JPH07159977A - Photomask inspecting device - Google Patents

Photomask inspecting device

Info

Publication number
JPH07159977A
JPH07159977A JP30144893A JP30144893A JPH07159977A JP H07159977 A JPH07159977 A JP H07159977A JP 30144893 A JP30144893 A JP 30144893A JP 30144893 A JP30144893 A JP 30144893A JP H07159977 A JPH07159977 A JP H07159977A
Authority
JP
Japan
Prior art keywords
light
optical system
photomask
inspection
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30144893A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ozaki
義治 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30144893A priority Critical patent/JPH07159977A/en
Priority to KR1019940020772A priority patent/KR0136213B1/en
Publication of JPH07159977A publication Critical patent/JPH07159977A/en
Priority to US08/654,595 priority patent/US5661560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form images with stressed patterns by installing an equiv. optical system in a position equiv. to an imaging optical system even when viewed from the imaging plane of a photomask and superposing both linearly polarized light beams on each other just before the imaging plane. CONSTITUTION:The parallel beams emitted from a light source 101 are polarized by linearly polarized beams by a polarizer 102 and are divided to two optical paths by a beam splitter 103. The one linearly polarized light passes an optical path adjusting device composed of 108 from a mirror 105, illuminates a photomask 109 and is passed through an objective lens 110, by which 113 is obtd. The other linearly polarized light advancing rectilinearly in the beam splitter 103 is bent in the optical path by the mirror 104 and the polarization direction is rotated 90 deg. by a half wave plate 112. Thereafter, the polarized light passes the optical system 115 and is superposed on the linearly polarized light past the photomask 109 by a mirror 114 and a translucent mirror 113. Further, the image stressing the pattern in particular is obtd. when the direction of the major axis of the elliptically polarized light formed by superposition and the direction of an analyzer 117 are aligned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リソグラフィ技術に用
いるホトマスク面内のパタン形状やパタン厚さ方向の構
造欠陥を、検出するホトマスクの検査装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask inspection apparatus for detecting a pattern shape in a photomask surface used in a lithography technique or a structural defect in a pattern thickness direction.

【0002】[0002]

【従来の技術】半導体集積回路等のパタンを微細化する
ため、リソグラフィ技術に用いる縮小投影露光装置の高
解像化が図られている。そのための一方法として、通常
用いられている方法である、ガラス基板に露光光を殆ん
どすべて吸収してしまう程度の厚さを有するクロム膜を
形成したのち、これをパタン化して用いるホトマスクに
代り、透過部を通過する光に位相差を与えるようにした
ホトマスクや、パタン部分にある程度の透過性と位相変
化とを与えるようにしたホトマスクを用いる技術が脚光
を浴びている。改良された前者のホトマスクを用いる技
術は位相シフト技術といわれ、月刊「日経マイクロデバ
イス」1990年7月号第103〜114頁および特開
昭58−173744号公報に開示されている。また、
改良された後者のホトマスクを用いる技術は、「電子、
イオン、ホトンのビームに関する第36回国際シンポジ
ウム(The 36th International Symposium on Electro
n,Ionand Photon Beams)のJ4論文や、特開平4−1
36854号公報および特開平4−162039号公報
に開示されている。
2. Description of the Related Art In order to miniaturize a pattern of a semiconductor integrated circuit or the like, a reduction projection exposure apparatus used in a lithography technique has been improved in resolution. As one method for this purpose, a commonly used method is to form a chromium film on a glass substrate having a thickness that absorbs almost all of the exposure light, and then pattern this into a photomask to be used. Instead, a technique using a photomask that gives a phase difference to the light passing through the transmitting portion or a photomask that gives the pattern portion a certain degree of transparency and phase change is in the spotlight. The improved former technique using a photomask is called a phase shift technique and is disclosed in the monthly publication "Nikkei Microdevice", July 1990, pp. 103-114 and JP-A-58-173744. Also,
The technique using the improved latter photomask is described in "Electronic,
The 36th International Symposium on Electron and Photon Beams
n, Ion and Photon Beams) J4 paper and Japanese Patent Laid-Open No. 4-1
It is disclosed in Japanese Patent No. 36854 and Japanese Patent Application Laid-Open No. 4-162039.

【0003】これらの改良されたホトマスクを用いる技
術は、ホトマスクの各部からの光の干渉の結果としての
像面における光強度分布を改善する技術であり、位相シ
フト技術を例に、通常のホトマスクを用いた場合と対比
させて説明する。
The technique using these improved photomasks is a technique for improving the light intensity distribution on the image plane as a result of the interference of light from each part of the photomask. For example, a phase shift technique is used as a standard photomask. The description will be made in comparison with the case where it is used.

【0004】図4(a)はライン/スペースパタンを通
常のホトマスクを用いて結像させる時の振幅分布を示す
図である。点線は個々のスペースからの透過光の振幅分
布を、実線は干渉した結果としての振幅分布を示してい
る。光強度分布は実線で示した振幅分布を自乗したもの
である。図4(b)は位相シフトホトマスクを用いた場
合を示す図で、上記図4(a)と同様に点線は個々のス
ペースからの透過光の振幅分布を示し、実線は干渉した
結果としての振幅分布を示している。光強度分布は実線
で示した振幅分布を自乗したものである。図4より明ら
かなように、通常のホトマスクでは隣り合う透過部から
の回折光が同位相で重ね合わされるため、遮光部の強度
は0にならない。一方、位相シフトホトマスクでは隣り
合う透過部からの回折光が逆位相で重ね合わされるた
め、遮光部の強度は0になる。この結果、位相シフトホ
トマスクでは像のコントラストが改善される。
FIG. 4A is a diagram showing an amplitude distribution when a line / space pattern is imaged by using a normal photomask. The dotted line shows the amplitude distribution of transmitted light from each space, and the solid line shows the amplitude distribution as a result of interference. The light intensity distribution is the square of the amplitude distribution shown by the solid line. FIG. 4B is a diagram showing a case where a phase shift photomask is used. As in the case of FIG. 4A, the dotted line shows the amplitude distribution of transmitted light from each space, and the solid line shows the amplitude as a result of interference. The distribution is shown. The light intensity distribution is the square of the amplitude distribution shown by the solid line. As is clear from FIG. 4, in the normal photomask, the diffracted light from the adjacent transmissive portions are superposed in the same phase, so the intensity of the light shielding portion does not become zero. On the other hand, in the phase shift photomask, the diffracted light from the adjacent transmissive portions are superposed in opposite phases, so that the intensity of the light shielding portion becomes zero. As a result, the image contrast is improved in the phase shift photomask.

