JP3382389B2 - Position shift detecting method and position shift detecting apparatus using the same - Google Patents

Position shift detecting method and position shift detecting apparatus using the same

Info

Publication number
JP3382389B2
JP3382389B2 JP27710494A JP27710494A JP3382389B2 JP 3382389 B2 JP3382389 B2 JP 3382389B2 JP 27710494 A JP27710494 A JP 27710494A JP 27710494 A JP27710494 A JP 27710494A JP 3382389 B2 JP3382389 B2 JP 3382389B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
phase difference
beat signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27710494A
Other languages
Japanese (ja)
Other versions
JPH07174517A (en
Inventor
隆宏 松本
謙治 斉藤
孝一 千徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27710494A priority Critical patent/JP3382389B2/en
Priority to US08/328,884 priority patent/US5625453A/en
Publication of JPH07174517A publication Critical patent/JPH07174517A/en
Application granted granted Critical
Publication of JP3382389B2 publication Critical patent/JP3382389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は位置ずれ検出方法及びそ
れを用いた位置ずれ検出装置に関し、例えば半導体素子
製造用の露光装置において、2種類以上のマスク(レチ
クル)等の第1物体上に形成されている微細な電子回路
パターンをそれぞれマスク(レチクル)毎にウエハなど
の第2物体上に順次露光転写する際、マスクとウエハの
相対的な位置合わせをおこなうアライメント装置や、そ
れぞれのマスク(レチクル)上のパターンをウエハ上に
焼き付けた後のウエハ上の焼き付けパターンの重ね合わ
せ精度等を計測する計測装置等に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position shift detecting method and a position shift detecting apparatus using the same, and for example, in an exposure apparatus for manufacturing a semiconductor element, a first object such as two or more types of masks (reticles) is provided. When the formed fine electronic circuit patterns are sequentially exposed and transferred onto a second object such as a wafer for each mask (reticle), an alignment device that performs relative alignment between the mask and the wafer, and each mask ( It is suitable for a measuring device or the like that measures the overlay accuracy of the printed pattern on the wafer after the pattern on the reticle) is printed on the wafer.

【0002】この他、本発明はマスクとウエハとの相対
的な位置合わせ精度を計測する為の焼き付けパターンと
しての回折格子の格子線幅を計測する際に好適な線幅測
定方法及び線幅測定装置に関するものである。
In addition to the above, the present invention is suitable for measuring the line width of a diffraction grating as a printing pattern for measuring the relative alignment accuracy between a mask and a wafer, and a line width measuring method and line width measuring method. It relates to the device.

【0003】[0003]

【従来の技術】従来より半導体素子製造用の露光装置に
おいて、マスク面上のパターンをウエハ面上に投影露光
する際には、マスクとウエハとの相対的な位置ずれを検
出して行っている。このときのマスクとウエハとの位置
ずれを検出する位置ずれ検出方法は種々と提案されてい
る。
2. Description of the Related Art Conventionally, in an exposure apparatus for manufacturing a semiconductor device, when a pattern on a mask surface is projected and exposed on a wafer surface, a relative positional deviation between the mask and the wafer is detected. . There have been proposed various misalignment detection methods for detecting misalignment between the mask and the wafer at this time.

【0004】このうちパターンとして回折格子を用い、
この2つの回折格子からの回折光をそれぞれ独立にヘテ
ロダイン干渉させて得られた2つのビート信号の位相差
から回折格子の位置ずれを検出する方法が、例えば特開
平2−90006号公報で提案されている。
Of these, a diffraction grating is used as a pattern,
For example, Japanese Patent Application Laid-Open No. 2-90006 proposes a method for detecting the positional deviation of the diffraction grating from the phase difference between the two beat signals obtained by heterodyne interfering the diffracted lights from the two diffraction gratings. ing.

【0005】図19は同公報で示されている半導体素子
製造用の露光装置における位置ずれ検出装置の概略図で
ある。
FIG. 19 is a schematic diagram of a positional deviation detecting device in an exposure apparatus for manufacturing a semiconductor element shown in the publication.

【0006】図19において、2波長直交偏光レーザ光
源140からのレーザ光はミラー141を介して偏光ビ
ームスプリッタ142により水平成分、垂直成分の2波
長の光に分離される。そしてそれぞれミラー143、円
筒レンズ144,149、対物レンズ145等の光学系
を介して楕円状ビーム146,150となり、xyステ
ージ151上のウエハ147に形成された回折格子14
8に入射している。
In FIG. 19, the laser light from the two-wavelength orthogonal polarization laser light source 140 is separated by the polarization beam splitter 142 via the mirror 141 into light of two wavelengths of a horizontal component and a vertical component. Then, the beams become elliptical beams 146 and 150 via the optical systems such as the mirror 143, the cylindrical lenses 144 and 149, and the objective lens 145, respectively, and the diffraction grating 14 formed on the wafer 147 on the xy stage 151.
It is incident on 8.

【0007】回折格子148は、図20に示すように、
3組の回折格子112,113,114から成ってい
る。そしてそれぞれz方向の3つの方向にヘテロダイン
干渉合成回折光153〜155を得ている。これらの合
成回折光153〜155は、ハーフミラー156により
2方向に分割され、一方は接眼鏡170で観察される。
そして他方はプリズムミラー(157,158,15
9)、集光レンズ(160,161,162)、そして
偏光板(163,164,165)を介して光検出器1
66〜168に入射している。そして光検出器166〜
168で光ヘテロダイン干渉ビート信号HY1〜HY3
を得て、これを信号処理部169に入力している。そし
て3つの信号HY1〜HY間の位相差変化からウエハ1
47面上の第1回目と第2回目の露光パターン間の位置
ずれ量を検出している。
The diffraction grating 148, as shown in FIG.
It is composed of three sets of diffraction gratings 112, 113 and 114. Then, the heterodyne interference combined diffracted lights 153 to 155 are obtained in the respective three directions of the z direction. These synthetic diffracted lights 153-155 are split into two directions by the half mirror 156, and one of them is observed by the eyepiece 170.
The other is a prism mirror (157, 158, 15
9), a condenser lens (160, 161, 162), and a polarizing plate (163, 164, 165) through the photodetector 1
It is incident on 66 to 168. And the photodetector 166-
Optical heterodyne interference beat signals HY1 to HY3 at 168
Is obtained and is input to the signal processing unit 169. Then, from the change in the phase difference between the three signals HY1 to HY, the wafer 1
The amount of positional deviation between the first and second exposure patterns on the 47th surface is detected.

【0008】図20はこのときのウエハ上の回折格子を
示す説明図である。同図に示すように N回目の露光で回
折格子112,113が焼き付けられ、次いで(N+1) 回
目の露光で回折格子114が焼き付けられる。回折格子
112と回折格子113からの回折光を用いて光学系の
基準からの回転成分を検出し、実際の回折格子間の位置
ずれ量は回折格子113と回折格子114から生じる回
折光から求めている。
FIG. 20 is an explanatory view showing the diffraction grating on the wafer at this time. As shown in the figure, the diffraction gratings 112 and 113 are printed by the Nth exposure, and then the diffraction grating 114 is baked by the (N + 1) th exposure. The rotation component from the reference of the optical system is detected using the diffracted light from the diffraction grating 112 and the diffraction grating 113, and the actual positional deviation amount between the diffraction gratings is obtained from the diffracted light generated from the diffraction grating 113 and the diffraction grating 114. There is.

【0009】又、ウエハ面上に形成した焼き付けパター
ン(回折格子)の線幅計測には従来より測長SEM(電
子顕微鏡)やレーザー顕微鏡等が用いられている。
Further, a length measuring SEM (electron microscope), a laser microscope or the like has been conventionally used for measuring the line width of a printing pattern (diffraction grating) formed on a wafer surface.

【0010】[0010]

【発明が解決しようとする課題】図19に示す位置ずれ
検出装置においては、位置ずれ検出マークである回折格
子113と回折格子114の形状または材質が変わると
それにともない位置ずれ検出信号である2つのビート信
号(光ヘテロダイン干渉ビート信号)の位相差が変化す
るという問題点があった。このとき各半導体素子製造プ
ロセスごとにオフセット値を持つという対策が考えられ
るが、この方法は位相差信号が回折格子の形状に敏感で
あるためオフセットとして取り除けない誤差が生じてし
まい、その結果として計測再現性精度の悪化が問題点と
なっていた。
In the positional deviation detecting device shown in FIG. 19, when the shapes or materials of the diffraction grating 113 and the diffraction grating 114, which are the positional deviation detection marks, are changed, two positional deviation detection signals are generated. There is a problem that the phase difference of the beat signal (optical heterodyne interference beat signal) changes. At this time, it is conceivable that each semiconductor element manufacturing process has an offset value, but this method causes an error that cannot be removed as an offset because the phase difference signal is sensitive to the shape of the diffraction grating, and as a result, measurement The deterioration of reproducibility was a problem.

【0011】本発明者は回折格子の材質または形状によ
りビート信号の位相が変化する原因が「回折格子で回折
する際の位相変化量がP偏光とS偏光の光では異なり、
その値が回折格子の材質、形状により変化する」という
ことを見出した。
The inventor has found that the cause of the change in the phase of the beat signal depending on the material or shape of the diffraction grating is that "the amount of phase change when diffracted by the diffraction grating is different between P-polarized light and S-polarized light,
The value changes depending on the material and shape of the diffraction grating. "

【0012】次に、このことを図21(A),(B)を
用いて説明する。図21(A),(B)において、11
0,111は入射光、113,114は回折格子、11
5,116は回折光である。
Next, this will be described with reference to FIGS. 21 (A) and 21 (B). In FIGS. 21A and 21B, 11
0 and 111 are incident lights, 113 and 114 are diffraction gratings, 11
Reference numerals 5 and 116 are diffracted lights.

【0013】今、P偏光周波数f1の光110とS偏光
で周波数f2の光111の2光束が回折格子113及び
回折格子114に入射し、それぞれの回折格子113及
び114からの回折光115及び116を合成し干渉さ
せたときのヘテロダインビート信号の位相にはそれぞ
れ、φxa+φa とφxb+φb が付加される。
Now, two light beams of P-polarized light frequency f1 and S-polarized light of frequency f2 enter into diffraction grating 113 and diffraction grating 114, respectively, and diffracted light 115 and 116 from diffraction gratings 113 and 114, respectively. Φxa + φa and φxb + φb are added to the phases of the heterodyne beat signal when they are combined and interfered with each other.

【0014】ここでφxa及びφxbはそれぞれ回折格子1
13と114の光学系基準位置からの位置ずれに伴う位
相変化であり、φa ,φb はそれぞれ回折格子113と
114の材質と形状により決まる位相変化(P偏光の光
の位相とS偏光の光の位相との差)であり、回折格子の
位置変化によらない項である。このとき2つのビート信
号の位相差Δφは次のように書ける。
Here, φxa and φxb are diffraction gratings 1, respectively.
13 and 114 are phase changes due to displacement from the optical system reference position, and φa and φb are phase changes determined by the materials and shapes of the diffraction gratings 113 and 114, respectively (the phase of P-polarized light and the phase of S-polarized light). This is a term that does not depend on the position change of the diffraction grating. At this time, the phase difference Δφ between the two beat signals can be written as follows.

【0015】Δφ=(φxa−φxb)+(φa −φb ) =φΔx+(φa −φb ) ・・・・・・・・・・(1) ここでφΔxは回折格子113と回折格子114のx方
向の相対的な位置ずれ量に伴う位相変化量である。
Δφ = (φxa−φxb) + (φa−φb) = φΔx + (φa−φb) (1) where φΔx is the x direction of the diffraction grating 113 and the diffraction grating 114. Is the amount of phase change associated with the amount of relative displacement of the.

【0016】(1)式のように、求めたい位相変化量φ
Δxの他に検出誤差にあたる(φa−φb )が加わり、
位相変化φa ,φb は2つの回折格子の材質、形状によ
り(φa −φb )が変化して再現性の悪化につながって
いた。
As shown in equation (1), the desired phase change φ
In addition to Δx, the detection error (φa-φb) is added,
With respect to the phase changes φa and φb, (φa −φb) was changed depending on the material and shape of the two diffraction gratings, leading to deterioration of reproducibility.

【0017】又、焼き付けパターンの線幅計測において
は測長SEMは高価であり、測定においてはレジストパ
ターンの場合、チャージアップ防止のため予め導電性の
膜(例えば金)を蒸着する必要があり、手間がかかる上
に非破壊計測が困難であった。一方、レーザー顕微鏡で
は十分な測定精度が得られないという問題点があった。
Further, the length measuring SEM is expensive in measuring the line width of the printed pattern, and in the case of the resist pattern in the measurement, it is necessary to deposit a conductive film (for example, gold) in advance in order to prevent charge-up. It takes time and labor, and nondestructive measurement is difficult. On the other hand, there is a problem that a laser microscope cannot obtain sufficient measurement accuracy.

【0018】本発明は以上のことを利用し、この回折格
子の材質または形状の変化により生じる位相変化を打ち
消す計測手段または補正手段を設けることにより、回折
格子の材質、形状の変化に対し位置ずれ検出誤差を生じ
ないようにし、これにより半導体素子製造プロセスに影
響を受けずに高精度に位置ずれ検出が可能な位置ずれ検
出方法及びそれを用いた検出装置の提供を目的とする。
The present invention takes advantage of the above, and by providing a measuring means or a correcting means for canceling the phase change caused by the change of the material or shape of the diffraction grating, the positional deviation is caused by the change of the material or shape of the diffraction grating. It is an object of the present invention to provide a positional deviation detection method capable of detecting a positional deviation with high accuracy without being affected by a semiconductor element manufacturing process, thereby preventing a detection error and a detection device using the same.

【0019】この他、本発明は偏光方向の異なる光では
回折格子で回折する際の位相変化量が異なり、その量は
回折格子の材質と形状に依存することを利用して、偏光
方向の異なる2光束の回折光の位相差を測定することに
より、回折格子の形状(特に線幅)を計測する線幅測定
方法及び線幅測定装置の提供を目的とする。
In addition, according to the present invention, the amount of phase change when diffracted by a diffraction grating is different for light having different polarization directions, and the fact that the amount depends on the material and shape of the diffraction grating makes it possible to use different polarization directions. An object of the present invention is to provide a line width measuring method and a line width measuring device for measuring the shape (particularly the line width) of a diffraction grating by measuring the phase difference between the diffracted lights of two light fluxes.

【0020】[0020]

【課題を解決するための手段】請求項1の発明の位置ず
れ検出方法は, (1−1)回折格子に偏光方向が直交し周波数の異な
る2光束を照射し、該回折格子から生じる互いに次数の
異なる複数の回折光を合成しヘテロダイン干渉させて複
数のビート信号を得、該複数のビート信号の位相差を利
用して該回折格子の所定位置からの位置ずれを検出する
際、前記回折格子に周波数がf1でp偏光の光を入射さ
せたときに生ずる+n次回折光と周波数f2でs偏光の
光を入射させたときに生ずる−n次回折光を合成してヘ
テロダイン干渉させ第1ビート信号を生成し、周波数が
f1でp偏光の光を入射させたときに生ずる−n次回折
光と周波数がf2でs偏光の光を入射させたときに生ず
る+n次回折光を合成してヘテロダイン干渉させ第2ビ
ート信号を生成し、該第1,第2ビート信号の位相差を
求めることにより該回折格子の性質に基づく該第1,第
2ビート信号の位相誤差を補正して位置ずれを検出して
いることを特徴としている。
Displacement detection method of the SUMMARY OF] of claim 1 invention (1-1) in the diffraction grating, the polarization direction is perpendicular irradiated with two different light beams having frequencies from each other results from the diffraction grating When a plurality of diffracted lights of different orders are combined and heterodyne interference is performed to obtain a plurality of beat signals, and a phase shift of the plurality of beat signals is used to detect a positional deviation of the diffraction grating from a predetermined position, the diffraction Light of p-polarization with frequency f1 is incident on the grating.
Of the + n-order diffracted light and s-polarized light at frequency f2
The -nth order diffracted light generated when light is incident is synthesized and
The first beat signal is generated by interfering with Telodyne, and the frequency is
-nth-order diffraction that occurs when p-polarized light is incident on f1
It does not occur when s-polarized light with light and frequency f2 is incident
+ N-th order diffracted light is combined to cause heterodyne interference and
Generate a beat signal and calculate the phase difference between the first and second beat signals.
Based on the properties of the diffraction grating,
Correct the phase error of the 2-beat signal to detect the positional deviation
It is characterized in that there.

