rays in the boron coating is about 4.4 μm, and the range of 7 Li nuclei is about 1.4 μm, which is extremely short. Therefore, if the boron coating is too thick, the α-rays generated near the surface of the boron coating 7 Li nuclei are simply absorbed in the boron coating and do not reach the depletion layer. Therefore, if the thickness of the boron coating is made thinner than the range of the boron coating for α rays longer than that for 7 Li nuclei, at least almost all of the α rays that fly to the depletion layer side contribute to the generation of electron-hole pairs. The neutron sensitivity is improved.

〔実施例〕〔Example〕

第1図は第2図に示したほう素被膜22,p+層23および空
乏層27の部分拡大図で、ほう素被膜22はd1,p+層23はd2
の厚さを有するものとする。一方、ほう素被膜中でのα
線2の飛程をl17Li核4の飛程をl2とする。
FIG. 1 is a partially enlarged view of the boron film 22, the p + layer 23 and the depletion layer 27 shown in FIG. 2, in which the boron film 22 is d 1 and the p + layer 23 is d 2.
Shall have a thickness of. On the other hand, α in the boron film
The range of line 2 is l 1 , and the range of 7 Li nucleus 4 is l 2 .

今、ほう素被膜22の表面近傍で熱中性子線10,11が10B5
と反応してα線3,7Li核4が発生した場合、d1>l1,d1
>l2とすると全てのα線3と7Li核4はその被膜22内に
吸収され、空乏層27に達しないので中性子感度に寄与し
ない。熱中性子線12が表面より深い位置で10B5と反応
した場合はα線31,32,7Li核41,42のうち32のように空乏
層27に向かうα線のみが空乏層に到達し中性子感度に寄
与する。また、熱中性子線13,14のように、ほう素被膜2
2と半導体基体21との界面近傍で10B5と反応した場合、
α線3や7Li核4は、43,44のようなほう素被膜側に行く
ものを除き、ほぼ1/2の確率で中性子感度に寄与する。
Now, near the surface of the boron film 22, thermal neutrons 10 and 11 are 10 B5.
When α-rays 3, 7 Li nuclei 4 are generated by reacting with α, d 1 > l 1 , d 1
When> l 2 , all α rays 3 and 7 Li nuclei 4 are absorbed in the coating film 22 and do not reach the depletion layer 27, so that they do not contribute to neutron sensitivity. When the thermal neutron beam 12 reacts with 10 B5 at a position deeper than the surface, only α-rays such as 32 out of α-rays 31, 32, 7 Li nuclei 41, 42 that reach the depletion layer 27 reach the depletion layer and the neutron Contributes to sensitivity. In addition, like thermal neutrons 13 and 14, boron film 2
When reacting with 10 B5 near the interface between 2 and the semiconductor substrate 21,
The α rays 3 and 7 Li nuclei 4 contribute to the neutron sensitivity with almost a half probability, except for those that go to the side of the boron coating such as 43 and 44.

上述の説明からわかるように、ほう素被膜22の厚みd1
α線や7Li核のほう素被膜のなかでの各々の飛程l1,l2
より厚い場合は、15〜19のような線量の熱中性子線がほ
う素被膜22中の10B5と反応しても、15〜17により生ず
るα線35,36,37のようにその被膜中に吸収されるものが
あり、中性子感度に寄与するものは、被膜22と半導体基
体21との界面近傍で10B5と反応した熱中性子線17〜19
に生ずるα線3と7Li核4に限られるため中性子感度は
低下する。
As can be seen from the above description, the thickness d 1 of the boron coating 22 is different for each range l 1 and l 2 in the α-ray or 7 Li nucleus boron coating.
If it is thicker, even if a dose of thermal neutrons such as 15 to 19 reacts with 10 B5 in the boron coating 22, it will enter into the coating like α rays 35,36,37 generated by 15 to 17. Some of them are absorbed and contribute to the neutron sensitivity are thermal neutron rays 17 to 19 that react with 10 B5 in the vicinity of the interface between the coating 22 and the semiconductor substrate 21.
The neutron sensitivity is reduced because it is limited to α-rays 3 and 7 Li nuclei 4 generated at.

これらの事実を以下に式を用いて説明する。These facts will be explained below using equations.

(1) d1≦l2の場合 厚みd1のほう素被膜に照射する中性子線の強度をI0(個
/cm2・s)とすると、その被膜中で発生するα線と7Li
核の空乏層に達する個数はそれぞれ であらわされる。ここでNはほう素被膜中の10Bの数,
σは10Bの散乱断面積である。
(1) In the case of d 1 ≦ l 2 Let the intensity of the neutron beam irradiating the boron coating of thickness d 1 be I 0 (pieces / cm 2 · s), α rays generated in the coating and 7 Li
The number of nuclei reaching the depletion layer is It is represented by. Where N is the number of 10 B in the boron coating,
σ is the scattering cross section of 10 B.