【0005】ここで注意しなければならないのは、隣り
合う透過部からの光の位相がπよりずれればずれるほ
ど、また、位相シフト部材の吸収に起因する位相シフト
部材を透過した光の振幅低下が大きい程、コントラスト
改善効果が減少することである。さらに、位相をシフト
させるためのパタンが所望の位置に所望の形状で形成さ
れていないと、得られるべきコントラスト改善効果が得
られない。
It should be noted here that the more the phase of light from the adjacent transmitting portions deviates from π, the more the amplitude of light transmitted through the phase shift member due to absorption of the phase shift member. The larger the decrease is, the less the contrast improving effect is. Furthermore, unless the pattern for shifting the phase is formed in a desired position and in a desired shape, the desired contrast improving effect cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】上記記載により、改良
されたホトマスクでは各部の透過光の位相と透過率の制
御が極めて重要である。また、ホトマスクの各パタン
が、制御された位相と透過率とで所望の位置に所望の形
状で形成されていることが重要である。
According to the above description, in the improved photomask, it is extremely important to control the phase and transmittance of the transmitted light of each part. Further, it is important that each pattern of the photomask is formed in a desired shape at a desired position with a controlled phase and transmittance.

【0007】ここで、位相・振幅透過率・エネルギ透過
率はホトマスク製作に用いる各材料の屈折率と消衰係数
が正確に判れば、各材料の厚さを制御することによって
制御できる。しかしながら、各材料の屈折率と消衰係数
を正確に測定するのは困難な場合が多く、また、製作す
る上で各材料に不純物が混入して屈折率と消衰係数に誤
差を発生したり、さらに、各材料の厚さには製作公差が
必ず付随する。そのため、一度製作したホトマスクにつ
いて各部の位相・振幅透過率・エネルギ透過率を実測
し、その結果を製作プロセスにフィードバックする作業
を繰り返し、所望のホトマスクを実現することになる。
しかしながら、有効な位相・振幅透過率・エネルギ透過
率の実測手段がないという問題があった。また、ホトマ
スクの各パタンが制御された位相と透過率で所望の位置
に所望の形状で形成されていることを確認するために
は、着目する位相と透過率のパタンだけを像化するか、
あるいは着目する位相と透過率のパタンを強調して像化
することが必要であるが、その技術がないという問題が
あった。
Here, the phase / amplitude transmittance / energy transmittance can be controlled by controlling the thickness of each material if the refractive index and extinction coefficient of each material used for manufacturing the photomask are accurately known. However, it is often difficult to accurately measure the refractive index and extinction coefficient of each material, and in manufacturing, impurities are mixed into each material and errors occur in the refractive index and extinction coefficient. Moreover, there is always a manufacturing tolerance associated with the thickness of each material. Therefore, the phase, amplitude transmittance, and energy transmittance of each part of the manufactured photomask are actually measured, and the work of feeding back the results to the manufacturing process is repeated to realize a desired photomask.
However, there is a problem that there is no effective means for measuring the phase / amplitude transmittance / energy transmittance. Further, in order to confirm that each pattern of the photomask is formed in a desired shape at a desired position with a controlled phase and transmittance, only the phase and transmittance pattern of interest is imaged,
Alternatively, it is necessary to emphasize the pattern of the phase and the transmittance of interest to form an image, but there is a problem that there is no such technique.

【0008】本発明の目的は、位相・振幅透過率・エネ
ルギ透過率の簡便で正確な実測手段を得て、着目する位
相と透過率のパタンだけを像化するか、上記パタンを強
調して像化するホトマスクの検査装置を得ることであ
る。
An object of the present invention is to obtain a simple and accurate measuring means of phase, amplitude transmittance and energy transmittance and image only the phase and transmittance pattern of interest, or emphasize the pattern. To obtain an inspection device for the photomask to be imaged.

【0009】[0009]