【0021】[0021]

【0022】(1−2)偏光方向が直交し、周波数の異
なる2光束を第1回折格子と第2回折格子に入射させ、
該第1回折格子から生じる互いに次数の異なる2つの回
折光を合成してヘテロダイン干渉させ第1ビート信号を
生成し、該第2回折格子から生じる互いに次数の異なる
2つの回折光を合成してヘテロダイン干渉させ第2ビー
ト信号を生成し、該第1,第2ビート信号の位相差を検
出する第1位相差検出工程と、該2光束を該第1,第2
回折格子に入射させ、このとき該第1,第2回折格子か
ら生じる互いに次数の異なる2つの回折光を合成してヘ
テロダイン干渉させてビート信号を得る際、該回折格子
の性質に基づくビート信号間の位相誤差を補正する為の
第3,第4ビート信号を生成し、該第3,第4ビート信
号の位相差を検出する第2位相差検出工程とを有し、該
第1位相差検出工程と第2位相差検出工程で得られた位
相差を利用して該第1,第2回折格子の相対的な位置ず
れを検出することを特徴としている。
(1-2) Two light beams whose polarization directions are orthogonal to each other and have different frequencies are made incident on the first diffraction grating and the second diffraction grating,
Two diffracted lights of different orders generated from the first diffraction grating are combined to cause heterodyne interference to generate a first beat signal, and two diffracted lights of different orders generated from the second diffraction grating are combined to form a heterodyne. A first phase difference detecting step of generating a second beat signal by causing interference and detecting a phase difference between the first and second beat signals;
When a beat signal is made incident on a diffraction grating and at this time, two diffracted lights having different orders generated from the first and second diffraction gratings are combined and heterodyne interference is made to obtain a beat signal, between beat signals based on the properties of the diffraction grating And a second phase difference detecting step of detecting a phase difference between the third and fourth beat signals for correcting the phase error of the first phase difference detection. It is characterized in that a relative positional shift between the first and second diffraction gratings is detected by utilizing the phase difference obtained in the step and the second phase difference detecting step.

【0023】特に、(1−2−1)前記第2位相差検出
工程では前記第1位相差検出工程において、前記第1,
第2回折格子が形成されている基板を180度回転させ
て、該第1回折格子から生じる2つの回折光を合成して
ヘテロダイン干渉させ第3ビート信号を生成し、該第2
回折格子から生じる2つの回折光を合成してヘテロダイ
ン干渉させ第4ビート信号を生成し、該第3,第4ビー
ト信号の位相差を検出していること。
In particular, (1-2-1) in the second phase difference detecting step, in the first phase difference detecting step,
The substrate on which the second diffraction grating is formed is rotated by 180 degrees, the two diffracted lights generated from the first diffraction grating are combined to cause heterodyne interference, and the third beat signal is generated.
The two diffracted lights generated from the diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal, and the phase difference between the third and fourth beat signals is detected.

【0024】(1−2−2)前記第2位相差検出工程で
は前記第1位相差検出工程において前記第1,第2回折
格子に入射する光の偏光方向を90度回転させ、該第1
回折格子から生じる2つの回折光を合成してヘテロダイ
ン干渉させ第3ビート信号を生成し、該第2回折格子か
ら生じる2つの回折光を合成してヘテロダイン干渉させ
第4ビート信号を生成し、該第3,第4ビート信号の位
相差を検出していること。
(1-2-2) In the second phase difference detecting step, the polarization direction of the light incident on the first and second diffraction gratings is rotated by 90 degrees in the first phase difference detecting step, and the first phase difference detecting step is performed.
The two diffracted lights generated from the diffraction grating are combined and heterodyne interfered to generate a third beat signal, and the two diffracted lights generated from the second diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal, Detecting the phase difference between the third and fourth beat signals.

【0025】(1−2−3)前記第2位相差検出工程で
は前記第1位相差検出工程において前記第1,第2回折
格子を照射する前記2光束を互いに入れ換えて、このと
き該第1回折格子から生じる2つの回折光を合成してヘ
テロダイン干渉させ第3ビート信号を生成し、又該第2
回折格子から生じる2つの回折光を合成してヘテロダイ
ン干渉させ第4ビート信号を生成し、該第3,第4ビー
ト信号の位相差を検出していること。
(1-2-3) In the second phase difference detecting step, the two light beams for irradiating the first and second diffraction gratings are exchanged with each other in the first phase difference detecting step, and at this time, the first phase difference detecting step is performed. The two diffracted lights generated from the diffraction grating are combined to cause heterodyne interference to generate a third beat signal, and the second beat signal is generated.
The two diffracted lights generated from the diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal, and the phase difference between the third and fourth beat signals is detected.

【0026】(1−2−4) 前記第2位相差検出工程
では前記第1位相差検出工程において前記2光束を前記
第1,第2回折格子を照射した方向と同一方向から前記
2光束を照射し、該第1回折格子から生ずる2つの回折
光を合成してヘテロダイン干渉させ第3ビート信号を生
成し、該第2回折格子から生ずる2つの回折光を合成し
てヘテロダイン干渉させ第4ビート信号を生成し、該第
3,第4ビート信号の位相差を検出していることを特徴
としている。
(1-2-4) In the second phase difference detecting step, the two light beams are generated from the same direction as the direction in which the first and second diffraction gratings are irradiated with the two light beams in the first phase difference detecting step. Irradiation, two diffracted lights generated from the first diffraction grating are combined to generate a heterodyne interference to generate a third beat signal, and two diffracted lights generated from the second diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal. It is characterized in that a signal is generated and the phase difference between the third and fourth beat signals is detected.

【0027】(1−2−5)前記第1位相差検出工程で
は第1回折格子からの周波数がf1でp偏光の光の+n
次回折光と周波数f2でs偏光の−n次回折光を合成し
てヘテロダイン干渉させ第1ビート信号を生成し、第2
回折格子からの周波数がf1でp偏光の光の+n次回折
光と周波数がf2でs偏光の光の−n次回折光を合成し
てヘテロダイン干渉させ第2ビート信号を生成し、該第
1,第2ビート信号の位相差を検出しており、前記第2
位相差検出工程では第1回折格子からの周波数がf2で
p偏光の光の+n次回折光と周波数f1でs偏光の−n
次回折光を合成してヘテロダイン干渉させ第3ビート信
号を生成し、第2回折格子からの周波数がf2でp偏光
の光の+n次回折光と周波数がf1でs偏光の光の−n
次回折光を合成してヘテロダイン干渉させ第4ビート信
号を生成し、該第3,第4ビート信号の位相差を検出し
ていることを特徴としている。
(1-2-5) In the first phase difference detecting step, + n of p-polarized light whose frequency is f1 from the first diffraction grating is detected.
The second diffracted light and the s-polarized -nth-order diffracted light at the frequency f2 are combined to generate heterodyne interference, and the first beat signal is generated.
The + nth-order diffracted light of the p-polarized light having the frequency f1 and the -nth-order diffracted light of the s-polarized light having the frequency f2 and the -nth-order diffracted light from the diffraction grating are combined to generate the second beat signal, and the second beat signal is generated. The phase difference between the two beat signals is detected, and the second
In the phase difference detecting step, the + nth-order diffracted light of the p-polarized light having the frequency f2 and the −n of the s-polarized light having the frequency f1 are emitted from the first diffraction grating.
The 3rd beat signal is generated by combining the 2nd-order diffracted lights and causing heterodyne interference, and the + n-order diffracted light of the p-polarized light having the frequency f2 and the -n of the s-polarized light having the frequency f1 from the second diffraction grating are generated.
The second diffracted light is combined to cause heterodyne interference to generate a fourth beat signal, and the phase difference between the third and fourth beat signals is detected.

【0028】本発明の位置ずれ検出装置は, (2−1)偏光方向が互いに直交し、かつ周波数が異な
る2光束を発生する光源手段からの該2光束を周波数、
偏光、入射角度等を規定する照明手段を介して回折格子
に入射させ、該回折格子からの回折光を合成手段で合成
してビート干渉光を形成し、該ビート干渉光を光電検出
手段で光電検出して第1ビート信号を形成し、該2光束
を該第1ビート信号に基づく光の光路とは異なる光路を
通して同様にして第2ビート信号を形成し、該第1,第
2ビート信号の位相差を位相差計で検出し、該回折格子
の性質に基づくビート信号の位相誤差を位相誤差検出手
段で検出し、該位相差と該位相誤差とをもとに演算器で
該回折格子の所定位置からの位置ずれを求めていること
を特徴としている。
The position shift detecting device of the present invention is (2-1) the two light beams from the light source means for generating two light beams whose polarization directions are orthogonal to each other and whose frequencies are different from each other,
The light is made incident on the diffraction grating through illumination means that regulates the polarization, incident angle, etc., the diffracted light from the diffraction grating is combined by the combining means to form beat interference light, and the beat interference light is photoelectrically detected by the photoelectric detection means. The first beat signal is detected and the second light beam is similarly formed by passing the second light flux through an optical path different from the optical path of the light based on the first beat signal. The phase difference is detected by a phase difference meter, the phase error of the beat signal based on the property of the diffraction grating is detected by the phase error detection means, and the arithmetic unit calculates the phase difference of the diffraction grating based on the phase difference and the phase error. The feature is that the positional deviation from the predetermined position is obtained.

【0029】(2−2)偏光方向が互いに直交し、かつ
周波数が異なる2光束を発生する光源手段からの該2光
束を周波数、偏光、入射角度等を規制する照明手段を介
して回折格子に入射させ、該回折格子から生ずる周波数
がf1でp偏光の+n次回折光と周波数f2でs偏光の
−n次回折光とを合成手段で合成して第1ビート信号を
形成すると共に、該回折格子から生ずる周波数がf1で
p偏光の−n次回折光と周波数がf2でs偏光の+n次
回折光とを合成手段で合成して第2ビート信号を形成
し、該第1,第2ビート信号の位相の差を位相差計で求
め、該位相差計からの信号を利用して該回折格子の所定
位置からの位置ずれを求めていることを特徴としてい
る。特に構成(2―1)又は構成(2−2)において、 (2−2−1)前記光源手段は、2周波直交偏光レーザ
又は光音響光学素子を用いた光源であることを特徴とし
ている。
(2-2) The polarization directions are orthogonal to each other, and
The two light fluxes from the light source means for generating two light fluxes having different frequencies are made incident on the diffraction grating through the illumination means for controlling the frequency, the polarization, the incident angle, etc., and the frequency generated from the diffraction grating is f1 and the p polarization is + n. The first diffracted light is combined with the s-polarized -nth-order diffracted light having the frequency f2 by the synthesizing means to form the first beat signal, and the frequency generated from the diffraction grating is f1 and the p-polarized -nth-order diffracted light is the frequency f2. The s-polarized + n-th order diffracted light is combined by a combining means to form a second beat signal, the phase difference between the first and second beat signals is obtained by a phase difference meter, and the signal from the phase difference meter is calculated. It is characterized in that the displacement of the diffraction grating from a predetermined position is obtained by utilizing the diffraction grating. Particularly in the configuration (2-1) or the configuration (2-2), (2-2-1) the light source means is a dual-frequency orthogonal polarization laser.
Alternatively, the light source is a photoacoustic optical element .

【0030】本発明の線幅測定方法は, (3−1)偏光方向が互いに直交し、周波数の異なる2
光束を回折格子に入射させ、該回折格子から生ずる同次
数の回折光を合成してヘテロダイン干渉させて計測ビー
ト信号を得、該2光束を合成してヘテロダイン干渉させ
て基準ビート信号を得、該計測ビート信号と該基準ビー
ト信号との位相差を利用して該回折格子を形成している
格子線幅を計測していることを特徴としている。
The line width measuring method of the present invention comprises: (3-1) Two polarization directions are orthogonal to each other and different in frequency .
The luminous flux is made incident on the diffraction grating, the diffracted lights of the same order generated from the diffraction grating are combined and heterodyne interfered to obtain a measurement beat signal, the two luminous fluxes are combined and heterodyne interfered to obtain a reference beat signal, The grating line width forming the diffraction grating is measured by utilizing the phase difference between the measured beat signal and the reference beat signal.

【0031】本発明の線幅測定装置は, (4−1)偏光方向が互いに異なりかつ周波数が異なる
2光束を発生する光源手段と、該2光束の一部を分割し
基準ビート信号を形成する基準ビート形成手段と、該2
光束を回折格子に照射する照明手段と、該回折格子から
の同次数の回折光同士をヘテロダイン干渉させて、計測
ビート信号を形成する計測ビート信号形成手段と、該基
準ビート信号と該計測ビート信号との位相差を測定する
位相差計と、該位相差を利用して該回折格子を形成して
いる格子線幅を算出する演算器とを有していることを特
徴としている。
The line width measuring apparatus of the present invention comprises (4-1) light source means for generating two light beams having different polarization directions and different frequencies, and a part of the two light beams is divided to form a reference beat signal. Reference beat forming means, and 2
Illuminating means for irradiating a diffraction grating with a light flux, measurement beat signal forming means for forming a measurement beat signal by heterodyne interference between diffracted lights of the same order from the diffraction grating, the reference beat signal and the measurement beat signal. And a calculator for calculating the grating line width forming the diffraction grating using the phase difference.

【0032】[0032]

【実施例】図1は本発明の実施例1の要部概略図であ
る。本実施例は半導体素子製造過程で2層のパターンの
重ね合わせ精度を測定する重ね合わせ精度測定装置に適
用した場合を示している。
Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention. This embodiment shows a case where the present invention is applied to an overlay accuracy measuring apparatus for measuring overlay accuracy of two layers of patterns in a semiconductor element manufacturing process.

【0033】図2は図1の光路を展開した説明図、図
3,図4は図1の一部分の拡大説明図である。図17は
本実施例の計測シーケンスのフローチャートである。
2 is an expanded view of the optical path of FIG. 1, and FIGS. 3 and 4 are enlarged explanatory views of a part of FIG. FIG. 17 is a flowchart of the measurement sequence of this embodiment.

【0034】図中、1は光源(光源手段)としての2周
波直交偏光レーザであり、例えばp偏光で周波数f1の
光とs偏光で周波数f2の光を発振している。2はコリ
メータレンズであり光源1からの光束を平行光としてい
る。3は偏光ビームスプリッタ、4a,4bは各々ミラ
ー、15aはn回目の半導体露光プロセスでウエハ16
上に形成された回折格子パターン、15bは(n+1)
回目の露光プロセスでウエハ16上に形成された回折格
子パターンである。
In the figure, reference numeral 1 denotes a dual frequency orthogonal polarization laser as a light source (light source means), which oscillates, for example, p-polarized light of frequency f1 and s-polarized light of frequency f2. The collimator lens 2 collimates the light flux from the light source 1 into parallel light. 3 is a polarization beam splitter, 4a and 4b are mirrors respectively, and 15a is a wafer 16 in the nth semiconductor exposure process.
Diffraction grating pattern formed above, 15b is (n + 1)
It is the diffraction grating pattern formed on the wafer 16 in the exposure process of the first time.

【0035】コリメータレンズ2、偏光ビームスプリッ
タ3、ミラー4a,4b等は照明手段の一要素を構成し
ている。
The collimator lens 2, the polarization beam splitter 3, the mirrors 4a and 4b, etc. constitute one element of the illumination means.

【0036】5はミラー、6はレンズ、7はグラントム
ソンプリズム、8はエッジミラーであり光を2方向に分
離反射している。9a,9bは各々レンズ、10a,1
0bは各々センサーである。11は位相差計であり、セ
ンサー10a,10bからの信号の位相差を求めてい
る。12は記憶装置、13は演算器、14はステージ制
御系、17は回転ステージでありウエハ16を載置して
いる。18はyステージ、19はxステージであり各々
y方向,x方向に移動可能となっている。
Reference numeral 5 is a mirror, 6 is a lens, 7 is a Glan-Thompson prism, and 8 is an edge mirror, which separates and reflects light in two directions. 9a and 9b are lenses, 10a and 1
0b is a sensor respectively. Reference numeral 11 denotes a phase difference meter, which calculates the phase difference between the signals from the sensors 10a and 10b. Reference numeral 12 is a storage device, 13 is a computing unit, 14 is a stage control system, and 17 is a rotary stage on which a wafer 16 is mounted. Reference numeral 18 denotes a y stage, and 19 denotes an x stage, which are movable in the y direction and the x direction, respectively.