(2) l2≦d1≦l1の場合 ほう素被膜中で発生し空乏層に達するα線の個数は と変わらないが、7Li核の個数は になる。(2) When l 2 ≤ d 1 ≤ l 1 The number of α rays that are generated in the boron film and reach the depletion layer is However, the number of 7 Li nuclei is become.

(3) d1≧l1の場合 熱中性子線との反応によりほう素被膜中で発生し空乏層
に達するα線および7Li核の個数は、それぞれI0 およびI0 となる。
(3) When d 1 ≧ l 1 The numbers of α-rays and 7 Li nuclei generated in the boron film and reaching the depletion layer by the reaction with thermal neutrons are I 0 respectively. And I 0 Becomes

第3図の曲線61はl1=4.4μm,l2=1.4μmと仮定した
時、上記(1),(2),(3)の数値から計算した結
果を示すもので、横軸はほう素被膜の膜厚を示し、たて
軸は熱中性子線感度の相対比を示す。熱中性子線相対感
度はd1の増大と共に増すものの、その傾斜は上記
(1),(2),(3)の条件で変わる。曲線62は種々
の厚みのほう素被膜を形成した中性子線検出素子に、厚
み40mmのポリエチレン減速材を介して、中性子標準線源
252Cfを照射した時に得られた測定結果の相対比を示
す。曲線62が曲線62と一致しない理由は、発生したα線
7Li核はある確率で空乏層に達することおよびp+層23
の不感層のほかほう素被膜22の内部で生成したα線や7L
i核にはほう素被膜が不感層となり、これらの不感層を
通過したのち空乏層に達するため、最大出力パルス波高
が小さくなること、そのほかに混在するγ線成分を除去
するため、所定の大きさ以上の出力パルス波高のみを計
数することなどによる。
The curve 61 in FIG. 3 shows the result calculated from the numerical values of (1), (2), and (3) above, assuming that l 1 = 4.4 μm and l 2 = 1.4 μm. The film thickness of the elementary coating is shown, and the vertical axis shows the relative ratio of the thermal neutron sensitivity. The thermal neutron relative sensitivity increases with the increase of d 1 , but its slope changes depending on the above conditions (1), (2), and (3). The curve 62 is a neutron standard radiation source with a 40 mm-thick polyethylene moderator on the neutron beam detection element formed with various thickness boron films.
The relative ratio of the measurement results obtained when irradiating with 252 C f is shown. The reason why the curve 62 does not match the curve 62 is that the generated α rays and 7 Li nuclei reach the depletion layer with a certain probability and that the p + layer 23
In addition to the dead layer, α rays and 7 L generated inside the boron film 22
The boron film becomes an insensitive layer in the i-nucleus, and reaches the depletion layer after passing through these insensitive layers, so that the maximum output pulse wave height becomes small, and in addition, in order to remove the mixed γ-ray component, For example, by counting only the output pulse heights higher than this.

第3図より、10Bを含むほう素被膜の厚さd1と熱中性子
線感度の関係が明らかになり、最大熱中性子線感度はほ
う素被膜の厚さd1がほう素被膜中のα線の飛程l1より薄
いときに得られることが判明した。
From Fig. 3, the relationship between the thickness d 1 of the boron coating containing 10 B and the thermal neutron sensitivity becomes clear, and the maximum thermal neutron sensitivity is that the thickness d 1 of the boron coating is α in the boron coating. It was proved that it was obtained when the line range was less than l 1 .