【課題を解決するための手段】上記目的は、平行光の直
線偏光を発生する光源と、該光源からの直線偏光を偏光
方向が互いに直交する検査光と参照光とに分割する第1
の半透明鏡と、上記検査光が通過する検査光光学系と、
上記参照光が通過する参照光光学系と、上記検査光と上
記参照光とを合成する第2の半透明鏡と、光検出手段と
を有するホトマスク検査装置において、上記検査光光学
系は検査光により検査対象ホトマスクを照明する照明光
学系と、上記検査対象ホトマスクを透過した検査光を結
像させる結像光学系とを有し、上記参照光光学系は上記
結像光学系と光軸の一部を共有し、光軸上に上記結像光
学系の結像位置からみて上記結像光学系と等価な位置
に、上記結像光学系と等価な光学系を有し、上記光検出
手段は、上記結像光学系の結像位置に配置された光検出
器と、上記第2の半透明鏡と上記光検出器との間に配置
された検光子を有し、上記検査光光学系と上記参照光光
学系との光学的距離の差が、上記直線偏光の可干渉距離
より小さいことにより達成される。
The first object of the present invention is to divide a linearly polarized light of parallel light into a light source and an inspection light and a reference light whose polarization directions are orthogonal to each other.
Semi-transparent mirror, and the inspection light optical system through which the inspection light passes,
In a photomask inspection apparatus having a reference light optical system through which the reference light passes, a second semitransparent mirror that combines the inspection light and the reference light, and a photodetector, the inspection light optical system includes the inspection light. Has an illumination optical system for illuminating the inspection target photomask by means of an optical system, and an image forming optical system for forming an image of the inspection light transmitted through the inspection target photomask, and the reference light optical system is one of the optical axis and the optical axis. And an optical system equivalent to the image forming optical system at a position equivalent to the image forming optical system when viewed from the image forming position of the image forming optical system on the optical axis. A photodetector arranged at an image forming position of the image forming optical system and an analyzer arranged between the second semitransparent mirror and the photodetector, and the inspection light optical system. The difference in optical distance from the reference light optical system is smaller than the coherence length of the linearly polarized light. It is achieved.

【0010】また、上記光検出器が、入射光の強度を電
気信号の強弱に変換する素子を2次元に配列した装置で
あることにより、また、直線偏光が紫外光であって、上
記第1および第2の半透明鏡は表面に金属薄膜を形成し
た平行平面板であり、少なくとも光出射面側に反射防止
処理を施すことにより達成される。
Further, the photodetector is a device in which elements for converting the intensity of incident light into the intensity of an electric signal are arranged two-dimensionally, and the linearly polarized light is ultraviolet light, and The second semitransparent mirror is a plane-parallel plate having a metal thin film formed on the surface thereof, and is achieved by performing antireflection treatment on at least the light emitting surface side.

【0011】さらに、上記検査光光学系と参照光光学系
との光学的距離の差は、精密変位機構を有する光学距離
調整装置により調整することによって達成することがで
きる。
Further, the difference in optical distance between the inspection light optical system and the reference light optical system can be achieved by adjusting with an optical distance adjusting device having a precision displacement mechanism.

【0012】[0012]

【作用】本発明は上記のように、2分した光を異なる光
路に通過させ、進行方向に対し垂直な平面内で互いに直
交する偏光方向の直線偏光とし、一方の直線偏光中に検
査対象であるホトマスクとホトマスクを結像させる結像
光学系を設置し、他の直線偏光中には、上記ホトマスク
の結像面からみて結像光学系と等価な位置に、等価な光
学系を設置し、しかも両直線偏光は結像面の直前で重ね
合わす構成になっているため、上記重ね合わせた光は一
般に楕円偏光になる。ホトマスクの着目する個所におけ
る上記楕円偏光の偏光状態の測定から、ホトマスクの着
目する個所の振幅透過率またはエネルギ透過率、またホ
トマスク各部を光が通過することによる位相変化量が求
められる。また、結像面と2つの直線偏光が重ね合わさ
れる場所との間に検光子を設置し、着目するパタンを通
過した直線偏光がもう1つの直線偏光と重ね合わされて
生じる楕円偏光の長軸の方向と検光子の方向とを一致さ
せておけば、上記着目するパタンが強調された像が得ら
れる。あるいは着目する2種類のパタンのうち、1種類
のパタンを通過した直線偏光がもう一方の直線偏光と重
ね合わせて直線偏光になるように、2つの直線偏光間の
光路差を調節し、重ね合わせて生じた直線偏光の方向と
検光子の方向とを一致させれば、着目するもう一方の種
類のパタンだけの像を得ることができる。
As described above, according to the present invention, the bisected light is passed through different optical paths to be linearly polarized light having polarization directions orthogonal to each other in a plane perpendicular to the traveling direction. An imaging optical system for imaging a photomask and a photomask is installed, and in other linearly polarized light, an equivalent optical system is installed at a position equivalent to the imaging optical system when viewed from the imaging plane of the photomask, Moreover, since both linearly polarized lights are superposed immediately before the image plane, the superposed lights are generally elliptically polarized lights. From the measurement of the polarization state of the elliptically polarized light at the point of interest of the photomask, the amplitude transmittance or energy transmittance of the point of interest of the photomask and the amount of phase change due to light passing through each part of the photomask can be obtained. In addition, an analyzer is installed between the image plane and a place where two linearly polarized light beams are superposed, and the linearly polarized light beam that has passed through the pattern of interest is superposed on another linearly polarized light beam. If the direction and the direction of the analyzer are matched, an image in which the pattern of interest is emphasized can be obtained. Alternatively, of the two types of patterns of interest, the optical path difference between the two linearly polarized lights is adjusted so that the linearly polarized light that has passed through one type of pattern is combined with the other linearly polarized light to become linearly polarized light. By matching the direction of the linearly polarized light generated as a result and the direction of the analyzer, it is possible to obtain an image of only the other type of pattern of interest.

【0013】[0013]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明によるホトマスク検査装置の第1実施
例を示す図、図2はδとaxの算出方法を示す図、図3
は本発明によるホトマスク検査装置の第2実施例を示す
図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of a photomask inspection apparatus according to the present invention, FIG. 2 is a diagram showing a method of calculating δ and a x , and FIG.
FIG. 3 is a diagram showing a second embodiment of the photomask inspection device according to the present invention.