【0037】ミラー5、レンズ6、そしてグラントムソ
ンプリズム7等は合成手段の一要素を構成している。
The mirror 5, the lens 6, the Glan-Thompson prism 7, etc. constitute one element of the combining means.

【0038】次に、本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0039】2周波直交偏光レーザ1から出射したp偏
光で周波数f1の光20はコリメータレンズ2をとお
り、偏光ビームスプリッタ3を透過する。その後ミラー
4aで偏向しウエハ16上の回折格子15a,15bを
照射する。このとき、回折格子15a,15bからの+
1次回折光がウエハ16に対し垂直に回折するようにミ
ラー4aを設定している。
The p-polarized light 20 of frequency f1 emitted from the dual-frequency orthogonal polarization laser 1 passes through the collimator lens 2 and the polarization beam splitter 3. After that, the light is deflected by the mirror 4a to irradiate the diffraction gratings 15a and 15b on the wafer 16. At this time, + from the diffraction gratings 15a and 15b
The mirror 4a is set so that the first-order diffracted light is diffracted perpendicularly to the wafer 16.

【0040】一方、2周波直交偏光レーザ1から出射し
たs偏光で周波数f2の光21はコリメータレンズ2を
とおり、偏光ビームスプリッタ3で反射し、その後ミラ
ー4bで偏向し、回折格子15a,15bを照射する。
このとき、回折格子15a,15bからのー1次回折光
がウエハ16に対し垂直に回折するようにミラー4bを
設定している。
On the other hand, the s-polarized light 21 of the frequency f2 emitted from the dual-frequency orthogonal polarization laser 1 passes through the collimator lens 2, is reflected by the polarization beam splitter 3, and is then deflected by the mirror 4b so as to be reflected by the diffraction gratings 15a and 15b. Irradiate.
At this time, the mirror 4b is set so that the −1st order diffracted light from the diffraction gratings 15a and 15b is diffracted perpendicularly to the wafer 16.

【0041】また、コリメータレンズ2によって入射ビ
ームは絞られておりウエハ16上では2つの回折格子1
5a,15bより少し大きいスポットになっている(図
4のスポット23)。
The incident beam is narrowed down by the collimator lens 2, and the two diffraction gratings 1 are formed on the wafer 16.
The spots are slightly larger than 5a and 15b (spot 23 in FIG. 4).

【0042】ここで、偏光ビームスプリッタ3で2つの
周波数の光20,21に分離した後、回折格子15a,
15b上で再度合成され、同一光路をとおることにな
る。この合成回折光はミラー5で偏向されて、レンズ6
をとおりグラントムソンプリズム7に入射しその偏向方
向を揃えることによって、ヘテロダイン干渉させてい
る。
Here, after splitting into light 20 and 21 of two frequencies by the polarization beam splitter 3, the diffraction grating 15a,
They are recombined on 15b and follow the same optical path. This combined diffracted light is deflected by the mirror 5 and the lens 6
As described above, the light enters the Glan-Thompson prism 7 and the deflection directions thereof are aligned to cause heterodyne interference.

【0043】エッジミラー8は図2に示すように、ウエ
ハ16とレンズ6に関して共役な位置に設置している。
すなわち図3に示すように、エッジミラー8上では回折
格子15aと回折格子15bの像15a’,15b’が
見える。こうして、回折格子15aからの合成ヘテロダ
イン干渉光と回折格子15bからの合成ヘテロダイン干
渉光を一方はエッジミラー8を透過させ他方は反射させ
ることにより2つに分離している。
As shown in FIG. 2, the edge mirror 8 is installed at a position conjugate with the wafer 16 and the lens 6.
That is, as shown in FIG. 3, images 15a 'and 15b' of the diffraction grating 15a and the diffraction grating 15b are visible on the edge mirror 8. Thus, the synthetic heterodyne interference light from the diffraction grating 15a and the synthetic heterodyne interference light from the diffraction grating 15b are separated into two by transmitting one through the edge mirror 8 and reflecting the other.

【0044】エッジミラー8で反射した回折格子15a
からの回折光はレンズ9aをとおりセンサー10aで光
電変換される。これにより第1ビート信号を得ている。
また、エッジミラー8を透過した回折格子15bからの
回折光はレンズ9bをとおり、センサー10bで光電変
換される。これにより第2ビート信号を得ている。
Diffraction grating 15a reflected by the edge mirror 8
The diffracted light from is passed through the lens 9a and photoelectrically converted by the sensor 10a. As a result, the first beat signal is obtained.
The diffracted light from the diffraction grating 15b that has passed through the edge mirror 8 passes through the lens 9b and is photoelectrically converted by the sensor 10b. As a result, the second beat signal is obtained.

【0045】レンズ9a,9bは図2に示すようにウエ
ハ16及びエッジミラー8とセンサー10a,10bが
共役な位置になるようにしており、レンズ6及びレンズ
9a(9b)による結像倍率はセンサー10a(10
b)の受光面内に回折格子の像が入るように設定してい
る。センサー10a,10bで得られた2つのヘテロダ
インビート信号は位相差計11でその位相差DT1を検
出し、一時記憶装置12に記憶している(第1位相差検
出工程)。
As shown in FIG. 2, the lenses 9a and 9b are arranged so that the wafer 16 and the edge mirror 8 and the sensors 10a and 10b are in a conjugate position, and the imaging magnification by the lenses 6 and 9a (9b) is the sensor. 10a (10
It is set so that the image of the diffraction grating is included in the light receiving surface of b). The phase difference meter 11 detects the phase difference DT1 of the two heterodyne beat signals obtained by the sensors 10a and 10b and stores them in the temporary storage device 12 (first phase difference detection step).

【0046】その後、回転ステージ17を180度回転
させ、xステージ19及びyステージ18を駆動させ
て、ビームスポット位置に回折格子15a,15bをア
ライメントして、前述と同様にして第3,第4ビート信
号を得て、この第3,第4ビート信号の位相差DT2を
計測し、一時記憶装置12に送る(第2位相差検出工
程)。
After that, the rotary stage 17 is rotated by 180 degrees, the x stage 19 and the y stage 18 are driven, the diffraction gratings 15a and 15b are aligned at the beam spot positions, and the third and fourth stages are performed in the same manner as described above. After obtaining the beat signal, the phase difference DT2 of the third and fourth beat signals is measured and sent to the temporary storage device 12 (second phase difference detecting step).

【0047】そして、演算器13で位相差DT1と位相
差DT2から、回折格子15aと回折格子15bの相対
位置ずれを求めている。以下、回折光の位相またビート
信号の位相について図4(A),(B)を用いて説明す
る。
Then, the calculator 13 obtains the relative positional deviation between the diffraction grating 15a and the diffraction grating 15b from the phase difference DT1 and the phase difference DT2. Hereinafter, the phase of the diffracted light or the phase of the beat signal will be described with reference to FIGS.

【0048】図4(A)において、周波数f1 (角周波
数:w1 )でp偏光の光20の回折格子15aから生じ
る+1次回折光20aの複素振幅表示u1aは、次のよう
に書ける。
In FIG. 4A, the complex amplitude display u1a of the + 1st order diffracted light 20a generated from the diffraction grating 15a of the p-polarized light 20 at the frequency f1 (angular frequency: w1) can be written as follows.

【0049】 u1a=u0exp{w1 ・t+φxa +φap} ・・・・・・・・(2) ここで、u0 は光20の振幅、φxa は回折格子15a
の光学系の基準線24からのx方向の位置ずれ量xa に
伴う位相変化であり、回折格子15a のピッチをpとし
たとき、φxa =2πxa /pと書ける。またφapは回
折格子15aの材質と形状、所謂性質で決まるp偏光の
光が回折により受ける位相変化分である。
U1a = u0exp {w1 · t + φxa + φap} (2) where u0 is the amplitude of the light 20 and φxa is the diffraction grating 15a.
Is a phase change associated with the amount xa of displacement of the optical system from the reference line 24 in the x direction, and can be written as φxa = 2πxa / p, where p is the pitch of the diffraction grating 15a. Further, φap is the amount of phase change that p-polarized light receives due to diffraction, which is determined by the material and shape of the diffraction grating 15a, so-called property.

【0050】一方、周波数f2 (角周波数:w2 )でs
偏光の光21の回折格子15aから生ずる−1次回折光
21aの複素振幅表示u2aは、次のように書ける。
On the other hand, at frequency f2 (angular frequency: w2), s
The complex amplitude display u2a of the minus first-order diffracted light 21a generated from the diffraction grating 15a of the polarized light 21 can be written as follows.

【0051】 u2a=u0exp{w2 ・t−φxa +φas} ・・・・・・・・(3) また、φasは回折格子15aの材質と形状で決まるs 偏
光の光が回折により受ける位相変化分である。
U2a = u0exp {w2 · t−φxa + φas} (3) In addition, φas is a phase change amount that s-polarized light receives by diffraction, which is determined by the material and shape of the diffraction grating 15a. is there.

【0052】また、周波数f1 (角周波数:w1 )でp
偏光の光20の回折格子15bからの+1次回折光20
bの複素振幅表示u1bは、次のように書ける。
Further, at frequency f1 (angular frequency: w1), p
+ 1st order diffracted light 20 from the diffraction grating 15b of the polarized light 20
The complex amplitude representation u1b of b can be written as:

【0053】 u1b=u0exp{w1 ・t+φxb +φbp} ・・・・・・・・(4) ここで、u0 は光20の振幅、φxb は回折格子15b
の光学系の基準線24からのx方向の位置ずれ量xb に
伴う位相変化であり、回折格子15b のピッチをpとし
たとき、φxb =2πxb /pと書ける。また、φbpは
回折格子15aの材質と形状で決まるp偏光の光が回折
により受ける位相変化分である。
U1b = u0exp {w1.t + φxb + φbp} (4) where u0 is the amplitude of the light 20 and φxb is the diffraction grating 15b.
Is a phase change associated with the amount xb of displacement of the optical system from the reference line 24 in the x direction, and can be written as φxb = 2πxb / p, where p is the pitch of the diffraction grating 15b. Further, φbp is a phase change amount that p-polarized light determined by the material and shape of the diffraction grating 15a undergoes by diffraction.

【0054】一方、周波数f2 (角周波数:w2 )でs
偏光の光21の回折格子15bから生ずる−1次回折光
21bの複素振幅表示u2bは、次のように書ける。
On the other hand, at frequency f2 (angular frequency: w2), s
The complex amplitude display u2b of the minus first-order diffracted light 21b generated from the diffraction grating 15b of the polarized light 21 can be written as follows.

【0055】 u2b=u0exp{w2 ・t−φxb +φbs} ・・・・・・・・(5) また、φbsは回折格子15bの材質と形状で決まるs 偏
光の光が回折により受ける位相変化分である。
U2b = u0exp {w2 · t−φxb + φbs} (5) In addition, φbs is a phase change amount that s-polarized light receives by diffraction, which is determined by the material and shape of the diffraction grating 15b. is there.

【0056】このとき、回折光20aと回折光21aを
ヘテロダイン干渉させてセンサー10aで得られるビー
ト信号(第1ビート信号)の交流成分Ia はI0 を振幅
として次のようになる。
At this time, the AC component Ia of the beat signal (first beat signal) obtained by the sensor 10a by causing the diffracted light 20a and the diffracted light 21a to heterodyne interfere with each other is as follows with I0 as the amplitude.

【0057】 Ia =I0cos{(w1 −w2 )t+2φxa +(φap−φas)} ・・・・(6) また、回折光20bと回折光21bをヘテロダイン干渉
させてセンサー10bで得られるビート信号(第2ビー
ト信号)の交流成分Ib は次のようになる。
Ia = I0cos {(w1−w2) t + 2φxa + (φap−φas)} (6) Further, the beat signal (the first signal) obtained by the sensor 10b by causing the diffracted light 20b and the diffracted light 21b to interfere heterodyne. The AC component Ib of the 2-beat signal is as follows.

【0058】 Ib =I0cos{(w1 −w2 )t+2φxb +(φbp−φbs)} ・・・・(7) (6),(7)式で表せる第1,第2ビート信号の位相
差Δφ1は、 Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・・・・・(8) ここで、φΔxは回折格子15a と回折格子15b のx
方向の相対的位置ずれ量Δxに伴う位相変化で、 φΔx=4πΔx/p ・・・・・・・・(9) である。
Ib = I0cos {(w1−w2) t + 2φxb + (φbp−φbs)} (7) The phase difference Δφ1 between the first and second beat signals expressed by the equations (6) and (7) is Δφ1 = 2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx + {(φap−φas) − (φbp−φbs)} ・ ・ ・ ・ ・ ・ ・ ・ (8) where , ΦΔx is the x of the diffraction grating 15a and the diffraction grating 15b.
The phase change associated with the relative positional deviation amount Δx in the direction is φΔx = 4πΔx / p (9).

【0059】一方ウエハ16を180度回転した時(図
4(B))の回折光20a ,21aのセンサー10bで
得られる干渉ビート信号(第3ビート信号)Ia ’は、
回折格子15a の光学系の基準線24からのx方向のず
れ量をxa ’とすると次のように書ける。
On the other hand, the interference beat signal (third beat signal) Ia 'obtained by the sensor 10b of the diffracted lights 20a and 21a when the wafer 16 is rotated 180 degrees (FIG. 4B) is
Assuming that the displacement amount of the diffraction grating 15a in the x direction from the reference line 24 of the optical system is xa ', the following can be written.

【0060】 Ia ’=I0cos{(w1 −w2 )t+2φxa ’+(φap−φas)} ・・・・・・・・(10) またウエハ16を180度回転した時(図4(B))の
回折光20b ,21bのセンサー10aで得られる干渉
ビート信号(第4ビート信号)Ib ’は、回折格子15
b の光学系の基準線24からのx方向のずれ量をxb ’
とすると次のように書ける。
Ia ′ = I0cos {(w1−w2) t + 2φxa ′ + (φap−φas)} (10) When the wafer 16 is rotated 180 degrees (FIG. 4B) The interference beat signal (fourth beat signal) Ib ′ obtained by the sensor 10a of the diffracted lights 20b and 21b is the diffraction grating 15
The deviation amount of the b in the x direction from the reference line 24 of the optical system is xb '
Then, we can write as follows.

【0061】 Ib ’=I0cos{(w1 −w2 )t+2φxb ’+(φbp−φbs)} ・・・・・・・・(11) ここで、(11)式から(12)式の第3,第4ビート
信号の位相差Δφ2をとると、 Δφ2=2(φxb ’−φxa ’)−{(φap−φas)−(φbp−φbs)} =2φΔx−{(φap−φas)−(φbp−φbs)} ・・・・・・・・・・(12) 演算器13で(8)式、(12)式で表される位相差Δ
φ1,Δφ2の和Δφをとると、回折格子の形状、材質
により生じる誤差の項({}の項)が打ち消され、 Δφ=Δφ1+Δφ2 =4φΔx =8πΔx/p ・・・・・・・・(13) となる。
Ib ′ = I0cos {(w1−w2) t + 2φxb ′ + (φbp−φbs)} (11) Here, the third and third equations (11) to (12) are used. Taking the phase difference Δφ2 of the 4-beat signal, Δφ2 = 2 (φxb'−φxa ')-{(φap−φas) − (φbp−φbs)} = 2φΔx − {(φap−φas) − (φbp−φbs) } (12) The phase difference Δ represented by the equations (8) and (12) in the computing unit 13
When the sum Δφ of φ1 and Δφ2 is taken, the error term ({} term) caused by the shape and material of the diffraction grating is canceled, and Δφ = Δφ1 + Δφ2 = 4φΔx = 8πΔx / p (13) ).