〔発明の効果〕 本発明によれば、10Bを含むほう素被膜の厚さがほう素
被膜中のα線の飛程を越えると熱中性子線感度が低下す
る事実に基づき、ほう素被膜の厚さをα線の飛程より薄
くすることにより中性子感度の高い検出素子を得ること
ができる。したがって、従来のように不必要な厚い被膜
を形成することがないので製造工程が短縮され、コスト
ダウンが可能になった。また、本発明に基づくほう素被
膜の最適厚みは、もちろんガスを用いた中性子検出用比
例計数管の内壁に被覆する場合にも同様に適用できる。
本発明で得られた熱中性子線検出素子は、所定の形状の
パラフィンなど中性子線に対する減速材とを組合わせる
と軽量で小型の、従来は不可能であった個人用の高感度
中性子線被曝管理用線量計が容易に得られるようになっ
た。
[Effects of the Invention] According to the present invention, the thermal neutron sensitivity decreases when the thickness of the boron coating containing 10 B exceeds the range of α-rays in the boron coating. By making the thickness thinner than the range of α rays, it is possible to obtain a detection element having high neutron sensitivity. Therefore, unlike the conventional case, an unnecessary thick film is not formed, so that the manufacturing process is shortened and the cost can be reduced. Further, the optimum thickness of the boron coating according to the present invention can be similarly applied to the case of coating the inner wall of the proportional counter for neutron detection using gas.
The thermal neutron beam detection element obtained in the present invention is lightweight and small in size when combined with a moderator for neutron beams such as paraffin of a predetermined shape, and it has been impossible in the past to detect highly sensitive neutron beam for individuals. Dosimeters have become easier to obtain.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における熱中性子線と10Bと
の反応発生部位付近を概念的に示す断面図、第2図は本
発明の一実施例の検出素子の断面図、第3図はほう素被
膜厚さと熱中性子線感度との関係を示す線図である。 10〜19:熱中性子線、21:n形シリコン基板、22:ほう素被
膜、23:p+層、25,26:電極、27:空乏層、3:α線、4:7Li
核、5:10B。
FIG. 1 is a sectional view conceptually showing the vicinity of a reaction generation site between a thermal neutron beam and 10 B in one embodiment of the present invention, and FIG. 2 is a sectional view of a detection element in one embodiment of the present invention, The figure is a diagram showing the relationship between the boron coating thickness and the thermal neutron sensitivity. 10 to 19: thermal neutron beam, 21: n-type silicon substrate, 22: boron film, 23: p + layer, 25, 26: electrode, 27: depletion layer, 3: α ray, 4: 7 Li
Nuclear, 5: 10 B.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】n形半導体基体上に濃縮した同位元素10B
を含むほう素被膜が被着され、そのほう素被膜の下にp
形ドーピング層を有するものにおいて、ほう素被膜の厚
さがα線のほう素被膜中での飛程より薄いことを特徴と
する半導体中性子線検出素子。
1. An isotope 10 B enriched on an n-type semiconductor substrate.
A boron coating containing P is deposited, and p is placed under the boron coating.
A semiconductor neutron detecting element having a boron-doped layer, wherein the thickness of the boron coating is smaller than the range of α rays in the boron coating.
JP63176415A 1988-07-15 1988-07-15 Semiconductor neutron detector Expired - Lifetime JPH0736447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63176415A JPH0736447B2 (en) 1988-07-15 1988-07-15 Semiconductor neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63176415A JPH0736447B2 (en) 1988-07-15 1988-07-15 Semiconductor neutron detector

Publications (2)

Publication Number Publication Date
JPH0227776A JPH0227776A (en) 1990-01-30
JPH0736447B2 true JPH0736447B2 (en) 1995-04-19

Family

ID=16013290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63176415A Expired - Lifetime JPH0736447B2 (en) 1988-07-15 1988-07-15 Semiconductor neutron detector

Country Status (1)

Country Link
JP (1) JPH0736447B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556475A (en) * 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
US5501740A (en) * 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
DE19532415C2 (en) * 1995-09-01 1998-10-15 Forschungszentrum Juelich Gmbh Method for operating a neutron detector and neutron detector
US5726453A (en) * 1996-09-30 1998-03-10 Westinghouse Electric Corporation Radiation resistant solid state neutron detector
FR3030781B1 (en) * 2014-12-19 2016-12-16 Commissariat Energie Atomique METHOD FOR MAKING A NEUTRON DETECTOR AND NEUTRON SENSOR

Also Published As

Publication number Publication date
JPH0227776A (en) 1990-01-30

Similar Documents

Publication Publication Date Title
JP3140052B2 (en) Neutron detector
US6545281B1 (en) Pocked surface neutron detector
US6771730B1 (en) Boron-carbide solid state neutron detector and method of using the same
Chung et al. Performance of a HPGe-NaI (Tl) Compton suppression spectrometer in high-level radioenvironmental studies
JPH0736447B2 (en) Semiconductor neutron detector
Kim et al. Characteristics of fabricated neutron detectors based on a sic semiconductor
JP3358617B2 (en) Neutron dose rate meter
McGregor et al. Recent results from thin-film-coated semiconductor neutron detectors
McKenzie Development of the semiconductor radiation detector
Agosteo et al. Neutron spectrometry with a recoil radiator-silicon detector device
JPH053550B2 (en)
JPH0447993B2 (en)
JPH0473636B2 (en)
JPH07131052A (en) Semiconductor radiation detecting element, gamma-ray neutron beam detector and dosimeter
Borso Optimization of monolithic solid state array detectors for the position encoding of small angle X-ray scattering from synchrotron sources
JPS6111474B2 (en)
JPH069255B2 (en) Method for manufacturing semiconductor neutron detector
HD Rasolonjatovo et al. Development of a gamma ray monitor using a CdZnTe semiconductor detector
US11867853B2 (en) Neutron detector, personal dosemeter and neutron fluence monitor including this detector and neutron detection method
JPS6142433B2 (en)
Rasolonjatovo et al. Development of gamma-ray monitor using CdZnTe semiconductor detector
JPH053551B2 (en)
Jung et al. Fast-neutron personal real-time dosemeter for mixed neutron and gamma fields
JPH0513390B2 (en)
JPH0716024B2 (en) Method for manufacturing semiconductor radiation detecting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 14