【0014】第1実施例 本発明の第1実施例を示す図1において、101は光
源、102は偏光子、103はビームスプリッタ、10
4〜108はミラー、109は検査対象であるホトマス
ク、110は対物レンズ、111は上記ホトマスク10
9の像である。112は半波長板、113は半透明鏡、
114はミラー、115は上記像111からみて対物レ
ンズ110と等価な位置で等価な構成の光学系、116
は上記像111からみてホトマスクと等価な位置になる
仮想面である。また、117は検光子である。光源10
1は検査で必要とする波長の光を平行光で供給するもの
であればよい。例えば、KrFエキシマレーザ光の波長
で検査するならKrFエキシマレーザを用いればよく、
365nmの波長で検査するなら365nmで発振する
レーザでも、水銀ランプと単色化装置およびコリメータ
を組み合わせたものでもよい。上記光源101から出た
平行光は偏光子102で直線偏光になり、ビームスプリ
ッタ103で2つの光路に分けられる。一方の直線偏光
はミラー105から108で構成された光路調整装置を
通過し、ホトマスク109を照明し対物レンズ110を
経て像111になる。上記ビームスプリッタ103を直
進した他方の直線偏光は、ミラー104で光路を曲げら
れ半波長板112で偏光方向を90度回転させられる。
その後、光学系115を通過し、ミラー114と半透明
鏡113とでホトマスク109を通過した上記直線偏光
と重ね合わされる。説明の便宜上、上記ホトマスクを照
明する直線偏光を検査直線偏光118とし、他方の直線
偏光を参照直線偏光119とする。
First Embodiment In FIG. 1 showing a first embodiment of the present invention, 101 is a light source, 102 is a polarizer, 103 is a beam splitter, and 10
4 to 108 are mirrors, 109 is a photomask to be inspected, 110 is an objective lens, and 111 is the photomask 10 described above.
It is the image of 9. 112 is a half-wave plate, 113 is a semi-transparent mirror,
Reference numeral 114 denotes a mirror, 115 denotes an optical system having a configuration equivalent to that of the objective lens 110 when viewed from the image 111, and 116.
Is an imaginary plane that is at a position equivalent to a photomask when viewed from the image 111. Further, 117 is an analyzer. Light source 10
The reference numeral 1 may be one that supplies light of a wavelength required for inspection as parallel light. For example, when inspecting at the wavelength of KrF excimer laser light, a KrF excimer laser may be used,
When inspecting at a wavelength of 365 nm, a laser that oscillates at 365 nm or a combination of a mercury lamp, a monochromator and a collimator may be used. The parallel light emitted from the light source 101 is linearly polarized by the polarizer 102 and split into two optical paths by the beam splitter 103. One of the linearly polarized lights passes through an optical path adjusting device composed of mirrors 105 to 108, illuminates a photomask 109, passes through an objective lens 110, and becomes an image 111. The other linearly polarized light that has passed straight through the beam splitter 103 has its optical path bent by the mirror 104 and has its polarization direction rotated 90 degrees by the half-wave plate 112.
After that, the linearly polarized light that has passed through the optical system 115 and the photomask 109 is superposed by the mirror 114 and the semitransparent mirror 113. For convenience of explanation, the linearly polarized light that illuminates the photomask will be referred to as inspection linearly polarized light 118, and the other linearly polarized light will be referred to as reference linearly polarized light 119.

【0015】上記検査直線偏光118と参照直線偏光1
19をそれぞれx、yとすると、上記検査直線偏光11
8は半透明鏡113での位相遅れをδxとすると
The above inspection linearly polarized light 118 and the reference linearly polarized light 1
If x and y are 19 respectively, the above-mentioned inspection linearly polarized light 11
8 is the phase delay at the semitransparent mirror 113 is δ x

【0016】[0016]

【数1】 [Equation 1]

【0017】と表わされ、参照直線偏光119は上記半
透明鏡113での位相遅れをδyとすると
The reference linearly polarized light 119 is expressed as follows, where δ y is the phase delay at the semitransparent mirror 113.

【0018】[0018]

【数2】 [Equation 2]

【0019】と表される。重ねあわせた光はIs expressed as The combined light

【0020】[0020]

【数3】 [Equation 3]

【0021】となる。ここで、Ex、Eyはある場所にお
けるx方向、y方向の直線偏光光強度の時間変化関数を
それぞれ示し、ax、ayは上記Ex、Eyの振幅、ωtは
tなる時間における検査光の角振動数を示し、δはx方
向およびy方向における直線偏光の初期位相である
δx、δyの差であって、
[0021] Here, E x and E y are the time-varying functions of the linearly polarized light intensity in the x direction and the y direction at a certain location, respectively, a x and a y are the amplitudes of the above E x and E y , and ωt is the time t And δ is the difference between δ x and δ y , which are the initial phases of linearly polarized light in the x and y directions,

【0022】[0022]

【数4】 [Equation 4]

【0023】と定義している。いま、ビームスプリッタ
103を起点に考え、上記検査直線偏光118のホトマ
スク109での位相遅れをδx1、ホトマスクの検査対象
個所を通過することによる位相遅れをδx2、ホトマスク
を通過後像面111までの光路の位相遅れをδx3とす
る。また、参照直線偏光119の仮想面116での位相
遅れをδy1、仮想面116から像面111までの光路の
位相遅れをδy3とすると、上記(4)式は
It is defined as Now, considering the beam splitter 103 as a starting point, the phase delay of the inspection linearly polarized light 118 in the photomask 109 is δ x1 , the phase delay due to passing through the inspection target portion of the photomask is δ x2 , and after passing through the photomask, up to the image plane 111. The phase delay of the optical path of is set to δ x3 . Further, if the phase delay of the reference linearly polarized light 119 in the virtual plane 116 is δ y1 and the phase delay of the optical path from the virtual plane 116 to the image plane 111 is δ y3 , then the above equation (4) becomes