【0062】したがって、回折格子15a ,15b の相
対的な位置ずれ量Δx、すなわちn回目の露光で焼き付
けられた回路パターンとn+1回目の露光で焼き付けら
れた回路パターンの位置ずれを次式により求めることが
できる。
Therefore, the relative positional deviation amount Δx of the diffraction gratings 15a and 15b, that is, the positional deviation between the circuit pattern printed in the nth exposure and the circuit pattern printed in the (n + 1) th exposure is calculated by the following equation. You can

【0063】 Δx=Δφ・P/(8π) ・・・・・・・・(14) なお、検出光学系に対するマークの回転成分により生じ
る誤差は、例えば回折格子15a の焼き付けの際に同時
にずれ量のない2つの回折格子からなる基準マークをウ
エハ上に焼き付けておき、そのマークからの位相差信号
をウエハを180度回転する前と後で検出しておけば、
その値を補正値として光学系のオフセット値並びに回転
成分により生じる誤差が取り除くことができる。
Δx = Δφ · P / (8π) (14) The error caused by the rotation component of the mark with respect to the detection optical system is, for example, the amount of deviation at the same time when the diffraction grating 15a is printed. If a reference mark composed of two diffraction gratings without a mark is printed on the wafer and the phase difference signal from the mark is detected before and after the wafer is rotated 180 degrees,
By using this value as a correction value, the offset value of the optical system and the error caused by the rotation component can be removed.

【0064】また、本実施例では、x方向のみの場合を
示したが、y方向に関しても同様にy方向ずれ検出用の
回折格子を焼き付けておいて、もう一組y方向ずれ検出
用の光学系を設定するか、もしくは回転ステージを図1
の状態から90度回転して位相差検出を行い、そこから
180度回転して位相差検出を行って2つの信号からy
方向の位置ずれ量Δyを計測することができる。
Further, in the present embodiment, the case of only the x direction is shown, but in the y direction as well, a diffraction grating for detecting the y direction deviation is similarly burnt in, and another set of optical elements for detecting the y direction deviation is set. Set up the system or set the rotary stage as shown in Figure 1.
From the state, the phase difference is detected by rotating 90 degrees, and then the phase difference is detected by rotating 180 degrees from the two signals.
The positional deviation amount Δy in the direction can be measured.

【0065】図5は本発明の実施例2の要部概略図、図
6は図5の一部分の拡大説明図である。本実施例は図1
の実施例1に比べて、偏光ビームスプリッタ3とミラー
4a(4b)との間に偏光変換器26a(26b)を配
置した点が異なっており、その他は同じである。
FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention, and FIG. 6 is an enlarged explanatory view of a portion of FIG. This embodiment is shown in FIG.
The third embodiment is different from the first embodiment in that the polarization converter 26a (26b) is arranged between the polarization beam splitter 3 and the mirror 4a (4b), and the other points are the same.

【0066】図5において、2周波直交偏光レーザ1か
ら出射したp偏光で周波数f1の光20はコリメータレ
ンズ2をとおり、偏光ビームスプリッタ3を透過する。
その後偏光変換部26a をとおり、ミラー4aで偏向し
ウエハ16上の回折格子15a,15bを照射する。こ
のとき、回折格子15a,15bから生ずる+1次回折
光がウエハ16に対し垂直に回折するようにミラー4a
を設定している。
In FIG. 5, p-polarized light 20 having a frequency f1 emitted from the dual frequency orthogonal polarization laser 1 passes through the collimator lens 2 and the polarization beam splitter 3.
After that, the light is deflected by the mirror 4a through the polarization converter 26a, and the diffraction gratings 15a and 15b on the wafer 16 are irradiated with the light. At this time, the mirror 4a is arranged so that the + 1st order diffracted light generated from the diffraction gratings 15a and 15b is diffracted perpendicularly to the wafer 16.
Is set.

【0067】一方、2周波直交偏光レーザ1から出射し
たs偏光で周波数f2の光21はコリメータレンズ2を
とおり、偏光ビームスプリッタ3で反射し、その後偏光
変換部26b をとおり、ミラー4bで偏向し、回折格子
15a,15bを照射する。このとき、回折格子15
a,15bから生ずる−1次回折光がウエハ16に対し
垂直に回折するようにミラー4aを設定している。偏光
変換部26a ,26bはスイッチング装置(不図示)に
よりon,offの切り替えができ、on状態の場合は
偏光変換部26a に入射したp偏光の光は偏光方向を9
0度変えられs偏光の光として出射する。
On the other hand, the s-polarized light 21 having the frequency f2 emitted from the dual-frequency orthogonal polarization laser 1 passes through the collimator lens 2, is reflected by the polarization beam splitter 3, and then is passed through the polarization converter 26b and is deflected by the mirror 4b. , The diffraction gratings 15a and 15b are irradiated. At this time, the diffraction grating 15
The mirror 4a is set so that the −1st order diffracted light generated from a and 15b is diffracted perpendicularly to the wafer 16. The polarization converters 26a and 26b can be switched on and off by a switching device (not shown). In the on state, the p-polarized light incident on the polarization converter 26a has a polarization direction of 9
It is changed by 0 degrees and emitted as s-polarized light.

【0068】また、偏光変換部26b に入射したs 偏光
の光は偏光方向を90度変えられp偏光の光として出射
する。一方、off状態の時は偏光方向はそのままであ
る。なお、偏光変換部は例えば波長板などを用いて構成
することができる。
Further, the s-polarized light that has entered the polarization conversion unit 26b has its polarization direction changed by 90 degrees and is emitted as p-polarized light. On the other hand, in the off state, the polarization direction remains unchanged. The polarization conversion unit can be configured using, for example, a wave plate.

【0069】以下、本実施例における計測方法について
図6(A),(B)を用いて説明する。
The measuring method in this embodiment will be described below with reference to FIGS. 6 (A) and 6 (B).

【0070】偏光変換部26a 及び26b が共にoff
状態のとき、周波数f1(角周波数:w1 )でp偏光の
光20の回折格子15aから生ずる+1次回折光20a
の複素振幅表示u1aは、次のように書ける。
Both the polarization converters 26a and 26b are turned off.
In the state, the + 1st order diffracted light 20a generated from the diffraction grating 15a of the p-polarized light 20 at the frequency f1 (angular frequency: w1)
The complex amplitude display u1a of can be written as follows.

【0071】 u1a=u0exp{w1 ・t+φxa +φap} ・・・・・・・・(15) ここで、u0 は光20の振幅、φxa は回折格子15a
の光学系の基準線24からのx方向の位置ずれ量xa に
伴う位相変化であり、回折格子15a のピッチをpとし
たとき、φxa =2πxa /pと書ける。また、φapは
回折格子15aの材質と形状で決まるp偏光の光が回折
により受ける位相変化分である。
U1a = u0exp {w1.t + φxa + φap} (15) where u0 is the amplitude of the light 20 and φxa is the diffraction grating 15a.
Is a phase change associated with the amount xa of displacement of the optical system from the reference line 24 in the x direction, and can be written as φxa = 2πxa / p, where p is the pitch of the diffraction grating 15a. Further, φap is a phase change amount which the p-polarized light determined by the material and shape of the diffraction grating 15a receives by diffraction.

【0072】一方、周波数f2 (角周波数:w2 )でs
偏光の光21の回折格子15aから生ずる−1次回折光
21aの複素振幅表示u2aは、次のように書ける。
On the other hand, at frequency f2 (angular frequency: w2), s
The complex amplitude display u2a of the minus first-order diffracted light 21a generated from the diffraction grating 15a of the polarized light 21 can be written as follows.

【0073】 u2a=u0exp{w2 ・t−φxa +φas} ・・・・・・・・(16) またφasは回折格子15aの材質と形状で決まるs 偏光
の光21が回折により受ける位相変化分である。
U2a = u0exp {w2 · t−φxa + φas} (16) Further, φas is a phase change amount that the s-polarized light 21 receives by diffraction, which is determined by the material and shape of the diffraction grating 15a. is there.

【0074】また、周波数f1 (角周波数:w1 )でp
偏光の光20の回折格子15bから生ずる+1次回折光
20bの複素振幅表示u1bは、次のように書ける。
Further, at frequency f1 (angular frequency: w1), p
The complex amplitude display u1b of the + 1st order diffracted light 20b generated from the diffraction grating 15b of the polarized light 20 can be written as follows.

【0075】 u1b=u0exp{w1 ・t+φxb +φbp} ・・・・・・・・(17) ここで、u0 は光20の振幅、φxb は回折格子15b
の光学系の基準線24からのx方向の位置ずれ量xb に
伴う位相変化であり、回折格子15b のピッチをpとし
たとき、φxb =2πxb /pと書ける。また、φbpは
回折格子15bの材質と形状で決まるp偏光の光が回折
により受ける位相変化分である。
U1b = u0exp {w1.t + φxb + φbp} (17) where u0 is the amplitude of the light 20 and φxb is the diffraction grating 15b.
Is a phase change associated with the amount xb of displacement of the optical system from the reference line 24 in the x direction, and can be written as φxb = 2πxb / p, where p is the pitch of the diffraction grating 15b. Further, φbp is a phase change amount which the p-polarized light determined by the material and shape of the diffraction grating 15b receives by diffraction.

【0076】一方、周波数f2 (角周波数:w2 )でs
偏光の光21の回折格子15bから生ずる−1次回折光
21bの複素振幅表示u2bは、次のように書ける。
On the other hand, at frequency f2 (angular frequency: w2), s
The complex amplitude display u2b of the minus first-order diffracted light 21b generated from the diffraction grating 15b of the polarized light 21 can be written as follows.

【0077】 u2b=u0exp{w2 ・t−φxb +φbs} ・・・・・・・・(18) またφbsは回折格子15bの材質と形状で決まるs 偏光
の光が回折により受ける位相変化分である。
U2b = u0exp {w2 · t−φxb + φbs} (18) Further, φbs is a phase change amount that s-polarized light receives by diffraction, which is determined by the material and shape of the diffraction grating 15b. .

【0078】このとき、回折光20aと回折光21aを
ヘテロダイン干渉させてセンサー10aで得られるビー
ト信号(第1ビート信号)の交流成分Ia はI0 を振幅
として次のようになる。
At this time, the AC component Ia of the beat signal (first beat signal) obtained by the sensor 10a by causing the diffracted light 20a and the diffracted light 21a to heterodyne-interact is as follows with I0 as the amplitude.

【0079】 Ia =I0cos{(w1 −w2 )t+2φxa +(φap−φas)} ・・・・・・(19) また、回折光20bと回折光21bをヘテロダイン干渉
させてセンサー10bで得られるビート信号(第2ビー
ト信号)の交流成分Ib は次のようになる。
Ia = I0cos {(w1−w2) t + 2φxa + (φap−φas)} (19) Also, the beat signal obtained by the sensor 10b by heterodyne interference between the diffracted light 20b and the diffracted light 21b. The AC component Ib of the (second beat signal) is as follows.

【0080】 Ib =I0cos{(w1 −w2 )t+2φxb +(φbp−φbs)} ・・・・・・(20) (19),(20)式で表せる第1,第2ビート信号の
位相差Δφ1は、 Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・・・(21) ここで、φΔxは回折格子15a と回折格子15b のx
方向の相対的位置ずれ量Δxに伴う位相変化で、 φΔx=4πΔx/p ・・・・・・・・(22) である。
Ib = I0cos {(w1−w2) t + 2φxb + (φbp−φbs)} (20) The phase difference Δφ1 between the first and second beat signals represented by the equations (19) and (20). Is Δφ1 = 2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx + {(φap−φas) − (φbp−φbs)} (21) where , ΦΔx is the x of the diffraction grating 15a and the diffraction grating 15b.
The phase change associated with the relative positional deviation amount Δx in the direction is φΔx = 4πΔx / p (22)

【0081】一方偏光変換部26a 及び26b を共にo
n状態にしたときの回折光20a ,21a のセンサー1
0bで得られる干渉ビート信号(第3ビート信号)Ia
’は、回折格子15a の光学系の基準線24からのx
方向のずれ量をxa ’とすると次のように書ける。
On the other hand, both the polarization conversion units 26a and 26b are
Sensor 1 for diffracted light 20a, 21a in n state
0b interference beat signal (third beat signal) Ia
'Is x from the reference line 24 of the optical system of the diffraction grating 15a.
If the amount of deviation in the direction is xa ', then the following can be written.

【0082】 Ia ’=I0cos{(w1 −w2 )t+2φxa ’+(φas−φap)} ・・・・・・(23) また回折光20b ,21b のセンサー10aで得られる
干渉ビート信号Ib ’(第4ビート信号)は、回折格子
15b の光学系の基準線24からのx方向のずれ量をx
b ’とすると次のように書ける Ib ’=I0cos{(w1 −w2 )t+2φxb ’+(φbs−φbp)} ・・・・・・(24) ここで、(23)式から(24)式の第3,第4ビート
信号の位相差Δφ2をとると、 Δφ2=2(φxa ’−φxb ’)−{(φap−φas)−(φbp−φbs)} =2φΔx−{(φap−φas)−(φbp−φbs)} ・・・・・・(25) 演算器13で(21)式,(25)式で表される位相差
Δφ1,Δφ2の和Δφをとると、回折格子の形状、材
質により生じる誤差の項({}の項)が打ち消され、 Δφ=Δφ1+Δφ2 =4φΔx =8πΔx/p ・・・・・・・・(26) となる。
Ia ′ = I0cos {(w1−w2) t + 2φxa ′ + (φas−φap)} (23) Further, the interference beat signal Ib ′ (first number) obtained by the sensor 10a for the diffracted lights 20b and 21b 4 beat signal) is the deviation amount of the diffraction grating 15b from the reference line 24 of the optical system in the x direction.
If b'is written, then Ib '= I0cos {(w1-w2) t + 2φxb' + (φbs-φbp)} (24) Here, from equation (23) to equation (24) If the phase difference Δφ2 of the third and fourth beat signals is taken, Δφ2 = 2 (φxa '−φxb')-{(φap-φas)-(φbp-φbs)} = 2φΔx-{(φap-φas)-( φbp−φbs)} (25) When the sum Δφ of the phase differences Δφ1 and Δφ2 represented by the equations (21) and (25) is calculated by the calculator 13, depending on the shape and material of the diffraction grating, The generated error term ({} term) is canceled out, and Δφ = Δφ1 + Δφ2 = 4φΔx = 8πΔx / p (26)

【0083】したがって、回折格子15a ,15b の相
対的な位置ずれ量Dx、すなわちn回目の露光で焼き付
けられた回路パターンとn+1回目の露光で焼き付けら
れた回路パターンの位置ずれを次式により求めることが
できる。
Therefore, the relative positional deviation amount Dx of the diffraction gratings 15a and 15b, that is, the positional deviation between the circuit pattern printed in the nth exposure and the circuit pattern printed in the (n + 1) th exposure is calculated by the following equation. You can

【0084】 Δx=Δφ・P/(8π) ・・・・・・・・(27) なお、検出光学系に対するマークの回転成分により生じ
る誤差は、例えば回折格子15a の焼き付けの際に同時
にずれ量のない2つの回折格子からなる基準マークをウ
エハ上に焼き付けて検出すれば、その値を補正値として
光学系のオフセット値並びに回転成分により生じる誤差
が取り除くことができる。
Δx = Δφ · P / (8π) (27) The error caused by the rotation component of the mark with respect to the detection optical system is, for example, the amount of deviation at the same time when the diffraction grating 15a is printed. If a reference mark composed of two diffractive gratings without a mark is printed on the wafer and detected, the value can be used as a correction value to eliminate the error caused by the offset value and the rotation component of the optical system.

【0085】また、本実施例では、x方向のみの場合を
示したが、y方向に関しても同様にy方向ずれ検出用の
回折格子を焼き付けておいて、もう一組y方向ずれ検出
用の光学系を設定するか、もしくは回転ステージを図5
の状態から90度回転して位相差検出を行い、そこから
180度回転して位相差検出を行って2つの信号からy
方向の位置ずれ量Δyを計測することができる。
In this embodiment, the case of only the x direction is shown, but in the y direction as well, a diffraction grating for detecting the y direction shift is similarly burnt in, and another set of optical elements for detecting the y direction shift is set. Set up the system or rotate the stage as shown in Figure 5.
From the state, the phase difference is detected by rotating 90 degrees, and then the phase difference is detected by rotating 180 degrees from the two signals.
The positional deviation amount Δy in the direction can be measured.