【0024】[0024]

【数5】 [Equation 5]

【0025】となる。ここで、δx3はホトマスク上での
位置の関数になるが、ホトマスクのある1点から出る回
折光に関しては一定であり、仮想面116の対応する1
点を通過する参照直線偏光のδy3と一致する。したがっ
て上記(5)式は
[0025] Here, δ x3 is a function of the position on the photomask, but is constant with respect to the diffracted light emitted from one point on the photomask and corresponds to 1 on the virtual surface 116.
It coincides with δ y3 of the reference linearly polarized light passing through the point. Therefore, the above equation (5) is

【0026】[0026]

【数6】 [Equation 6]

【0027】と表される。本実施例では、像面111に
2次元CCDカメラを設置しておいたので、検光子11
7を回転しながら着目するホトマスクの1点の像を受光
するCCD素子の出力強度をモニタし、アプライド・オ
プチクス(Applied Optics)の第1巻第3号(1962
年)の第201頁に記載されている方法で、(6)式の
δと(1)式のaxとを求めた。すなわち、図2に示す
ように光軸に垂直に設置した検光子を、光軸の回りで1
/n回転×n回=1回転させ(nは整数)、それぞれの
検光子の傾きにおける光強度検出器の出力を読む。上記
検光子の1回目の回転(i=1,2,3,……,n)時
における検光子の方向が光軸に垂直な面内に想定した基
準となる方向に対し(360°/n)×i=αi(nは
正の整数)の時の出力をIiとし、
It is expressed as follows. In this embodiment, since the two-dimensional CCD camera is installed on the image plane 111, the analyzer 11
The output intensity of the CCD element that receives the image of one point of the photomask of interest while rotating 7 is monitored, and the volume of Applied Optics, Vol. 1, No. 3 (1962) is monitored.
Year), page 201, and δ in equation (6) and a x in equation (1) were determined. That is, as shown in FIG. 2, an analyzer installed perpendicularly to the optical axis is used to
/ N rotation × n times = 1 rotation (n is an integer), and the output of the light intensity detector at each inclination of the analyzer is read. The direction of the analyzer at the first rotation (i = 1, 2, 3, ..., N) of the analyzer is (360 ° / n) with respect to the reference direction assumed in the plane perpendicular to the optical axis. ) × i = α i (n is a positive integer), the output is I i ,

【0028】[0028]

【数7】 [Equation 7]

【0029】でk0、k1、k2をそれぞれ求めると、δ
とax
When k 0 , k 1 and k 2 are respectively calculated by
And a x

【0030】[0030]

【数8】 [Equation 8]

【0031】で表される。つぎに、ホトマスクを取り除
き同様の手続を経てδとaxとを求めた。(6)式より
明らかなように、両δの差がホトマスクの検査対象個所
を通過することによる位相遅れであり、両axの比が振
幅透過率であり、さらに二乗すればエネルギ透過率にな
る。
It is represented by Next, the photomask was removed and the same procedure was followed to obtain δ and a x . As is clear from the equation (6), the difference between both δ is the phase delay due to passing through the inspection target portion of the photomask, the ratio of both a x is the amplitude transmittance, and if it is further squared, it becomes the energy transmittance. Become.

【0032】また、(3)式と(6)式より明らかなよ
うに、パタンの光学的性質に応じて楕円偏光の偏光状態
が決定されるから、特定のパタン、例えば位相シフトだ
けを与える役目をするパタンの像部分に生じている楕円
偏光の長軸の方向と、検光子117の方向とを一致させ
ると、特定のパタンを強調した像が得られる。
Further, as is apparent from the equations (3) and (6), the polarization state of the elliptically polarized light is determined according to the optical properties of the pattern, so that only a specific pattern, for example, the phase shift is given. When the direction of the major axis of the elliptically polarized light generated in the image portion of the pattern that has the pattern of ∘ is matched with the direction of the analyzer 117, an image in which a specific pattern is emphasized is obtained.

【0033】あるいは特定のパタン、例えば位相シフト
だけを与える役目をするパタンに対して、ミラー105
から108により構成された光路調整装置を、特に図示
していないピエゾ素子を用いた精密変位機構で駆動し、
(6)式のδx1を調整し、δをnπ(nは整数)とする
と、特定パタンの像部分が重ね合わされて生じた偏光は
直線偏光になる。したがって、上記重ね合わされて生じ
た直線偏光の方向と検光子117の方向とを一致させる
と、より強調された特定パタンの像が得られる。
Alternatively, for a specific pattern, for example, a pattern that serves only to provide a phase shift, the mirror 105
To drive the optical path adjusting device constituted by Nos. 108 to 108 by a precision displacement mechanism using a piezo element (not shown),
When δ x1 in the equation (6) is adjusted and δ is set to nπ (n is an integer), the polarized light generated by superimposing the image portions of the specific pattern is linearly polarized light. Therefore, when the direction of the linearly polarized light generated by the superposition and the direction of the analyzer 117 are matched, a more emphasized image of the specific pattern is obtained.

【0034】検査対象ホトマスク109が図4(b)に
例示したような、基板部分に対して位相を遅らせる物体
いわゆるシフターと、遮光体と、基板露出部分とからな
る場合は、基板部分に対して(6)式のδx1を調整し、
δをnπ(nは整数)とすれば、基板部分の像の偏光は
直線偏光になる。したがって、検光子117の方向を上
記直線偏光の方向と直交する方向に設定すると、位相を
基板部分に対して遅らせる物体だけの像が得られる。
When the photomask 109 to be inspected is made up of an object for delaying the phase with respect to the substrate portion, a so-called shifter, a light shield, and an exposed portion of the substrate, as shown in FIG. Adjust δ x1 in equation (6),
If δ is nπ (n is an integer), the polarized light of the image on the substrate becomes linearly polarized light. Therefore, when the direction of the analyzer 117 is set to the direction orthogonal to the direction of the linearly polarized light, an image of only the object whose phase is delayed with respect to the substrate portion can be obtained.

【0035】第2実施例 本発明の第2実施例を示す図3において、201は光
源、202は偏光子、203はビームスプリッタ、20
4はミラー、205は検査対象であるホトマスク、20
6は対物レンズ、207はホトマスク205の像であ
る。また、208は半波長板、209は半透明鏡、21
0はミラー、211は上記像207からみて対物レンズ
206と等価な位置で等価な構成の光学系、212は上
記像207からみてホトマスク205と等価な位置にな
る仮想面である。また、213は検光子である。上記光
源201は検査で必要とする波長の光を平行光として供
給するものであればよい。例えば、KrFエキシマレー
ザ光の波長で検査するのならば、KrFエキシマレーザ
を用いればよく、365nmの波長の光で検査するのな
ら365nmで発振するレーザでも水銀ランプと単色化
装置およびコリメータを組み合わせたものでもよい。上
記光源201から出た平行光は偏光子202で直線偏光
になり、ビームスプリッタ203で2つの光路に分けら
れる。一方の直線偏光はホトマスク205を照明し、対
物レンズ206により像207を形成する。上記ビーム
スプリッタ203を直進した他方の直線偏光は、半波長
板208で偏光方向を90度回転される。その後、光学
系211を通過し、ミラー210と半透明鏡209とで
ホトマスク205を通過した直線偏光と重ね合わされ
る。本実施例では像207の位置に、2次元CCDカメ
ラを設置して像観察手段とした。本実施例の動作原理は
上記第1実施例と同じであるが、特定のパタンに対する
像の部分の重ね合わせた偏光を直線偏光にすることは一
般にできない。しかし、本実施例は第1実施例における
光路調整装置を省くように工夫したものであって、ホト
マスク205を通過することによる位相変化分を別にす
れば、2つの光路を通過する互いに直交する振動方向の
直線偏光間に光路差がない。したがって、光源201か
らの光の可干渉距離に対する制約が極めて緩い。
Second Embodiment In FIG. 3 showing a second embodiment of the present invention, 201 is a light source, 202 is a polarizer, 203 is a beam splitter, and 20.
4 is a mirror, 205 is a photomask to be inspected, 20
6 is an objective lens, and 207 is an image of the photomask 205. Further, 208 is a half-wave plate, 209 is a semi-transparent mirror, 21
Reference numeral 0 is a mirror, 211 is an optical system having a configuration equivalent to that of the objective lens 206 when viewed from the image 207, and 212 is a virtual surface which is equivalent to the photomask 205 when viewed from the image 207. 213 is an analyzer. The light source 201 may be any light source that supplies light of a wavelength required for inspection as parallel light. For example, when inspecting at the wavelength of KrF excimer laser light, a KrF excimer laser may be used, and when inspecting at light of a wavelength of 365 nm, even a laser oscillating at 365 nm is a combination of a mercury lamp, a monochromator and a collimator. It may be one. The parallel light emitted from the light source 201 is linearly polarized by the polarizer 202 and split into two optical paths by the beam splitter 203. One linearly polarized light illuminates the photomask 205, and an image 207 is formed by the objective lens 206. The other linearly polarized light that has passed straight through the beam splitter 203 has its polarization direction rotated 90 degrees by the half-wave plate 208. After that, the linearly polarized light that has passed through the optical system 211 and the mirror 210 and the semitransparent mirror 209 that has passed through the photomask 205 is superimposed. In this embodiment, a two-dimensional CCD camera is installed at the position of the image 207 to serve as an image observing means. The operating principle of this embodiment is the same as that of the first embodiment, but it is generally impossible to make the polarized light obtained by superimposing the image portions for a specific pattern into linear polarized light. However, this embodiment is devised so that the optical path adjusting device in the first embodiment is omitted. Except for the phase change caused by passing through the photomask 205, vibrations orthogonal to each other passing through the two optical paths are provided. There is no optical path difference between the linearly polarized light in the direction. Therefore, the restriction on the coherence length of the light from the light source 201 is extremely loose.

【0036】上記各実施例において、検査に用いる光の
波長が可視域より紫外側である場合は、103と203
のビームスプリッタと113と209の半透明鏡のそれ
ぞれに、クロムやアルミニウム等の金属の薄膜を蒸着し
た平行平面板からなり、かつ、少なくとも出射面側に反
射防止の処理を施したものを用いた。直線偏光が通過す
る光学素子には直線偏光の波長に応じた色収差補正を行
った。
In each of the above embodiments, 103 and 203 are used when the wavelength of the light used for inspection is outside the visible range in the ultraviolet.
Each of the beam splitter and the semi-transparent mirrors 113 and 209 is composed of a plane parallel plate on which a thin film of a metal such as chrome or aluminum is vapor-deposited, and at least the emission surface side is subjected to antireflection treatment. . The optical element through which the linearly polarized light passes was corrected for chromatic aberration according to the wavelength of the linearly polarized light.