【0086】図7は本発明の実施例3の要部概略図、図
8は図7の一部分の拡大説明図である。本実施例は図1
の実施例1に比べて、2周波直交偏光レーザ1から出射
した光をコリメーターレンズ2を通った後、偏向ミラー
32を用いて偏光ビームスプリッタ3に入射する面を切
り替えている点が異なっており、その他の構成は同じで
ある。
FIG. 7 is a schematic view of the essential portions of Embodiment 3 of the present invention, and FIG. 8 is an enlarged explanatory view of a portion of FIG. This embodiment is shown in FIG.
2 is different from that of the first embodiment in that after the light emitted from the dual-frequency orthogonal polarization laser 1 passes through the collimator lens 2, the plane of incidence on the polarization beam splitter 3 is switched using the deflection mirror 32. The other configurations are the same.

【0087】すなわち、図8(A),(B)に示すよう
に、左側からp偏光で周波数f1の光20を、右側から
s偏光で周波数f2の光21を回折格子15a ,15b
へ照射する場合と、左側からs偏光で周波数f2の光4
0、右側からp偏光で周波数f1の光41を照射する場
合と2通りに切り替えている。
That is, as shown in FIGS. 8A and 8B, the p-polarized light 20 having the frequency f1 from the left side and the s-polarized light 21 having the frequency f2 from the right side are diffracted by the diffraction gratings 15a and 15b.
When irradiating to the
0, the case of irradiating the light 41 of the frequency f1 with p polarization from the right side is switched to two ways.

【0088】以下、本実施例の計測方法について図8
(A),(B)を用いて説明する。
The measuring method of this embodiment will be described below with reference to FIG.
A description will be given using (A) and (B).

【0089】偏向ミラー32で反射しない場合のとき
は、実施例1でウエハを180度回転する前の信号と同
じであるから、(8)式と同じになり、第1,第2ビー
ト信号の位相差Δφ1は Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・(28) 一方偏向ミラー32で反射させミラー33,34を介し
て偏光ビームスプリッタ3に入射させたときの回折光4
0a ,41a のセンサー10a で得られる干渉ビート信
号(第3ビート信号)Ia ’は、回折格子15a の光学
系の基準線24からのx方向のずれ量をxa ’とすると
次のように書ける。
When the light is not reflected by the deflecting mirror 32, it is the same as the signal before rotating the wafer by 180 degrees in the first embodiment, and therefore it is the same as the expression (8) and the first and second beat signals The phase difference Δφ1 is Δφ1 = 2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx + {(φap−φas) − (φbp−φbs)} (28) Diffracted light 4 when reflected by the mirror 32 and incident on the polarization beam splitter 3 via the mirrors 33 and 34
The interference beat signal (third beat signal) Ia 'obtained by the sensors 10a of 0a and 41a can be written as follows, where xa' is the shift amount of the diffraction grating 15a from the reference line 24 of the optical system.

【0090】 Ia ’=I0cos{(w1 −w2 )t−2φxa ’+(φap−φas)} ・・・・(29) また回折光40b ,41b のセンサー10b で得られる
干渉ビート信号(第4ビート信号)Ib ’は、回折格子
15b の光学系の基準線24からのx方向のずれ量をx
b ’とすると次のように書ける Ib ’=I0cos{(w1 −w2 )t−2φxb ’+(φbp−φbs)} ・・・・(30) ここで、(29)式から(30)式の第3,第4ビート
信号の位相差Δφ2をとると、 Δφ2=−2(φxa ’−φxb ’)+{(φap−φas)−(φbp−φbs)} =−2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・(31) 演算器13で(28)式,(31)式で表される位相差
Δφ1,Δφ2の差Δφをとると、回折格子の形状、材
質により生じる誤差の項({}の項)が打ち消され、 Δφ=Δφ1−Δφ2 =4φΔx =8πΔx/p ・・・・・・・・(32) となる。
Ia ′ = I0cos {(w1−w2) t−2φxa ′ + (φap−φas)} (29) Further, the interference beat signal (the fourth beat) obtained by the sensor 10b of the diffracted lights 40b and 41b. Signal) Ib 'is the amount of deviation of the diffraction grating 15b from the reference line 24 of the optical system in the x direction by x.
Let b'be written as follows: Ib '= I0cos {(w1-w2) t-2φxb' + (φbp-φbs)} (30) Here, from equation (29) to equation (30) When the phase difference Δφ2 of the third and fourth beat signals is taken, Δφ2 = -2 (φxa '-φxb') + {(φap-φas)-(φbp-φbs)} = -2φΔx + {(φap-φas)- (Φbp−φbs)} (31) When the difference Δφ between the phase differences Δφ1 and Δφ2 represented by the equations (28) and (31) is calculated by the computing unit 13, it is caused by the shape and material of the diffraction grating. The error term ({} term) is canceled out, and Δφ = Δφ1−Δφ2 = 4φΔx = 8πΔx / p (32)

【0091】したがって、回折格子15a ,15b の相
対的な位置ずれ量Δx、すなわちn回目の露光で焼き付
けられた回路パターンとn+1回目の露光で焼き付けら
れた回路パターンの位置ずれを次式により求めることが
できる。
Therefore, the relative positional deviation amount Δx of the diffraction gratings 15a and 15b, that is, the positional deviation between the circuit pattern printed in the nth exposure and the circuit pattern printed in the (n + 1) th exposure is calculated by the following equation. You can

【0092】 Δx=Δφ・P/(8π) ・・・・・・・・(33) 図9は本発明の実施例4の要部概略図、図10,図11
は図9の一部分の拡大説明図である。本実施例は図1の
実施例1に比べて、2周波直交偏光レーザ1から出射し
た光をコリメーターレンズ2を通った後、ビームスプリ
ッタ35で二分して、各々偏光光学素子38に入射させ
ている。この偏光光学素子38は図10に示すように、
透過部38a、p偏光の光を透過させる偏光板38b、
遮光部38c及びs偏光の光を透過させる偏光板38d
から構成されており、アクチュエータ37によりスライ
ドさせて偏光光学素子38への入射位置を2通りに変え
ている点が異なっており、その他の構成は同じである。
Δx = Δφ · P / (8π) ... (33) FIG. 9 is a schematic view of the essential portions of Embodiment 4 of the present invention, FIGS.
FIG. 10 is an enlarged explanatory diagram of a part of FIG. 9. In this embodiment, as compared with the first embodiment of FIG. 1, after the light emitted from the dual-frequency orthogonal polarization laser 1 passes through the collimator lens 2, the light is split into two by the beam splitter 35 and is made incident on the respective polarization optical elements 38. ing. This polarization optical element 38, as shown in FIG.
A transmitting portion 38a, a polarizing plate 38b that transmits p-polarized light,
Light-shielding portion 38c and polarizing plate 38d that transmits s-polarized light
Except that the actuator 37 is slid to change the incident position on the polarization optical element 38 in two ways, and the other configurations are the same.

【0093】本実施例では図11(A),(B)に示す
ように、左側からp偏光で周波数f1の光20を、右側
からs偏光で周波数f2の光21を回折格子15a ,1
5bへ照射する場合と、左側からp偏光で周波数f1の
光20と同じく左側からs偏光で周波数f2の光39を
照射する場合と2通りに切り替えている。
In this embodiment, as shown in FIGS. 11 (A) and 11 (B), the p-polarized light 20 having the frequency f1 and the s-polarized light 21 having the frequency f2 from the right are diffracted by the diffraction gratings 15a, 1a.
5b is irradiated, and the left side is p-polarized light 20 of frequency f1 and the left side is s-polarized light 39 of frequency f2.

【0094】以下、本実施例の計測方法について図10
及び図11を用いて説明する。
The measurement method of this embodiment will be described below with reference to FIG.
And FIG. 11 will be described.

【0095】偏光光学素子38への入射状態が図10
(A)の場合は、実施例1でウエハを180度回転する
前の信号と同じであるから、(8)式と同じになり、第
1,第2ビート信号の位相差Δφ1は Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・(34) 一方、偏光光学素子38をスライドさせ図10(B)の
入射状態にしたときの回折光20a ,39a のセンサー
10a で得られる干渉ビート信号(第3ビート信号)I
a ’は、回折格子15a の位置ずれに伴う位相変化の項
は含まれず次のように書ける。
The state of incidence on the polarization optical element 38 is shown in FIG.
In the case of (A), since it is the same as the signal before rotating the wafer 180 degrees in the first embodiment, it becomes the same as the expression (8), and the phase difference Δφ1 of the first and second beat signals is Δφ1 = 2. (Φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx + {(φap−φas) − (φbp−φbs)} (34) On the other hand, the polarization optical element 38 is slid. The interference beat signal (third beat signal) I obtained by the sensor 10a of the diffracted lights 20a and 39a in the incident state of FIG.
The term a'does not include the term of the phase change due to the displacement of the diffraction grating 15a and can be written as follows.

【0096】 Ia ’=I0cos{(w1 −w2 )t+(φap−φas)} ・・・・・・(35) また回折光20b ,39b のセンサー10b で得られる
干渉ビート信号(第4ビート信号)Ib ’は、回折格子
15b の位置ずれに伴う位相変化の項は含まれず次のよ
うに書ける Ib ’=I0cos{(w1 −w2 )t+(φbp−φbs)} ・・・・・・(36) ここで、(35)式から(36)式の第3,第4ビート
信号の位相差Δφ2をとると、 Δφ2={(φap−φas)−(φbp−φbs)} ・・・・・・・・(37) 演算器13で(34)式,(37)式で表される位相差
Δφ1,Δφ2の差Δφをとると、回折格子の形状、材
質により生じる誤差の項({}の項)が打ち消され、 Δφ=Δφ1−Δφ2 =2・φΔx =4π・Δx/p ・・・・・・・・(38) となる。
Ia '= I0cos {(w1−w2) t + (φap−φas)} (35) Further, the interference beat signal (fourth beat signal) obtained by the sensor 10b of the diffracted lights 20b and 39b. Ib 'does not include the term of the phase change due to the displacement of the diffraction grating 15b and can be written as Ib' = I0cos {(w1-w2) t + (φbp-φbs)} (36) Here, when the phase difference Δφ2 of the third and fourth beat signals of the equations (35) to (36) is taken, Δφ2 = {(φap−φas) − (φbp−φbs)} ... (37) When the difference Δφ between the phase differences Δφ1 and Δφ2 represented by the equations (34) and (37) is calculated by the computing unit 13, the term of error (term of {}) caused by the shape and material of the diffraction grating Is canceled and Δφ = Δφ1−Δφ2 = 2 · φΔx = 4π · Δx / p ... (38)

【0097】したがって、回折格子15a ,15b の相
対的な位置ずれ量Δx、すなわちn回目の露光で焼き付
けられた回路パターンとn+1回目の露光で焼き付けら
れた回路パターンの位置ずれを次式により求めることが
できる。
Therefore, the relative positional deviation amount Δx of the diffraction gratings 15a and 15b, that is, the positional deviation between the circuit pattern printed in the nth exposure and the circuit pattern printed in the (n + 1) th exposure is calculated by the following equation. You can

【0098】 Δx=Δφ・P/(4π) ・・・・・・・・(39) 図12は本発明の実施例5の要部概略図である。実施例
1〜4においては光学系を変更してそれぞれ2回の計測
値を用いて、回折格子の材質や形状に起因する誤差を補
正する方法を示した。これに対し、本実施例は、あらか
じめ、誤差補正用の光学系を設けておいて同時に2つの
信号を検出することによりスループットの向上をはかる
ことを目的としている。
Δx = Δφ · P / (4π) (39) FIG. 12 is a schematic view of the essential portions of Embodiment 5 of the present invention. In Examples 1 to 4, the method of correcting the error caused by the material and shape of the diffraction grating by changing the optical system and using the measured values twice respectively was shown. On the other hand, the present embodiment aims at improving the throughput by providing an optical system for error correction in advance and detecting two signals at the same time.

【0099】また、図18は本実施例の計測シーケンス
のフローチャートである。
FIG. 18 is a flow chart of the measurement sequence of this embodiment.

【0100】図12において、2周波直交偏光レーザ1
から出射した光は、コリメーターレンズ47を介しミラ
ー5によりウエハ16に対し垂直に入射するように偏向
される。回折格子15aおよび15bからの回折光はレ
ンズ48(49)を介しミラー4a(4b)で偏向され
偏光ビームスプリッタ51へ入射する。この偏光ビーム
スプリッタ51により回折格子15a,15bから生じ
るp偏光で周波数f1の光の+1次回折光とs偏光で周
波数f2の光の−1次回折光の光束対と、回折格子15
a,15bから生ずるp偏光で周波数f1の−1次回折
光とs偏光で周波数f2の+1次回折光の光束対に2分
され、後者はレンズ52を介しCCDカメラ53に入射
する。
In FIG. 12, a dual-frequency orthogonal polarization laser 1
The light emitted from is deflected by the mirror 5 via the collimator lens 47 so as to be vertically incident on the wafer 16. The diffracted light from the diffraction gratings 15a and 15b is deflected by the mirror 4a (4b) via the lens 48 (49) and enters the polarization beam splitter 51. This polarization beam splitter 51 produces a pair of + 1-order diffracted light of p-polarized light of frequency f1 and -1st-order diffracted light of s-polarized light of frequency f2 generated from the diffraction gratings 15a and 15b;
The p-polarized light generated from a and 15b is divided into a light flux pair of the −1st-order diffracted light of frequency f1 and the s-polarized light of + 1st-order diffracted light of frequency f2.

【0101】一方、前者の光束対はグラントムソンプリ
ズム7を介しエッジミラー8で回折格子15aと回折格
子15bからの回折光に分離された後センサー10c及
びセンサー10dで光電検出されそれぞれ位置ずれビー
ト信号(第1,第2ビート信号)Ia ,Ib になる。
On the other hand, the former luminous flux pair is separated into the diffracted light from the diffraction grating 15a and the diffraction grating 15b by the edge mirror 8 via the Glan-Thompson prism 7, and is photoelectrically detected by the sensors 10c and 10d, respectively, and the positional deviation beat signals are detected. (First and second beat signals) Ia and Ib.

【0102】また、ウエハ16と偏光ビームスプリッタ
5の間にはハーフミラー50が設けられており一部回折
光はグラントムソンプリズム7を介してエッジミラー8
で回折格子15aと回折格子15bからの回折光に分離
された後センサー10a及びセンサー10bで光電検出
され補正ビート信号(第3,第4ビート信号)Ira,I
rbが得られる。
Further, a half mirror 50 is provided between the wafer 16 and the polarization beam splitter 5, and a part of the diffracted light passes through the Glan-Thompson prism 7 and the edge mirror 8.
After being separated into the diffracted light from the diffraction grating 15a and the diffraction grating 15b by means of photoelectric detection by the sensors 10a and 10b, corrected beat signals (third and fourth beat signals) Ira, I
rb is obtained.

【0103】位相差計11aで得られる補正用位相差Δ
φ2(Ira−Irb)は、前述の(37)式と同じで次の
ように表せる。
Correcting phase difference Δ obtained by the phase difference meter 11a
φ2 (Ira-Irb) is the same as the equation (37) and can be expressed as follows.

【0104】 Δφ2={(φap−φas)+(φbp−φbs)} ・・・・・・・・(40) また、位相差計11bで検出される第1,第2ビート信
号の位相差Δφ1(Ia−Ib )は、 Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・(41) となる。
Δφ2 = {(φap−φas) + (φbp−φbs)} (40) Further, the phase difference Δφ1 between the first and second beat signals detected by the phase difference meter 11b. (Ia−Ib) is Δφ1 = 2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx + {(φap−φas) − (φbp−φbs)} ... (41) ).