【0037】[0037]

【発明の効果】上記のように本発明によるホトマスク検
査装置は、平行光の直線偏光を発生する光源と、該光源
からの直線偏光を偏光方向が互いに直交する検査光と参
照光とに分割する第1の半透明鏡と、上記検査光が通過
する検査光光学系と、上記参照光が通過する参照光光学
系と、上記検査光と上記参照光とを合成する第2の半透
明鏡と、光検出手段とを有するホトマスク検査装置にお
いて、上記検査光光学系は検査光により検査対象ホトマ
スクを照明する照明光学系と、上記検査対象ホトマスク
を透過した検査光を結像させる結像光学系とを有し、上
記参照光光学系は上記結像光学系と光軸の一部を共有
し、光軸上に上記結像光学系の結像位置からみて上記結
像光学系と等価な位置に、上記結像光学系と等価な光学
系を有し、上記光検出手段は、上記結像光学系の結像位
置に配置された光検出器と、上記第2の半透明鏡と上記
光検出器との間に配置された検光子を有し、上記検査光
光学系と上記参照光光学系との光学的距離の差が、上記
直線偏光の可干渉距離より小さいことにより、上記ホト
マスク各部の透過率と位相変化量が簡便かつ正確に求め
られる。また、特定のパタンだけを像化したり、特定の
パタンを強調した像にすることができるため、特定のパ
タンの形状検査も可能である。本発明は上記ホトマスク
だけでなく、取り扱う波長の光に対して透過性がある物
体全般に適用することができる。さらに物体の厚さが既
知であれば、得られた振幅透過率と位相変化量から、屈
折率や吸収係数あるいは消衰係数を求めることができ
る。
As described above, the photomask inspection apparatus according to the present invention splits the linearly polarized light of the parallel light into the light source and the inspection light and the reference light whose polarization directions are orthogonal to each other. A first semi-transparent mirror, an inspection light optical system through which the inspection light passes, a reference light optical system through which the reference light passes, and a second semi-transparent mirror that combines the inspection light and the reference light. In the photomask inspection device having a light detection means, the inspection light optical system includes an illumination optical system for illuminating the inspection target photomask with the inspection light, and an imaging optical system for forming an image of the inspection light transmitted through the inspection target photomask. The reference light optical system shares a part of the optical axis with the imaging optical system, and is located on the optical axis at a position equivalent to the imaging optical system when viewed from the imaging position of the imaging optical system. , An optical system equivalent to the above-mentioned imaging optical system, The means includes a photodetector arranged at an image forming position of the image forming optical system, and an analyzer arranged between the second semitransparent mirror and the photodetector. Since the difference in optical distance between the system and the reference light optical system is smaller than the coherence length of the linearly polarized light, the transmittance and the amount of phase change of each part of the photomask can be simply and accurately obtained. Further, since only a specific pattern can be imaged or an image in which a specific pattern is emphasized can be formed, it is possible to inspect the shape of the specific pattern. INDUSTRIAL APPLICABILITY The present invention can be applied not only to the above photomask but also to all objects that are transparent to the light of the wavelength to be handled. Furthermore, if the thickness of the object is known, the refractive index, the absorption coefficient, or the extinction coefficient can be obtained from the obtained amplitude transmittance and the amount of phase change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるホトマスク検査装置の第1実施例
を示す図である。
FIG. 1 is a diagram showing a first embodiment of a photomask inspection apparatus according to the present invention.

【図2】上記実施例におけるδとaxの算出方法を示す
図である。
FIG. 2 is a diagram showing a method of calculating δ and a x in the above embodiment.

【図3】本発明によるホトマスク検査装置の第2実施例
を示す図である。
FIG. 3 is a diagram showing a second embodiment of the photomask inspection device according to the present invention.

【図4】ホトマスク使用時の振幅強度分布と光強度分布
を示す図で、(a)は従来の通常ホトマスクを用いた場
合、(b)は位相シフトホトマスクを用いた場合をそれ
ぞれ示す図である。
4A and 4B are diagrams showing an amplitude intensity distribution and a light intensity distribution when a photomask is used. FIG. 4A is a diagram showing a case where a conventional normal photomask is used, and FIG. 4B is a diagram showing a case where a phase shift photomask is used. .

【符号の説明】[Explanation of symbols]

101、201 光源 103、203 第1半透鏡 109、205 検査対象ホトマスク 110、206 対物レンズ 111、207 結像 113、209 第2半透鏡 117、213 検光子 101, 201 Light source 103, 203 First semi-transparent mirror 109, 205 Photomask for inspection 110, 206 Objective lens 111, 207 Imaging 113, 209 Second semi-transparent mirror 117, 213 Analyzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平行光の直線偏光を発生する光源と、該光
源からの直線偏光を偏光方向が互いに直交する検査光と
参照光とに分割する第1の半透明鏡と、上記検査光が通
過する検査光光学系と、上記参照光が通過する参照光光
学系と、上記検査光と上記参照光とを合成する第2の半
透明鏡と、光検出手段とを有するホトマスク検査装置に
おいて、上記検査光光学系は検査光により検査対象ホト
マスクを照明する照明光学系と、上記検査対象ホトマス
クを透過した検査光を結像させる結像光学系とを有し、
上記参照光光学系は上記結像光学系と光軸の一部を共有
し、光軸上に上記結像光学系の結像位置からみて上記結
像光学系と等価な位置に、上記結像光学系と等価な光学
系を有し、上記光検出手段は、上記結像光学系の結像位
置に配置された光検出器と、上記第2の半透明鏡と上記
光検出器との間に配置された検光子を有し、上記検査光
光学系と上記参照光光学系との光学的距離の差が、上記
直線偏光の可干渉距離より小さいことを特徴とするホト
マスク検査装置。
1. A light source which generates linearly polarized light of parallel light, a first semi-transparent mirror which splits the linearly polarized light from the light source into inspection light and reference light whose polarization directions are orthogonal to each other, and the inspection light In a photomask inspection device having an inspection light optical system that passes through, a reference light optical system through which the reference light passes, a second semi-transparent mirror that combines the inspection light and the reference light, and a light detection means, The inspection light optical system has an illumination optical system that illuminates the inspection target photomask with the inspection light, and an imaging optical system that forms an image of the inspection light that has passed through the inspection target photomask,
The reference light optical system shares a part of the optical axis with the image forming optical system, and forms an image on the optical axis at a position equivalent to the image forming optical system when viewed from the image forming position of the image forming optical system. An optical system equivalent to an optical system, wherein the photodetection means is provided between the photodetector arranged at the image forming position of the image forming optical system, the second semitransparent mirror and the photodetector. A photomask inspection apparatus, characterized in that the optical distance difference between the inspection light optical system and the reference light optical system is smaller than the coherence length of the linearly polarized light.
【請求項2】上記光検出器は、入射する光の強度を電気
信号の強弱に変換する素子を、2次元に配列した装置で
あることを特徴とする請求項1記載のホトマスク検査装
置。
2. The photomask inspection device according to claim 1, wherein the photodetector is a device in which elements for converting the intensity of incident light into the intensity of an electric signal are arranged two-dimensionally.
【請求項3】上記直線偏光は、紫外光であって、上記第
1および第2の半透明鏡は表面に金属薄膜を形成した平
行平面板であり、少なくとも光出射面側に反射防止処理
を施していることを特徴とする請求項1記載のホトマス
ク検査装置。
3. The linearly polarized light is ultraviolet light, and the first and second semitransparent mirrors are parallel plane plates having a metal thin film formed on the surface thereof, and at least a light emitting surface side is subjected to antireflection treatment. The photomask inspection device according to claim 1, wherein the photomask inspection device is provided.
【請求項4】上記検査光光学系と参照光光学系との光学
的距離の差は、精密変位機構を有する光学距離調整装置
により調整することを特徴とする請求項1記載のホトマ
スク検査装置。
4. A photomask inspection apparatus according to claim 1, wherein a difference in optical distance between the inspection light optical system and the reference light optical system is adjusted by an optical distance adjusting device having a precision displacement mechanism.
JP30144893A 1993-08-23 1993-12-01 Photomask inspecting device Pending JPH07159977A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30144893A JPH07159977A (en) 1993-12-01 1993-12-01 Photomask inspecting device
KR1019940020772A KR0136213B1 (en) 1993-08-23 1994-08-23 Photomask inspecting method and apparatus
US08/654,595 US5661560A (en) 1993-08-23 1996-05-29 Elliptical light measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30144893A JPH07159977A (en) 1993-12-01 1993-12-01 Photomask inspecting device

Publications (1)

Publication Number Publication Date
JPH07159977A true JPH07159977A (en) 1995-06-23

Family

ID=17897019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30144893A Pending JPH07159977A (en) 1993-08-23 1993-12-01 Photomask inspecting device

Country Status (1)

Country Link
JP (1) JPH07159977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456436B1 (en) * 2000-05-18 2004-11-10 캐논 가부시끼가이샤 Illumination system
CN108713127A (en) * 2016-05-26 2018-10-26 Ckd株式会社 Three-dimensional measuring apparatus
CN112033279A (en) * 2020-07-24 2020-12-04 长沙麓邦光电科技有限公司 White light interference system
CN114062384A (en) * 2021-10-27 2022-02-18 复旦大学 Method and device for detecting mask plate defects

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456436B1 (en) * 2000-05-18 2004-11-10 캐논 가부시끼가이샤 Illumination system
CN108713127A (en) * 2016-05-26 2018-10-26 Ckd株式会社 Three-dimensional measuring apparatus
CN108713127B (en) * 2016-05-26 2021-06-29 Ckd株式会社 Three-dimensional measuring device
CN112033279A (en) * 2020-07-24 2020-12-04 长沙麓邦光电科技有限公司 White light interference system
CN112033279B (en) * 2020-07-24 2021-12-10 长沙麓邦光电科技有限公司 White light interference system
CN114062384A (en) * 2021-10-27 2022-02-18 复旦大学 Method and device for detecting mask plate defects

Similar Documents

Publication Publication Date Title
CA2039257C (en) Measuring method and apparatus
US5576829A (en) Method and apparatus for inspecting a phase-shifted mask
JP4668953B2 (en) Lithographic apparatus and device manufacturing method
KR100920864B1 (en) Exposure apparatus and device manufacturing method
KR101032180B1 (en) Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
US5625453A (en) System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating
JP2008244448A (en) Inspection method and apparatus, lithographic apparatus, and lithographic cell
US5426503A (en) Method of testing a phase shift mask and a testing apparatus used therein in the ultraviolet wavelength range
US6982796B2 (en) Wavefront splitting element for EUV light and phase measuring apparatus using the same
US5548401A (en) Photomask inspecting method and apparatus
JP3581689B2 (en) Phase measurement device
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
US5661560A (en) Elliptical light measuring method
JP3336358B2 (en) Photomask inspection apparatus and method, and phase change amount measurement apparatus
JP3047446B2 (en) Inspection method and inspection apparatus for phase shift mask
JP2677217B2 (en) Inspection apparatus and inspection method for phase shift mask
JPH07159977A (en) Photomask inspecting device
JP3382389B2 (en) Position shift detecting method and position shift detecting apparatus using the same
JPH02272305A (en) Aligning device for exposing device
JP2000146525A (en) Light wave interference measuring instrument and projection aligner using same instrument
KR0136213B1 (en) Photomask inspecting method and apparatus
JP3047459B2 (en) Photomask inspection apparatus and photomask inspection method
JP3006260B2 (en) Photomask inspection method and apparatus
JPH0894444A (en) Apparatus and method for measurement of phase difference
JPH06174550A (en) Method and apparatus for optical measurement