【0105】ここで、演算器13で(41)式,(4
0)式で表される位相差Δφ1,Δφ2の差Δφをとる
と、回折格子の形状、材質により生じる誤差の項({}
の項)が打ち消され、 Δφ=Δφ1−Δφ2 =2・φΔx =4πΔx/p ・・・・・・・・(42)となる。
Here, in the arithmetic unit 13, equations (41), (4
If the difference Δφ between the phase differences Δφ1 and Δφ2 expressed by the equation (0) is taken, the term of error ({} caused by the shape and material of the diffraction grating is
Is canceled out, and Δφ = Δφ1−Δφ2 = 2 · φΔx = 4πΔx / p (42)

【0106】したがって、回折格子15a ,15b の相
対的な位置ずれ量Δx、すなわちn回目の露光で焼き付
けられた回路パターンとn+1回目の露光で焼き付けら
れた回路パターンの位置ずれを次式により求めることが
できる。
Therefore, the relative positional deviation amount Δx of the diffraction gratings 15a and 15b, that is, the positional deviation between the circuit pattern printed in the nth exposure and the circuit pattern printed in the (n + 1) th exposure is calculated by the following equation. You can

【0107】 Δx=Δφ・P/(4π) ・・・・・・・・(43) 図13は本発明の実施例6の要部概略図である。本実施
例は半導体素子製造用の露光装置において装置本体に対
しウエハの位置決めを行う位置決め装置に適用した場合
を示している。
Δx = Δφ · P / (4π) (43) FIG. 13 is a schematic view of the essential portions of Embodiment 6 of the present invention. This embodiment shows a case where the exposure apparatus for manufacturing a semiconductor element is applied to a positioning apparatus for positioning a wafer with respect to the apparatus main body.

【0108】図13において、2周波直交偏光レーザ1
から出射した光は、コリメーターレンズ47を介しミラ
ー5によりウエハ16に対し垂直に入射するように偏向
される。ウエハ16上のアライメントマークである回折
格子15からの回折光はレンズ48(49)を介しミラ
ー4a(4b)で偏向され偏光ビームスプリッタ51へ
入射する。この偏光ビームスプリッタ51により回折格
子15から生ずるp偏光で周波数f1の光の+1次回折
光とs偏光で周波数f2の光の−1次回折光の光束対
と、回折格子から生ずるp偏光で周波数f1の−1次回
折光とs偏光で周波数f2の+1次回折光の光束対に2
分され、前者の光束対はグラントムソンプリズム7とレ
ンズ55を介しセンサー10aで位置ずれビート信号
(第1ビート信号)Ia になる。
In FIG. 13, a dual-frequency orthogonal polarization laser 1
The light emitted from is deflected by the mirror 5 via the collimator lens 47 so as to be vertically incident on the wafer 16. Diffracted light from the diffraction grating 15, which is an alignment mark on the wafer 16, is deflected by the mirror 4a (4b) via the lens 48 (49) and enters the polarization beam splitter 51. This polarization beam splitter 51 produces a pair of + 1st-order diffracted light of p-polarized light of frequency f1 and -1st-order diffracted light of s-polarized light of frequency f2 and p-polarized light of frequency f1 generated by the diffraction grating. 2 in the luminous flux pair of the + 1st-order diffracted light and the s-polarized light and the + 1st-order diffracted light of frequency f2
The former luminous flux pair becomes a positional deviation beat signal (first beat signal) Ia at the sensor 10a via the Glan-Thompson prism 7 and the lens 55.

【0109】一方後者の光束対はグラントムソンプリズ
ム7とレンズ60を介しセンサー10bで位置ずれビー
ト信号(第2ビート信号)Ib になる。
On the other hand, the latter light flux pair becomes a positional deviation beat signal (second beat signal) Ib at the sensor 10b via the Glan-Thompson prism 7 and the lens 60.

【0110】このとき、位相差計11で検出される第
1,第2ビート信号の位相差Δφ(Ia −Ib )は、 Δφ={φx+(φp −φs )}−{−φx+(φp −φs )} =2φx ・・・・・・(44) となる。
At this time, the phase difference Δφ (Ia −Ib) between the first and second beat signals detected by the phase difference meter 11 is Δφ = {φx + (φp −φs)} − {− φx + (φp −φs )} = 2φx (44)

【0111】ここで、φxはウエハのアライメントマー
ク(回折格子)の光学系の基準線からの位置ずれ量xに
伴う位相変化量でφx=4πx/pであり、φp ,φs
はそれぞれp偏光の光とs偏光の光が回折格子15で回
折する際にうける位置ずれによらない位相変化量であ
る。
Here, φx is the amount of phase change associated with the amount x of displacement of the alignment mark (diffraction grating) of the wafer from the reference line of the optical system, and φx = 4πx / p, where φp and φs
Is the amount of phase change that does not depend on the positional deviation received when the p-polarized light and the s-polarized light are diffracted by the diffraction grating 15.

【0112】回折格子15のすなわちウエハ16の露光
装置に対する位置ずれ量xを、演算器13で次式により
求めることができる。
The positional shift amount x of the diffraction grating 15, that is, the wafer 16 with respect to the exposure device can be calculated by the following equation by the calculator 13.

【0113】 x=Δφ・P/(4π) ・・・・・・・・(45) この後、検出した位置ずれ量x分ステージを駆動させ
る。
X = Δφ · P / (4π) (45) Thereafter, the stage is driven by the detected position shift amount x.

【0114】図14は本発明の実施例7の要部概略図、
図15は図14の一部分の拡大説明図である。本実施例
はX線半導体露光装置のアライメント装置部に適用した
場合を示している。
FIG. 14 is a schematic view of the essential portions of Embodiment 7 of the present invention.
FIG. 15 is an enlarged explanatory diagram of a part of FIG. This embodiment shows a case where it is applied to an alignment device section of an X-ray semiconductor exposure apparatus.

【0115】図15は本実施例におけるマスク65上の
アライメントマークである回折格子15aとウエハ16
上のアライメントマークである回折格子15bと入射光
スポット23及び回折方向の関係を示しており、マスク
65とウエハ16の間にはz方向に10〜30μmのギ
ャップがあり、また回折格子15aと15bはy方向に
わずかにずれており重なっていない。
FIG. 15 shows a diffraction grating 15a which is an alignment mark on the mask 65 and the wafer 16 in this embodiment.
The relationship between the diffraction grating 15b serving as the upper alignment mark, the incident light spot 23, and the diffraction direction is shown. There is a gap of 10 to 30 μm in the z direction between the mask 65 and the wafer 16, and the diffraction gratings 15a and 15b. Are slightly offset in the y direction and do not overlap.

【0116】図14において、2周波直交偏光レーザ1
から出射した光は、コリメーターレンズ47を介しミラ
ー5によりウエハ16に対し垂直に入射するように偏向
される。マスク65上の回折格子15aおよびウエハ1
6上の回折格子15bから生ずる回折光はレンズ48
(49)を介しミラー4a(4b)で偏向され偏光ビー
ムスプリッタ51へ入射する。
In FIG. 14, a dual-frequency orthogonal polarization laser 1
The light emitted from is deflected by the mirror 5 via the collimator lens 47 so as to be vertically incident on the wafer 16. Diffraction grating 15a on mask 65 and wafer 1
The diffracted light generated from the diffraction grating 15b on
It is deflected by the mirror 4a (4b) via (49) and enters the polarization beam splitter 51.

【0117】この偏光ビームスプリッタ51により回折
格子15a,15bからのp偏光で周波数f1の光の+
1次回折光とs偏光で周波数f2の光の−1次回折光の
光束対と、回折格子15a,15bからのp偏光で周波
数f1の−1次回折光とs偏光で周波数f2の+1次回
折光の光束対に2分され、前者の光束対はグラントムソ
ンプリズム7を介しエッジミラー8で回折格子15aと
回折格子15bからの回折光に分離された後、レンズ6
2a(62b)を介しセンサー10a(センサー10
b)で光電検出されそれぞれ位置ずれビート信号(第
1,第2ビート信号)Ia1,Ib1になる。
By this polarization beam splitter 51, the p-polarized light from the diffraction gratings 15a and 15b becomes +
A pair of -1st-order diffracted light of the 1st-order diffracted light and s-polarized light of frequency f2, and a -1st-order diffracted light of p-polarized light of frequency f1 and + 1st-order diffracted light of s-polarized light of frequency f2 from diffraction gratings 15a and 15b The former light flux pair is divided into two, and is separated into the diffracted light from the diffraction grating 15a and the diffraction grating 15b by the edge mirror 8 via the Glan-Thompson prism 7 and then the lens 6
2a (62b) through the sensor 10a (sensor 10
Photoelectrically detected in b), the positional shift beat signals (first and second beat signals) Ia1 and Ib1 are obtained.

【0118】後者の光束対はグラントムソンプリズム7
を介しエッジミラー8で回折格子15aと回折格子15
bからの回折光に分離された後、レンズ62c(62
d)を介しセンサー10c(センサー15d)で光電検
出され位置ずれビート信号(第3,第4ビート信号)I
a2,Ib2になる。
The latter luminous flux pair is the Glan-Thompson prism 7
Through the edge mirror 8 through the diffraction grating 15a and the diffraction grating 15
After being separated into the diffracted light from b, the lens 62c (62
position detection beat signal (third and fourth beat signals) I which is photoelectrically detected by the sensor 10c (sensor 15d) via d)
It becomes a2 and Ib2.

【0119】位相差計11aで得られる第1,第2ビー
ト信号の位相差Δφ1(Ia1−Ib1)は、次のように表
せる。
The phase difference Δφ1 (Ia1-Ib1) of the first and second beat signals obtained by the phase difference meter 11a can be expressed as follows.

【0120】 Δφ1=2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =2φΔx{(φap−φas)−(φbp−φbs)} ・・・・(46) また、位相差計11bで検出される第3,第4ビート信
号の位相差Δφ2(Ia2−Ib2)は、 Δφ2=−2(φxa −φxb )+{(φap−φas)−(φbp−φbs)} =−2φΔx+{(φap−φas)−(φbp−φbs)} ・・・・(47) となる。
Δφ1 = 2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = 2φΔx {(φap−φas) − (φbp−φbs)} ... (46) Also, The phase difference Δφ2 (Ia2-Ib2) of the third and fourth beat signals detected by the phase difference meter 11b is Δφ2 = -2 (φxa−φxb) + {(φap−φas) − (φbp−φbs)} = − 2φΔx + {(φap−φas) − (φbp−φbs)} (47)

【0121】ここで、φxa ,φxb はそれぞれマスク
65上の回折格子15aおよびウエハ16上の回折格子
15bの光学系の基準からのずれ量xa ,xb に伴う位
相変化であり、φxa =4πxa /p,φxb =4πx
b /pである。また、φap,φasはそれぞれp偏光の
光、s偏光の光が回折格子15aで回折する際に受ける
位相変化で、露光プロセスでマスクを交換した場合には
値が変化する。φbp,φbsはそれぞれp偏光の光、s偏
光の光が回折格子15bで回折する際に受ける位相変化
で、露光プロセスで回折格子15bの形状、材質が変わ
った場合に値が変化する。
Here, φxa and φxb are phase changes associated with the deviation amounts xa and xb of the diffraction grating 15a on the mask 65 and the diffraction grating 15b on the wafer 16 from the reference of the optical system, respectively, and φxa = 4πxa / p , Φxb = 4πx
b / p. Further, φap and φas are phase changes received when the p-polarized light and the s-polarized light are diffracted by the diffraction grating 15a, and the values change when the mask is replaced in the exposure process. φbp and φbs are phase changes received when p-polarized light and s-polarized light are diffracted by the diffraction grating 15b, and their values change when the shape and material of the diffraction grating 15b are changed in the exposure process.

【0122】演算器13で(46)式,(47)式で表
される位相差Δφ1,Δφ2の差Δφをとると、回折格
子の形状、材質により生じる誤差の項({}の項)が打
ち消され、 Δφ=Δφ1−Δφ2 =2φΔx =4πΔx/p ・・・・・・・・(48) となる。
When the difference Δφ between the phase differences Δφ1 and Δφ2 represented by the equations (46) and (47) is calculated by the computing unit 13, the error term ({} term) caused by the shape and material of the diffraction grating becomes It is canceled and Δφ = Δφ1−Δφ2 = 2φΔx = 4πΔx / p (48)

【0123】したがって、回折格子15a ,15b の相
対的な位置ずれ量Δx、マスクに対するウエハの相対的
位置ずれを次式により求めることができる。
Therefore, the relative displacement amount Δx of the diffraction gratings 15a and 15b and the relative displacement of the wafer with respect to the mask can be obtained by the following equations.

【0124】 Δx=Δφ・p/(4π) ・・・・・・・・(49) Δxをゼロになるようにマスクまたはウエハを(あるい
は両方を)専用の制御系63または14で駆動させるこ
とによって高精度な位置合わせが可能になる。
Δx = Δφ · p / (4π) (49) Driving the mask or wafer (or both) with a dedicated control system 63 or 14 so that Δx becomes zero. This enables highly accurate alignment.

【0125】なお、本発明の各実施例では、マスクとウ
エハが近接している等倍露光装置で説明したが、もちろ
ん縮小投影露光にも応用可能である。
In each of the embodiments of the present invention, the same-magnification exposure apparatus in which the mask and the wafer are close to each other has been described, but it is of course applicable to reduction projection exposure.

【0126】図16は本発明の実施例8の一部分の概略
図である。実施例1〜7では光源として2周波直交偏光
ゼーマンレーザを用いた例を示したが、実施例1〜7に
おいて図16に示すように光音響光学素子を用いた光源
を用いても良い。
FIG. 16 is a schematic view of a part of the eighth embodiment of the present invention. In Examples 1 to 7, an example using a dual-frequency orthogonal polarization Zeeman laser was shown as a light source, but in Examples 1 to 7, a light source using a photoacoustic optical element as shown in FIG. 16 may be used.

【0127】図16において単一周波数レーザ71から
出射した光は偏光ビームスプリッタ72aに入射しその
偏光方向によって2分される。透過光は光音響光学素子
73aにより周波数変調され周波数がf1の光L1にな
り、一方反射光は光音響光学素子73bにより周波数f
2の光L2に変調される。この後偏光ビームスプリッタ
72bで合成することにより、同一光路を進むp偏光で
周波数f1の光とs偏光で周波数f2の光を得ている。
In FIG. 16, the light emitted from the single frequency laser 71 is incident on the polarization beam splitter 72a and is divided into two by the polarization direction. The transmitted light is frequency-modulated by the photoacoustic optical element 73a to become light L1 having a frequency f1, while the reflected light is frequency f by the photoacoustic optical element 73b.
2 light L2 is modulated. The Rukoto forming If this after polarization beam splitter 72b, to obtain the light of frequency f2 in light and s-polarized light of the frequency f1 in the p-polarized light traveling in the same optical path.

【0128】図22は本発明の実施例9の要部概略図で
ある。本実施例は図9の実施例4の位置ずれ検出装置に
回折格子の線幅情報を検出する為の各要素(97,9
8,9c,10c,99)を付加し、線幅測定装置とし
ての機能を併用されている点が異なっている。図22に
おいて、図9で示した要素と同一要素には同符番を付し
ている。本実施例において位置ずれ検出に関しては図9
の実施例4で説明したのと同じである。
FIG. 22 is a schematic view of the essential portions of Embodiment 9 of the present invention. In this embodiment, each element (97, 9) for detecting the line width information of the diffraction grating is added to the positional deviation detecting device of the fourth embodiment shown in FIG.
8, 9c, 10c, 99) is added, and the function as a line width measuring device is also used. 22, the same elements as those shown in FIG. 9 are designated by the same reference numerals. FIG. 9 shows the positional deviation detection in this embodiment.
This is the same as described in the fourth embodiment.

【0129】次に回折格子15の格子の線幅測定方法に
ついて説明する。本実施例において線幅測定のときには
偏光光学素子38をスライドさせてビームスプリッタ3
5を通過した光のみが偏光光学素子38の透過部38a
(図10(B)参照)を通過するようにしている。
Next, a method for measuring the line width of the diffraction grating 15 will be described. In this embodiment, when measuring the line width, the polarization optical element 38 is slid to move the beam splitter 3
Only the light passing through 5 transmits the transmitting portion 38a of the polarization optical element 38.
(See FIG. 10B).

【0130】本実施例において、二周波直交偏光レーザ
1から出射した光(周波数f1のp偏光と周波数f2の
s偏光)はビームスプリッタ97で反射光と透過光に分
割される。このうち反射光はグラントムソンプリズム9
8で偏光方向が揃えられてレンズ9cでセンサー10c
に集光される。グラントムソンプリズム98、レンズ9
cは基準ビート形成手段の一要素を構成している。この
ときセンサー10cでは、後述するような干渉ビート信
号(基準ビート信号)ICが得られる。
In this embodiment, the light emitted from the dual-frequency orthogonal polarization laser 1 (p-polarized light of frequency f1 and s-polarized light of frequency f2) is split by the beam splitter 97 into reflected light and transmitted light. Of these, the reflected light is the Glan-Thompson prism 9
The polarization direction is aligned at 8 and the lens 9c causes the sensor 10c.
Is focused on. Glan Thomson prism 98, lens 9
c constitutes an element of the reference beat forming means. At this time, the sensor 10c obtains an interference beat signal (reference beat signal) IC as described later.

【0131】一方、ビームスプリッタ97を透過した光
はコリメータレンズ2を介しビームスプリッタ35で二
分され、各々偏光光学素子38に入射する。ビームスプ
リッタ35で反射した光は偏光光学素子38の遮光部3
8cで遮光している。そしてビームスプリッタ35を透
過した光のみが回折格子15に入射するようにしてい
る。このとき回折格子15にはp偏光で周波数f1の光
20とs偏光で周波数f2の光39が入射している。
On the other hand, the light transmitted through the beam splitter 97 is divided into two by the beam splitter 35 via the collimator lens 2 and enters the polarization optical element 38. The light reflected by the beam splitter 35 is shielded by the light blocking portion 3 of the polarization optical element 38.
It is shielded by 8c. Then, only the light transmitted through the beam splitter 35 enters the diffraction grating 15. At this time, the p-polarized light 20 of frequency f1 and the s-polarized light 39 of frequency f2 are incident on the diffraction grating 15.

【0132】回折格子15で回折された同次数の回折光
のうち、例えばp偏光で周波数f1の1次回折光20c
とs偏光で周波数f2の1次回折光39cはミラー5で
反射し、順にレンズ6、グラントムソンプリズム7、エ
ッジミラー8を介し、レンズ9bによりセンサー10b
に集光している。ミラー5、レンズ6、グラントムソン
プリズム7、レンズ9b等は、計測ビート信号形成手段
の一要素を構成している。このときセンサー10bでは
回折光20cと39cの干渉ビート信号(計測ビート信
号)Ibが得られる。
Of the diffracted lights of the same order diffracted by the diffraction grating 15, for example, p-polarized first-order diffracted light 20c of frequency f1
The first-order diffracted light 39c of frequency f2 in the s-polarized light and the s-polarized light is reflected by the mirror 5, passes through the lens 6, the Glan-Thompson prism 7, and the edge mirror 8 in this order, and the sensor 9b passes through the lens 9b.
It is focused on. The mirror 5, the lens 6, the Glan-Thompson prism 7, the lens 9b and the like constitute one element of the measurement beat signal forming means. At this time, the sensor 10b obtains an interference beat signal (measurement beat signal) Ib of the diffracted lights 20c and 39c.

【0133】ここでセンサー10bで得られる干渉ビー
ト信号Ibは、回折格子15の位置ずれに伴う位相変化
の項は含まれず次のように書ける。φp,φsをそれぞ
れp偏光、s偏光の光の回折格子15の材質、形状によ
り異なる回折の際の位相変化量とすると Ib=IOexp{(w1−w2)t+(φp−φs)} ・・・・(50) となる。
Here, the interference beat signal Ib obtained by the sensor 10b does not include the term of the phase change due to the displacement of the diffraction grating 15, and can be written as follows. Ib = IOexp {(w1-w2) t + ([phi]-[phi] s)}, where [phi] p and [phi] s are the amounts of phase change during diffraction that differ depending on the material and shape of the diffraction grating 15 for p-polarized light and s-polarized light, respectively.・ (50)

【0134】一方、センサー10cで得られる基準ビー
ト信号Icは、次のように書ける Ic=IOexp{(w1−w2)t} ・・・・(51) ここで、(35)式から(36)式の位相差Δφをとる
と Δφ=φp−φs ・・・・・・(52) となる。
On the other hand, the reference beat signal Ic obtained by the sensor 10c can be written as follows: Ic = IOexp {(w1-w2) t} (51) Here, from the equation (35), (36) When the phase difference Δφ in the equation is taken, Δφ = φp−φs (52)

【0135】位相変化分φp,φsは回折格子15の材
質、形状に依存するが、今、材質を一定(例えばシリコ
ン上のレジストパターン)として、パターン厚を一定
(レジストパターンはスピンコートでnmオーダー程度
に制御されている)とすれば、位相差φp,φsは回折
格子15の各格子の線幅に依存することになる。
The phase changes φp and φs depend on the material and shape of the diffraction grating 15. Now, the material is constant (for example, a resist pattern on silicon) and the pattern thickness is constant (the resist pattern is spin-coated in nm order). The phase difference φp and φs depends on the line width of each grating of the diffraction grating 15.

【0136】本実施例ではセンサー10cからの基準ビ
ート信号Icを選択手段99で選択して位相差計11に
入力している。又センサー10bからの干渉ビート信号
Ibを位相差計11に入力している。そして位相差計1
1で(52)式の位相差Δφを求めて、これより回折格
子15の各格子の線幅を求めている。
In this embodiment, the reference beat signal Ic from the sensor 10c is selected by the selection means 99 and input to the phase difference meter 11. The interference beat signal Ib from the sensor 10b is input to the phase difference meter 11. And phase difference meter 1
The phase difference Δφ of the equation (52) is obtained in 1 and the line width of each grating of the diffraction grating 15 is obtained from this.

【0137】図23は光ステッパーの最適露光条件出し
ウエハを示す説明図である。同図はステッパーの露光量
とフォーカス位置を各ショット毎に変えてラインアンド
ベース等を焼きつけて所望の線幅になる露光条件を見つ
けるためのものである。通常、新しい半導体プロセスを
始めるときや、或いはステッパーの経時変化のため定期
的に最適露光条件を見つける必要がある。
FIG. 23 is an explanatory view showing a wafer for which optimum exposure conditions of the optical stepper are set. This figure is for finding the exposure condition for obtaining a desired line width by changing the exposure amount and focus position of the stepper for each shot and printing a line and base or the like. It is usually necessary to find optimum exposure conditions when starting a new semiconductor process or periodically because of stepper aging.

【0138】レジスト厚1μm、設計ラインアンドベー
ス1μmの回折格子をウエハ上に露光量、フォーカスを
種々と変えて焼き付けた。ショットAとショットBの回
折格子の線幅をレーザー顕微鏡を用いて計測したところ
0.99μmと0.81μmであった。同じウエハを図
22に示す本発明の線幅測定装置で測定したところ、位
相差Δφにして0.838ラジアン、0.524ラジア
ンであった。
A diffraction grating having a resist thickness of 1 μm and a design line and base of 1 μm was printed on the wafer while changing the exposure amount and focus. The line widths of the diffraction gratings of the shot A and the shot B were measured with a laser microscope and found to be 0.99 μm and 0.81 μm. When the same wafer was measured by the line width measuring apparatus of the present invention shown in FIG. 22, the phase difference Δφ was 0.838 radians and 0.524 radians.

【0139】図24に、本実施例における線幅と位相差
Δφの関係の実験結果を示す。信号安定性はビーム光路
が完全にコモンパスになっているため、空気揺らぎの影
響は全く受けず、位相差計の安定性に依存し、0.00
62ラジアンであった。この値は線幅に換算すると3.
5nmに相当し、数nmオーダーの分解能があることに
なる。尚、本実施例において絶対線幅を求めるとき、予
め測長SEM等を用いて構成しておけば良い。
FIG. 24 shows the experimental result of the relationship between the line width and the phase difference Δφ in this example. The signal stability is completely unaffected by air fluctuations because the beam optical path is completely common path, and depends on the stability of the phase difference meter.
It was 62 radians. This value is 3.
This corresponds to 5 nm and has a resolution of the order of several nm. In the present embodiment, when obtaining the absolute line width, it may be configured in advance by using a length measuring SEM or the like.

【0140】[0140]

【発明の効果】本発明によれば以上のように、回折格子
の材質または形状の変化により生じる位相変化を打ち消
す計測手段または補正手段を設けることにより、回折格
子の材質、形状の変化に対し位置ずれ検出誤差を生じな
いようにし、これにより半導体素子製造プロセスに影響
を受けずに高精度に位置ずれ検出が可能な位置ずれ検出
方法及びそれを用いた検出装置を達成することができ
る。
As described above, according to the present invention, by providing the measuring means or the correcting means for canceling the phase change caused by the change of the material or the shape of the diffraction grating, the position for the change of the material or the shape of the diffraction grating can be obtained. It is possible to achieve a positional deviation detection method and a detection apparatus using the positional deviation detection method that can detect the positional deviation with high accuracy without being affected by the semiconductor element manufacturing process.

【0141】また偏光方向の異なる2光束の同次数の回
折光の位相差を測定することにより、安価で扱いやすく
高精度な線幅計測方法及び線幅計測装置を達成すること
ができる。
Further, by measuring the phase difference between diffracted lights of the same order of two light fluxes having different polarization directions, it is possible to achieve a line width measuring method and a line width measuring device which are inexpensive, easy to handle and highly accurate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の光路を展開した説明図FIG. 2 is an explanatory diagram in which the optical path of FIG. 1 is expanded.

【図3】 図1の一部分の拡大説明図FIG. 3 is an enlarged explanatory view of a part of FIG.

【図4】 図1の一部分の拡大説明図FIG. 4 is an enlarged explanatory view of a part of FIG.

【図5】 本発明の実施例2の要部概略図FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【図6】 図5の一部分の拡大説明図FIG. 6 is an enlarged explanatory view of a part of FIG.

【図7】 本発明の実施例3の要部概略図FIG. 7 is a schematic view of the essential portions of Embodiment 3 of the present invention.

【図8】 図7の一部分の拡大説明図FIG. 8 is an enlarged explanatory diagram of a part of FIG.

【図9】 本発明の実施例4の要部概略図FIG. 9 is a schematic view of the essential portions of Embodiment 4 of the present invention.

【図10】 図9の一部分の拡大説明図FIG. 10 is an enlarged explanatory view of a part of FIG.

【図11】 図9の一部分の拡大説明図FIG. 11 is an enlarged explanatory view of a part of FIG.

【図12】 本発明の実施例5の要部概略図FIG. 12 is a schematic view of the essential portions of Embodiment 5 of the present invention.

【図13】 本発明の実施例6の要部概略図FIG. 13 is a schematic view of the essential portions of Embodiment 6 of the present invention.

【図14】 本発明の実施例7の要部概略図FIG. 14 is a schematic view of the essential portions of Embodiment 7 of the present invention.

【図15】 図14の一部分の拡大説明図FIG. 15 is an enlarged explanatory diagram of a part of FIG.

【図16】 本発明の実施例8の一部分の概略図FIG. 16 is a schematic view of a portion of Example 8 of the present invention.

【図17】 本発明の実施例1のフローチャートFIG. 17 is a flowchart of the first embodiment of the present invention.

【図18】 本発明の実施例5のフローチャートFIG. 18 is a flowchart of Embodiment 5 of the present invention.

【図19】 従来の位置ずれ検出装置の要部概略図FIG. 19 is a schematic view of a main part of a conventional positional deviation detecting device.

【図20】 図19の一部分の拡大説明図20 is an enlarged explanatory view of a part of FIG.

【図21】 図19の一部分の拡大説明図FIG. 21 is an enlarged explanatory view of a part of FIG.

【図22】 本発明の実施例9の要部概略図FIG. 22 is a schematic view of the essential portions of Embodiment 9 of the present invention.

【図23】 図22のウエハ面上の説明図FIG. 23 is an explanatory diagram on the wafer surface of FIG. 22.

【図24】 回折格子の線幅を位相差との関係を示す説
明図
FIG. 24 is an explanatory diagram showing the relationship between the line width of the diffraction grating and the phase difference.

【符号の説明】[Explanation of symbols]

1 :2周波直交レーザ 2 ,6 ,9a,9b:レンズ 3 :偏光ビームスプリッタ 4a,4b,5 :ミラー 7 :グラントムソンプリズム 8 :エッジミラー 10a,10b :センサー 11:位相差計 12:記憶装置 13:演算器 14:ステージ制御装置 15a,15b :回折格子 16:ウエハ 17:回転ステージ 18:yステージ 19:xステージ 26a,26b :偏光変換部 32:偏向ミラー 38:偏光光学素子 50:ハーフミラー 51:偏光ビームスプリッタ 65:マスク 97:ビームスプリッタ 98:グラントムソンプリズム 99:信号切り替え制御部 9c:レンズ 10c: センサー 1: Dual frequency orthogonal laser 2, 6, 9a, 9b: Lens 3: Polarization beam splitter 4a, 4b, 5: Mirror 7: Gran Thomson prism 8: Edge mirror 10a, 10b: Sensor 11: Phase difference meter 12: Storage device 13: arithmetic unit 14: Stage control device 15a, 15b: Diffraction grating 16: Wafer 17: Rotating stage 18: y stage 19: x stage 26a, 26b: Polarization converter 32: Deflection mirror 38: Polarizing optical element 50: Half mirror 51: Polarizing beam splitter 65: Mask 97: Beam splitter 98: Gran Thomson prism 99: Signal switching control unit 9c: Lens 10c: Sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/30 531J (56)参考文献 特開 平5−203411(JP,A) 特開 平5−87529(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01D 5/26 - 5/38 G03F 9/00 - 9/02 H01L 21/027 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01L 21/30 531J (56) References JP-A-5-203411 (JP, A) JP-A-5-87529 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 11/00-11/30 G01D 5/26-5/38 G03F 9/00-9/02 H01L 21/027

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回折格子に偏光方向が直交し周波数
異なる2光束を照射し、該回折格子から生じる互いに次
数の異なる複数の回折光を合成しヘテロダイン干渉させ
て複数のビート信号を得、該複数のビート信号の位相差
を利用して該回折格子の所定位置からの位置ずれを検出
する際、前記回折格子に周波数がf1でp偏光の光を入
射させたときに生ずる+n次回折光と周波数f2でs偏
光の光を入射させたときに生ずる−n次回折光を合成し
てヘテロダイン干渉させ第1ビート信号を生成し、周波
数がf1でp偏光の光を入射させたときに生ずる−n次
回折光と周波数がf2でs偏光の光を入射させたときに
生ずる+n次回折光を合成してヘテロダイン干渉させ第
2ビート信号を生成し、該第1,第2ビート信号の位相
差を求めることにより該回折格子の性質に基づく該第
1,第2ビート信号の位相誤差を補正して位置ずれを検
出していることを特徴とする位置ずれ検出方法。
To 1. A diffraction grating is irradiated with two different light beams having frequencies orthogonal polarization direction, a plurality of diffracted light from each other different orders resulting from diffraction grating synthesized by heterodyne interference to obtain a plurality of beat signals, When detecting a displacement of the diffraction grating from a predetermined position by using the phase difference of the plurality of beat signals , p-polarized light having a frequency of f1 enters the diffraction grating.
+ N-order diffracted light generated when reflected and frequency f2
The n-th order diffracted light that occurs when light is incident is synthesized.
To generate the first beat signal by
-N order that occurs when p-polarized light with a number of f1 is incident
When diffracted light and s-polarized light with frequency f2 are incident
The generated + n-th order diffracted light is combined to cause heterodyne interference and
2 beat signals are generated, and the phases of the first and second beat signals are generated.
The difference based on the property of the diffraction grating is obtained by obtaining the difference.
1, Correct the phase error of the 2nd beat signal and detect the position shift
A method for detecting a positional shift, which is characterized in that
【請求項2】 偏光方向が直交し、周波数の異なる2光
束を第1回折格子と第2回折格子に入射させ、該第1回
折格子から生じる互いに次数の異なる2つの回折光を合
成してヘテロダイン干渉させ第1ビート信号を生成し、
該第2回折格子から生じる互いに次数の異なる2つの回
折光を合成してヘテロダイン干渉させ第2ビート信号を
生成し、該第1,第2ビート信号の位相差を検出する第
1位相差検出工程と、該2光束を該第1,第2回折格子
に入射させ、このとき該第1,第2回折格子から生じる
互いに次数の異なる2つの回折光を合成してヘテロダイ
ン干渉させてビート信号を得る際、該回折格子の性質に
基づくビート信号間の位相誤差を補正する為の第3,第
4ビート信号を生成し、該第3,第4ビート信号の位相
差を検出する第2位相差検出工程とを有し、該第1位相
差検出工程と第2位相差検出工程で得られた位相差を利
用して該第1,第2回折格子の相対的な位置ずれを検出
することを特徴とする位置ずれ検出方法。
2. A heterodyne structure in which two light beams having polarization directions orthogonal to each other and having different frequencies are incident on a first diffraction grating and a second diffraction grating, and two diffracted lights having different orders generated from the first diffraction grating are combined. Generate the first beat signal by interfering,
A first phase difference detecting step of generating two second beat signals by combining two diffracted lights of different orders generated from the second diffraction grating to cause heterodyne interference, and detecting a phase difference between the first and second beat signals. Then, the two light fluxes are made incident on the first and second diffraction gratings, and at this time, two diffracted lights of different orders generated from the first and second diffraction gratings are combined and heterodyne interference is obtained to obtain a beat signal. At this time, the second phase difference detection for generating the third and fourth beat signals for correcting the phase error between the beat signals based on the property of the diffraction grating and detecting the phase difference between the third and fourth beat signals And a relative position shift between the first and second diffraction gratings is detected by using the phase difference obtained in the first phase difference detecting step and the second phase difference detecting step. The positional deviation detection method.
【請求項3】 前記第2位相差検出工程では前記第1位
相差検出工程において、前記第1,第2回折格子が形成
されている基板を180度回転させて、該第1回折格子
から生じる2つの回折光を合成してヘテロダイン干渉さ
せ第3ビート信号を生成し、該第2回折格子から生じる
2つの回折光を合成してヘテロダイン干渉させ第4ビー
ト信号を生成し、該第3,第4ビート信号の位相差を検
出していることを特徴とする請求項2の位置ずれ検出方
法。
3. In the second phase difference detecting step, the substrate on which the first and second diffraction gratings are formed is rotated by 180 degrees in the first phase difference detecting step, and is generated from the first diffraction grating. The two diffracted lights are combined to cause heterodyne interference to generate a third beat signal, and the two diffracted lights generated from the second diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal to generate the third beat signal. 3. The positional deviation detecting method according to claim 2, wherein the phase difference between the 4-beat signals is detected.
【請求項4】 前記第2位相差検出工程では前記第1位
相差検出工程において前記第1,第2回折格子に入射す
る光の偏光方向を90度回転させ、該第1回折格子から
生じる2つの回折光を合成してヘテロダイン干渉させ第
3ビート信号を生成し、該第2回折格子から生じる2つ
の回折光を合成してヘテロダイン干渉させ第4ビート信
号を生成し、該第3,第4ビート信号の位相差を検出し
ていることを特徴とする請求項2の位置ずれ検出方法。
4. In the second phase difference detecting step, the polarization direction of the light incident on the first and second diffraction gratings is rotated by 90 degrees in the first phase difference detecting step, and the light generated by the first diffraction grating is changed by 90 degrees. The three diffracted lights are combined to cause the heterodyne interference to generate the third beat signal, and the two diffracted lights generated from the second diffraction grating are combined to cause the heterodyne interference to generate the fourth beat signal to generate the third beat signal. 3. The positional deviation detecting method according to claim 2, wherein the phase difference between the beat signals is detected.
【請求項5】 前記第2位相差検出工程では前記第1位
相差検出工程において前記第1,第2回折格子を照射す
る前記2光束を互いに入れ換えて、このとき該第1回折
格子から生じる2つの回折光を合成してヘテロダイン干
渉させ第3ビート信号を生成し、又該第2回折格子から
生じる2つの回折光を合成してヘテロダイン干渉させ第
4ビート信号を生成し、該第3,第4ビート信号の位相
差を検出していることを特徴とする請求項2の位置ずれ
検出方法。
5. In the second phase difference detecting step, the two light fluxes irradiating the first and second diffraction gratings are exchanged with each other in the first phase difference detecting step, and at this time, two light beams generated from the first diffraction grating are exchanged. The three diffracted lights are combined to cause the heterodyne interference to generate the third beat signal, and the two diffracted lights generated from the second diffraction grating are combined to cause the heterodyne interference to generate the fourth beat signal to generate the third beat signal. 3. The positional deviation detecting method according to claim 2, wherein the phase difference between the 4-beat signals is detected.
【請求項6】 前記第2位相差検出工程では前記第1位
相差検出工程において前記2光束を前記第1,第2回折
格子を照射した方向と同一方向から前記2光束を照射
し、該第1回折格子から生ずる2つの回折光を合成して
ヘテロダイン干渉させ第3ビート信号を生成し、該第2
回折格子から生ずる2つの回折光を合成してヘテロダイ
ン干渉させ第4ビート信号を生成し、該第3,第4ビー
ト信号の位相差を検出していることを特徴とする請求項
2の位置ずれ検出方法。
The method according to claim 6 wherein said second phase difference detection step is irradiated with the first of the two light beams in the first phase difference detection step, the two light beams from the same direction of irradiation of the second diffraction grating, said The two diffracted lights generated from the one diffraction grating are combined to cause the heterodyne interference to generate the third beat signal, and the second beat signal is generated.
3. The position shift according to claim 2, wherein the two diffracted lights generated from the diffraction grating are combined to cause heterodyne interference to generate a fourth beat signal, and the phase difference between the third and fourth beat signals is detected. Detection method.
【請求項7】 前記第1位相差検出工程では第1回折格
子からの周波数がf1でp偏光の光の+n次回折光と周
波数f2でs偏光の−n次回折光を合成してヘテロダイ
ン干渉させ第1ビート信号を生成し、第2回折格子から
の周波数がf1でp偏光の光の+n次回折光と周波数が
f2でs偏光の光の−n次回折光を合成してヘテロダイ
ン干渉させ第2ビート信号を生成し、該第1,第2ビー
ト信号の位相差を検出しており、前記第2位相差検出工
程では第1回折格子からの周波数がf2でp偏光の光の
+n次回折光と周波数f1でs偏光の−n次回折光を合
成してヘテロダイン干渉させ第3ビート信号を生成し、
第2回折格子からの周波数がf2でp偏光の光の+n次
回折光と周波数がf1でs偏光の光の−n次回折光を合
成してヘテロダイン干渉させ第4ビート信号を生成し、
該第3,第4ビート信号の位相差を検出していることを
特徴とする請求項2の位置ずれ検出方法。
7. The first phase difference detecting step combines + nth-order diffracted light of p-polarized light having a frequency of f1 and −nth-order diffracted light of s-polarized light having a frequency f2 and heterodyne interference in the first phase difference detecting step. A 1-beat signal is generated, and the + nth-order diffracted light of the p-polarized light having the frequency f1 and the −n-order diffracted light of the s-polarized light having the frequency f2 and the −nth-order diffracted light from the second diffraction grating are combined to cause the heterodyne interference and the second beat signal Is generated and the phase difference between the first and second beat signals is detected. In the second phase difference detecting step, the + nth order diffracted light of the frequency f2 from the first diffraction grating and the p-polarized light and the frequency f1 are detected. , The s-polarized -nth-order diffracted light is combined to cause the heterodyne interference to generate the third beat signal,
The + nth-order diffracted light of the p-polarized light having the frequency f2 and the −nth-order diffracted light of the s-polarized light having the frequency f1 and the −nth-order diffracted light from the second diffraction grating are combined to generate the fourth beat signal by heterodyne interference.
3. The position shift detecting method according to claim 2, wherein the phase difference between the third and fourth beat signals is detected.
【請求項8】 偏光方向が互いに直交し、かつ周波数が
異なる2光束を発生する光源手段からの該2光束を周波
数、偏光、入射角度等を規定する照明手段を介して回折
格子に入射させ、該回折格子からの回折光を合成手段で
合成してビート干渉光を形成し、該ビート干渉光を光電
検出手段で光電検出して第1ビート信号を形成し、該2
光束を該第1ビート信号に基づく光の光路とは異なる光
路をして同様にして第2ビート信号を形成し、該第
1,第2ビート信号の位相差を位相差計で検出し、該回
折格子の性質に基づくビート信号の位相誤差を位相誤差
検出手段で検出し、該位相差と該位相誤差とをもとに演
算器で該回折格子の所定位置からの位置ずれを求めてい
ることを特徴とする位置ずれ検出装置。
8. The polarization directions are orthogonal to each other and the frequency is
The two light fluxes from the light source means for generating two different light fluxes are made incident on the diffraction grating through the illumination means that regulates the frequency, polarization, incident angle, etc., and the diffracted light from the diffraction grating is combined by the combining means to form a beat. The interference light is formed, and the beat interference light is photoelectrically detected by photoelectric detection means to form a first beat signal.
The light flux an optical path and through to form a second beat signal in the same manner that is different from the optical path of the light based on the first beat signal, first, the phase difference of the second beat signal detected by the phase difference meter, The phase error of the beat signal based on the property of the diffraction grating is detected by the phase error detecting means, and the arithmetic operation unit obtains the displacement of the diffraction grating from the predetermined position based on the phase difference and the phase error. A positional deviation detection device characterized by the above.
【請求項9】 偏光方向が互いに直交し、かつ周波数が
異なる2光束を発生する光源手段からの該2光束を周波
数、偏光、入射角度等を規制する照明手段を介して回折
格子に入射させ、該回折格子から生ずる周波数がf1で
p偏光の+n次回折光と周波数f2でs偏光の−n次回
折光とを合成手段で合成して第1ビート信号を形成する
と共に、該回折格子から生ずる周波数がf1でp偏光の
−n次回折光と周波数がf2でs偏光の+n次回折光と
を合成手段で合成して第2ビート信号を形成し、該第
1,第2ビート信号の位相の差を位相差計で求め、該位
相差計からの信号を利用して該回折格子の所定位置から
の位置ずれを求めていることを特徴とする位置ずれ検出
装置。
9. The polarization directions are orthogonal to each other and the frequency is
The two light fluxes from the light source means for generating two different light fluxes are made incident on the diffraction grating through the illumination means for controlling the frequency, the polarization, the incident angle, etc., and the p-polarized + n-order diffracted light having the frequency f1 generated from the diffraction grating. And the s-polarized -nth-order diffracted light at the frequency f2 is combined by the synthesizing means to form the first beat signal, and the frequency generated from the diffraction grating is f1 and the p-polarized -nth-order diffracted light is at the frequency f2. The polarized + nth order diffracted light is combined by the combining means to form the second beat signal, the phase difference between the first and second beat signals is obtained by the phase difference meter, and the signal from the phase difference meter is used. A positional deviation detecting device, characterized in that the positional deviation of the diffraction grating from a predetermined position is obtained.
【請求項10】 前記光源手段は、2周波直交偏光レー
ザ又は光音響光学素子を用いた光源であることを特徴と
する請求項8又は9の位置ずれ検出装置。
10. The light source means is a dual frequency orthogonal polarization laser.
Or a light source using a photoacoustic optical element,
The positional deviation detection device according to claim 8 or 9.
【請求項11】 偏光方向が互いに直交し、周波数の異
なる2光束を回折格子に入射させ、該回折格子から生ず
る同次数の回折光を合成してヘテロダイン干渉させて計
測ビート信号を得、該2光束を合成してヘテロダイン干
渉させて基準ビート信号を得、該計測ビート信号と該基
準ビート信号との位相差を利用して該回折格子を形成し
ている格子線幅を計測していることを特徴とする線幅測
定方法。
11. A measuring beat signal is obtained by causing two light beams, whose polarization directions are orthogonal to each other and having different frequencies , to enter a diffraction grating, and combining diffracted lights of the same order generated from the diffraction grating to cause heterodyne interference to obtain a measurement beat signal. A reference beat signal is obtained by combining light fluxes and causing heterodyne interference, and a grating line width forming the diffraction grating is measured by using a phase difference between the measurement beat signal and the reference beat signal. Characteristic line width measurement method.
【請求項12】 偏光方向が互いに異なりかつ周波数が
異なる2光束を発生する光源手段と、該2光束の一部を
分割し基準ビート信号を形成する基準ビート形成手段
と、該2光束を回折格子に照射する照明手段と、該回折
格子からの同次数の回折光同士をヘテロダイン干渉させ
て、計測ビート信号を形成する計測ビート信号形成手段
と、該基準ビート信号と該計測ビート信号との位相差を
測定する位相差計と、該位相差を利用して該回折格子を
形成している格子線幅を算出する演算器とを有している
ことを特徴とする線幅測定装置。
12. The polarization directions are different from each other and the frequency is
Light source means for generating two different light fluxes, reference beat forming means for dividing a part of the two light fluxes to form a reference beat signal, illuminating means for irradiating the two light fluxes on a diffraction grating, and the same light source from the diffraction grating. A measurement beat signal forming unit that forms a measurement beat signal by heterodyne interfering diffracted light of orders, a phase difference meter that measures a phase difference between the reference beat signal and the measurement beat signal, and the phase difference is used And a calculator for calculating the line width of the grating forming the diffraction grating.
JP27710494A 1993-10-26 1994-10-17 Position shift detecting method and position shift detecting apparatus using the same Expired - Fee Related JP3382389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27710494A JP3382389B2 (en) 1993-10-26 1994-10-17 Position shift detecting method and position shift detecting apparatus using the same
US08/328,884 US5625453A (en) 1993-10-26 1994-10-26 System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29002593 1993-10-26
JP5-290025 1993-10-26
JP27710494A JP3382389B2 (en) 1993-10-26 1994-10-17 Position shift detecting method and position shift detecting apparatus using the same

Publications (2)

Publication Number Publication Date
JPH07174517A JPH07174517A (en) 1995-07-14
JP3382389B2 true JP3382389B2 (en) 2003-03-04

Family

ID=26552260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27710494A Expired - Fee Related JP3382389B2 (en) 1993-10-26 1994-10-17 Position shift detecting method and position shift detecting apparatus using the same

Country Status (1)

Country Link
JP (1) JP3382389B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619747B2 (en) 2004-12-17 2009-11-17 Asml Netherlands B.V. Lithographic apparatus, analyzer plate, subassembly, method of measuring a parameter of a projection system and patterning device
KR101824374B1 (en) * 2006-08-31 2018-01-31 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
JP2008258928A (en) * 2007-04-04 2008-10-23 Sony Corp Microphone
JP2008261684A (en) * 2007-04-11 2008-10-30 Sony Corp Vibration detecting apparatus
CN108362228B (en) * 2018-02-11 2020-10-30 西安知象光电科技有限公司 Double-optical-machine-based optical knife grating hybrid three-dimensional measurement device and measurement method
JP2020197452A (en) * 2019-06-03 2020-12-10 株式会社ミツトヨ Optical angle sensor

Also Published As

Publication number Publication date
JPH07174517A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
US5625453A (en) System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating
EP0634702B1 (en) Measuring method and apparatus
JP3352249B2 (en) Position shift detector
JPH0445512A (en) Optical device for projector
JPH0590126A (en) Position detection equipment
EP0534757A1 (en) Method and device for measuring displacement
JPH1026513A (en) Instrument and method for measuring surface position of sample
JPH1070068A (en) Positioning method and projection aligner using the method
JP3713354B2 (en) Position measuring device
JP3382389B2 (en) Position shift detecting method and position shift detecting apparatus using the same
JP3077176B2 (en) Exposure method, apparatus, and element manufacturing method
JP3029133B2 (en) Measurement method and device
JPH0749926B2 (en) Alignment method and alignment device
JPH02133913A (en) Alignment apparatus
JP3550605B2 (en) Position detection method, exposure method using the same, semiconductor device using the exposure method, method for manufacturing liquid crystal display element or thin-film magnetic head, position detection apparatus, and exposure apparatus having the same
JP3218581B2 (en) Positioning method, exposure method and device manufacturing method using the method, and device manufactured by the manufacturing method
JPH02272305A (en) Aligning device for exposing device
JPH10125598A (en) Exposing method
JPH07159977A (en) Photomask inspecting device
JP3111556B2 (en) Fine pattern forming equipment
JP3713355B2 (en) Position measuring device
JP3548665B2 (en) Position measuring device
JPH11233438A (en) Manufacture of semiconductor device and exposing method
JPH0587530A (en) Interference measurement device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees