JPH07159614A - Production of optically anisotropic element and liquid crystal display element using the same - Google Patents

Production of optically anisotropic element and liquid crystal display element using the same

Info

Publication number
JPH07159614A
JPH07159614A JP5301815A JP30181593A JPH07159614A JP H07159614 A JPH07159614 A JP H07159614A JP 5301815 A JP5301815 A JP 5301815A JP 30181593 A JP30181593 A JP 30181593A JP H07159614 A JPH07159614 A JP H07159614A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
anisotropic element
crystal cell
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5301815A
Other languages
Japanese (ja)
Inventor
Yosuke Nishiura
陽介 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5301815A priority Critical patent/JPH07159614A/en
Publication of JPH07159614A publication Critical patent/JPH07159614A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate

Abstract

PURPOSE:To provide a liquid crystal display element improved in display contrast and the visual angle characteristic of display colors uniformly over the entire surface of a screen by applying a polymer soln. on one surface of a film substrate, then imparting a difference in shearing force on both surfaces to apply a deformation to a film. CONSTITUTION:This process for production has a stage for applying the polymer soln. on at least one surface of the film substrate consisting of a thermoplastic resin and having light transmittability, then applying the difference in the shearing force on both surfaces to apply the deformation to the film and produces the optically anisotropic element having the optical axis neither in the film plane nor in the normal direction. The optically anisotropic element RF having the optical axis inclined from the normal direction of the liquid crystal cell is arranged between a polarizing plate B and a liquid crystal cell CE. Light is made incident diagonally on the liquid crystal cell CE and the light L2 which is elliptically polarized by transmitting this cell is modulated to the original linearly polarized light by a phase delay action at the time of transmitting the optically anisotropic element RF. The same transmittance is obtd. even at various diagonal incidences. The good liquid crystal display element having no dependency on visual angles is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子に用いら
れる光学異方素子の製造方法に関するものであり、さら
に、その光学異方素子を用いた液晶表示素子に係り、特
に表示コントラスト及び表示色の視角特性を表示画面全
面に均一に改善した液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical anisotropic element used in a liquid crystal display element, and more particularly to a liquid crystal display element using the optical anisotropic element, and particularly to display contrast and display. The present invention relates to a liquid crystal display device in which color viewing angle characteristics are uniformly improved over the entire display screen.

【0002】[0002]

【従来の技術】日本語ワードプロセッサやディスクトッ
プパソコン等のOA機器の表示装置の主流であるCRT
は、薄型軽量、低消費電力という大きな利点をもった液
晶表示素子(以下LCDと称する)に変換されてきてい
る。現在普及しているLCDの多くは、ねじれネマティ
ック液晶を用いている。このような液晶を用いた表示方
式としては、複屈折モードと旋光モードとの2つの方式
に大別できる。
2. Description of the Related Art CRTs, which are the mainstream of display devices for OA equipment such as Japanese word processors and desktop personal computers
Has been converted into a liquid crystal display element (hereinafter referred to as LCD) which has the great advantages of thinness, light weight, and low power consumption. Most of the currently popular LCDs use twisted nematic liquid crystals. The display method using such a liquid crystal can be roughly classified into a birefringence mode and an optical rotation mode.

【0003】複屈折モードを用いたLCDは、液晶分子
配列のねじれ角90°以上ねじれたもので、急峻な電気
光学特性をもつ為、能動素子(薄型ドランジスタやダイ
オード)が無くても単純なマトリクス上の電極構造でも
時分割駆動により大容量の表示が得られる。しかし、応
答速度が遅く(数百ミリ秒)、階調表示が困難という欠
点を持ち、能動素子を用いた液晶表示素子(TFT−L
CDやMIM−LCDなど)の表示性能を越えるまでに
はいたらない。
An LCD using a birefringence mode has a twisted angle of 90 ° or more in the alignment of liquid crystal molecules and has steep electro-optical characteristics. Therefore, it is a simple matrix without active elements (thin transistors and diodes). Even with the above electrode structure, a large capacity display can be obtained by time division driving. However, it has a drawback that the response speed is slow (several hundreds of milliseconds), and gradation display is difficult.
The display performance of CDs, MIM-LCDs, etc.) is exceeded.

【0004】TFT−LCDやMIM−LCDには、液
晶分子の配列状態が90°ねじれた旋光モードの表示方
式(TN型液晶表示素子)が用いられている。この表示
方式は、応答速度が早く(数十ミリ秒)、容易に白黒表
が得られ、高い表示コントラストを示すことから他の方
式のLCDと比較して最も有力な方式である。しかし、
ねじれネマティック液晶を用いている為に、表示方式の
原理上見る方向によって表示色や表示コントラストが変
化するといった視角特性があり、CRTの表示性能を越
えるまでにはいたらない。
For the TFT-LCD and MIM-LCD, there is used a display system (TN type liquid crystal display element) of optical rotation mode in which the alignment state of liquid crystal molecules is twisted by 90 °. This display method is the most effective method as compared with other LCDs because it has a fast response speed (several tens of milliseconds), can easily obtain a black-and-white table, and has a high display contrast. But,
Since the twisted nematic liquid crystal is used, there is a viewing angle characteristic that the display color and the display contrast change depending on the viewing direction in view of the principle of the display system, and the display performance of the CRT cannot be exceeded.

【0005】特開平4−229828号、特開平4−2
58923号公報などに見られるように、一対の偏光板
とTN液晶セルの間に、光学異方素子を配置することに
よって視野角を拡大しようとする方法が提案されてい
る。
Japanese Unexamined Patent Publication Nos. 4-229828 and 4-2.
As disclosed in Japanese Patent No. 58923, a method has been proposed in which an optical anisotropic element is arranged between a pair of polarizing plates and a TN liquid crystal cell to increase the viewing angle.

【0006】上記特許公報で提案された光学異方素子
は、液晶セルの表面に対して、垂直な方向に位相差がほ
ぼゼロのものであり、真正面からはなんら光学的な作用
を及ぼさず、傾けたときに位相差が発現し、液晶セルで
発現する位相差を補償しようというものである。しか
し、これらの方法によってもLCDの視野角はまだ不十
分であり、更なる改良が望まれている。特に、車載用
や、CRTの代替として考えた場合には、現状の視野角
では全く対応のできないのが実情である。
The optical anisotropic element proposed in the above patent publication has a phase difference of substantially zero in the direction perpendicular to the surface of the liquid crystal cell and exerts no optical action from the front. A phase difference appears when tilted, and the phase difference that appears in the liquid crystal cell is compensated. However, even with these methods, the viewing angle of LCD is still insufficient, and further improvement is desired. In particular, when it is considered as a vehicle-mounted type or as a substitute for a CRT, the current viewing angle cannot support the situation at all.

【0007】上記課題を解決するために、液晶表示素子
に負の一軸性を有すると共に光軸がフィルム面に垂直で
も平行でもなく、フィルム法線から10度〜30度傾斜
した光学異方素子を使用することによって、視野角を大
幅に拡大できることを突き止め、特許出願した。(特願
平4−308377号明細書)又、該光学異方素子の製
造方法として、フィルムの両面にせん断力差をつけるこ
とによって、フィルムに変形を与える工程を有すること
を特徴とする方法を出願した。(特願平4−32411
6号明細書)
In order to solve the above-mentioned problems, an optical anisotropic element having a negative uniaxial property in the liquid crystal display element, an optical axis which is neither perpendicular nor parallel to the film surface, and which is inclined by 10 to 30 degrees from the normal line to the film is used. We have found that the viewing angle can be greatly expanded by using it and applied for a patent. (Japanese Patent Application No. 4-308377) Further, as a method for producing the optical anisotropic element, there is provided a method including a step of deforming the film by applying a shearing force difference to both sides of the film. I applied. (Japanese Patent Application No. 4-32411
(Specification 6)

【0008】[0008]

【発明が解決しようとする課題】上記光学異方素子とし
ては、低コスト・高生産性で製造でき、且つ光学軸のぶ
れや、レターデーションのふれ巾が実質的にほとんどな
い均一なフィルムが要求される。フィルムの両面にせん
断力差をつける際、フィルムとロールの間でスティック
スリップが発生したりロールの駆動むらの影響で、光学
軸がぶれたり、厚みむらや複屈折むらが起こりやすく、
面内レターデーションむらとなり、液晶表示素子に配置
した時に表示コントラスト及び表示色の視角特性が全画
面内で均一なものとならない問題点があった。
As the above-mentioned optical anisotropic element, a uniform film which can be manufactured at low cost and high productivity and which has substantially no optical axis deviation or retardation deviation is required. To be done. When making a difference in shearing force on both sides of the film, stick-slip occurs between the film and the roll or the influence of the roll driving unevenness causes the optical axis to shake, and uneven thickness or birefringence unevenness easily occurs.
There is a problem that the in-plane retardation becomes uneven and the viewing angle characteristics of the display contrast and the display color are not uniform in the entire screen when arranged in a liquid crystal display device.

【0009】[0009]

【課題を解決するための手段】上記課題は、 (1)熱可塑性樹脂からなり、光透過性を有するフィル
ム基板の少なくとも一方の面にポリマー溶液を塗布した
後に、両面にせん断力差をつけることによって、フィル
ムに変形を与える工程を有することを特徴とする光軸が
フィルム面内にも法線方向にもない光学異方素子の製造
方法。 (2)複数のマニホールドを有する共流延ダイを用い
て、複数のポリマー溶液を共押し出しして得られた光透
過性を有するフィルムの両面にせん断力差をつけること
によって、フィルムに変形を与える工程を有することを
特徴とする光軸がフィルム面内にも法線方向にもない光
学異方素子の製造方法。 (3)該共流延ダイを用いた共押し出しにおいて、複数
のポリマー溶液の粘度が異なることを特徴とする前記
(2)記載の光学異方素子の製造方法。 (4)該光学異方素子が光学的に負の一軸性を有するこ
とを特徴とする前記(1)ないし(3)記載の光学異方
素子の製造方法。 (5)周速の異なるロール間にフィルムを挟みこんで、
該フィルムの両面にせん断力差をつけることによって変
形を与えることを特徴とする前記(1)ないし(4)記
載の光学異方素子の製造方法。 (6)2枚の電極基板間にねじれ角がほぼ90°のTN
型液晶を挟持してなる液晶セルと、その両側に配列され
た2枚の偏光素子と、該液晶セルと該偏光素子の間に前
記(1)ないし(5)記載の方法により製造された光学
異方素子を少なくとも一枚配置したことを特徴とする液
晶表示素子によって達成された。
Means for Solving the Problems The above problems are (1) to apply a shearing force to both surfaces of a film substrate made of a thermoplastic resin and having a light-transmitting property, after applying a polymer solution to at least one surface of the film substrate. A method for producing an optical anisotropic element having an optical axis neither in the plane of the film nor in the direction of the normal, characterized in that it has a step of deforming the film. (2) Using a co-casting die having a plurality of manifolds, a film is deformed by imparting a shearing force difference to both sides of a light-transmitting film obtained by co-extruding a plurality of polymer solutions. A method for producing an optical anisotropic element having an optical axis neither in the plane of the film nor in the direction of the normal, characterized by having steps. (3) The method for producing an optically anisotropic element as described in (2) above, wherein in the co-extrusion using the co-casting die, a plurality of polymer solutions have different viscosities. (4) The method for producing an optical anisotropic element according to the above (1) to (3), wherein the optical anisotropic element has an optically negative uniaxial property. (5) Insert the film between rolls with different peripheral speeds,
The method for producing an optical anisotropic element according to any one of (1) to (4) above, wherein the film is deformed by applying a shearing force difference to both sides thereof. (6) TN with a twist angle of about 90 ° between two electrode substrates
A liquid crystal cell sandwiching a type liquid crystal, two polarizing elements arranged on both sides of the liquid crystal cell, and an optical element manufactured by the method described in (1) to (5) between the liquid crystal cell and the polarizing element. This has been achieved by a liquid crystal display element characterized by arranging at least one anisotropic element.

【0010】以下、図面を用いてTN型液晶表示素子を
例にとり本発明の作用を説明する。図1、図2、図3
は、液晶セルにしきい値電圧以上の十分な電圧を印加し
た場合の液晶セル中を伝搬する光の偏光状態を示したも
のである。コントラストの視野角特性には、特に電圧印
加時の光の透過率特性が大きく寄与するため、電圧印加
時を例にとり説明する。図2は、液晶セルに光が垂直に
入射した場合の光の偏光状態を示した図である。自然光
L0が偏光軸PAをもつ偏光板Aに垂直に入射したと
き、偏光板Aを透過した光は、直接偏光L1となるた
め、偏光板Bによってほぼ完全にL1は遮断される。
The operation of the present invention will be described below with reference to the drawings, taking a TN type liquid crystal display device as an example. 1, 2, and 3
Shows the polarization state of light propagating in the liquid crystal cell when a sufficient voltage higher than the threshold voltage is applied to the liquid crystal cell. Since the transmittance characteristic of light particularly when a voltage is applied greatly contributes to the viewing angle characteristic of the contrast, a case where a voltage is applied will be described as an example. FIG. 2 is a diagram showing a polarization state of light when light is vertically incident on the liquid crystal cell. When the natural light L0 is vertically incident on the polarizing plate A having the polarization axis PA, the light transmitted through the polarizing plate A becomes the polarized light L1 directly, so that the polarizing plate B almost completely blocks L1.

【0011】TN液晶セルに十分に電圧を印加した時の
液晶分子の配列状態を、概略的に1つの液晶分子でモデ
ル的に示すと、概略図中LCのようになる。液晶セル中
の液晶分子LCの分子長軸が光の進路と平行な場合、入
射面(光の進路に垂直な面内)での屈折率の差が生じな
いので、液晶セル中を伝搬する常光と異常光の位相差が
生じずLCセルを通過した直線偏光は液晶セルを透過し
ても直線偏光のまま伝搬する。偏光板Bの偏光軸PBを
偏光板Aの偏光軸PAと垂直に設定すると、液晶セルを
透過した直線偏光は偏光板Bを透過することができず暗
状態となる。
When a sufficient voltage is applied to the TN liquid crystal cell, the alignment state of the liquid crystal molecules is schematically shown as a model with one liquid crystal molecule, as shown by LC in the schematic diagram. When the molecular long axis of the liquid crystal molecule LC in the liquid crystal cell is parallel to the light path, there is no difference in the refractive index on the incident surface (in the plane perpendicular to the light path), and therefore the ordinary light propagating in the liquid crystal cell The linearly polarized light that has passed through the LC cell without causing the phase difference of the extraordinary light propagates as the linearly polarized light even after passing through the liquid crystal cell. When the polarization axis PB of the polarizing plate B is set to be perpendicular to the polarization axis PA of the polarizing plate A, the linearly polarized light that has passed through the liquid crystal cell cannot pass through the polarizing plate B and is in a dark state.

【0012】図3は、液晶セルに光が斜めに入射した場
合の光の偏光状態を示した図である。入射光の自然光L
0が斜めに入射した場合偏光板Aを透過した偏光光L1
はほぼ直線偏光になる。(実際の場合偏光板の特性によ
り楕円偏光になる)。この場合、液晶の屈折率異方性に
より液晶セルの入射面において屈折率の差が生じ、液晶
セルを透過する光L2は楕円偏光となり偏光板Bで遮断
されない。この様に斜方入射においては暗状態での光の
遮断が不十分となり、コントラストの大幅な低下を招き
好ましくない。
FIG. 3 is a diagram showing a polarization state of light when the light obliquely enters the liquid crystal cell. Natural light of incident light L
Polarized light L1 transmitted through the polarizing plate A when 0 is obliquely incident
Becomes almost linearly polarized light. (In the actual case, it becomes elliptically polarized due to the characteristics of the polarizing plate). In this case, the refractive index anisotropy of the liquid crystal causes a difference in the refractive index on the incident surface of the liquid crystal cell, and the light L2 transmitted through the liquid crystal cell becomes elliptically polarized light and is not blocked by the polarizing plate B. As described above, in the case of oblique incidence, blocking of light in a dark state becomes insufficient, resulting in a large decrease in contrast, which is not preferable.

【0013】本発明の第1の目的は、この様な斜方入射
におけるコントラストの低下を防ぎ、視角特性を改善し
うる光学異方素子の製造方法およびそれを用いたLCD
を提供することである。図1に本発明による光学異方素
子を用いたLCDの構成の一例を示した。偏光板Bと液
晶セルとの間に液晶セルの法線方向から傾いた光学軸を
もつ光学異方素子RFが配置されている。この光学異方
素子RFは光学軸に対して光が入射する角度が大きくな
る程複屈折が大きくなる複屈折体である。この様な構成
の液晶表示素子に図3の場合と同様に光が斜方入射し液
晶セルを透過した楕円偏光した光L2は、光学異方素子
RFを透過する時の位相遅延作用によって楕円偏光が元
の直線偏光に変調され、種々の斜方入射においても同一
な透過率が得られ、視角依存性のない良好な液晶表示素
子が実現できる。
A first object of the present invention is to provide a method of manufacturing an optical anisotropic element capable of preventing such a decrease in contrast due to oblique incidence and improving viewing angle characteristics, and an LCD using the same.
Is to provide. FIG. 1 shows an example of the structure of an LCD using the optically anisotropic element according to the present invention. An optical anisotropic element RF having an optical axis inclined from the normal line direction of the liquid crystal cell is arranged between the polarizing plate B and the liquid crystal cell. The optically anisotropic element RF is a birefringent body whose birefringence increases as the angle of incidence of light on the optical axis increases. As in the case of FIG. 3, the elliptically polarized light L2 that is obliquely incident on the liquid crystal display element having such a structure and transmitted through the liquid crystal cell is elliptically polarized by the phase delay action when transmitting through the optically anisotropic element RF. Is modulated into the original linearly polarized light, the same transmittance is obtained even in various oblique incidences, and a good liquid crystal display element having no viewing angle dependency can be realized.

【0014】本発明の第2の目的は、表示色の色むらを
改善しうる光学素子の製造方法およびそれを用いたLC
Dを提供することである。図1に示す光学異方素子RF
の光軸が場所によって変化していると、斜めから見た場
合に色むらやコントラストむらが生ずる。又レターデー
ションが場合によって変化していると正面から見た場合
にも色むらやコントラストむらが生ずる。本発明の製造
方法のように、フィルムの両面にせん断力差をつける前
に、フィルムの少なくとも一方の面にポリマー溶液を塗
布したり、共流延を行うことにより、フィルムの面状が
良化し、厚みムラが小さくなる事もあり、光学異方素子
の光軸の変化(ぶれ)やレターデーションの変化(む
ら)を著しく改善することができ、表示色の色むらのな
い表示品位の良好な液晶表示素子が実現できた。
A second object of the present invention is to provide a method for manufacturing an optical element capable of improving the color unevenness of a display color and an LC using the same.
To provide D. Optical anisotropic element RF shown in FIG.
If the optical axis of is changed depending on the location, uneven color and uneven contrast occur when viewed obliquely. Further, if the retardation changes depending on the case, color unevenness and uneven contrast occur even when viewed from the front. As in the production method of the present invention, before imparting a shearing force difference to both surfaces of the film, by applying a polymer solution to at least one surface of the film or performing co-casting, the surface condition of the film is improved. In addition, the thickness unevenness may be reduced, and the change of the optical axis (blur) and the change of the retardation (unevenness) of the optical anisotropic element can be remarkably improved, and the display quality without the display color unevenness is excellent. A liquid crystal display device was realized.

【0015】次に、本発明について更に詳しく説明す
る。本発明における光透過性を有するフィルムとは、フ
ィルムまたはシート形状での光の透過率が70%以上更
に好ましくは85%以上のものを意味する。塗布する場
合のフィルム基板又は共流延の主流側に用いるポリマー
としては、ポリカーボネイト、ポリアリレート、ポリス
ルホン、ポリエチレンテレフタレート、ポリエチレンナ
フタレート、ポリエーテルスルホン、ポリフェニレンス
ルファイド、ポリフェニレンオキサイド、ポリアリルス
ルホン、ポリビニルアルコール、ポリアミド、ポリイミ
ド、ポリオレフィン、ポリ塩化ビニル、セルロース系重
合体、ポリアクリロニトリル、ポリスチレン、又種々モ
ノマーの二元系、三元系各種共重合体、グラフト共重合
体、ブレンド物などが挙げられる。フィルム基板への塗
布又は共流延の副流側に用いるポリマーは上記と同じも
のであってもよく又異なってもよいが、上記ポリマーと
の密着のよい物が好ましい。
Next, the present invention will be described in more detail. The light-transmitting film in the present invention means a film or sheet having a light transmittance of 70% or more, more preferably 85% or more. As the polymer used on the mainstream side of the film substrate or co-casting when coating, polycarbonate, polyarylate, polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyvinyl alcohol. , Polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose-based polymer, polyacrylonitrile, polystyrene, and various binary and ternary copolymers of various monomers, graft copolymers, blends and the like. The polymer used on the side of the side stream of coating or co-casting on the film substrate may be the same as or different from the above, but a polymer having good adhesion with the above polymer is preferable.

【0016】又、共流延の副流側のドープの粘度が主流
側のドープの粘度より小さい方が流延時にリップで生じ
るスジやムラがより少なくなり好ましい。ここで主流と
は最も流量が多く、乾燥後の膜厚が最大のものを言い主
流以外のものを副流という。2層流延の場合、主流が流
延基板上に、副流がエアーサイドに流延されることが好
ましい。3層以上の場合図6に示すように少なくとも2
層の副流が1層の主流をはさむようにして流延すること
が好ましい。塗布液に用いる溶媒はフィルムの溶媒と同
じであっても異なってもよいが、同じ溶媒を用いる場合
には、スライドコート、ロールコート等の方式が適当で
ある。
Further, it is preferable that the viscosity of the dope on the side of the co-casting is smaller than that of the dope on the side of the main flow because streaks and unevenness caused at the lip during casting are less. Here, the main flow is the one having the largest flow rate and the largest film thickness after drying, and the ones other than the main flow are called the substreams. In the case of two-layer casting, it is preferable that the main stream is cast on the casting substrate and the substream is cast on the air side. In case of 3 layers or more, at least 2 as shown in FIG.
It is preferable that the side stream of the layer is cast so as to sandwich the main stream of one layer. The solvent used for the coating liquid may be the same as or different from the solvent for the film, but when the same solvent is used, a method such as slide coating or roll coating is suitable.

【0017】本発明における光学軸が傾斜した負の一軸
性とは、光学異方性を有するフィルムあるいはシートの
3軸方向屈折率をその値が小さい順にnα、nβ、nγ
としたとき、nα<nβ=nγの関係を有するものであ
る。従って光学軸方向の屈折率が最も小さいという特性
を有するものである。ただし、nβとnγの値は厳密に
等しい必要はなく、ほぼ等しければ十分である。具体的
には、|nβ−nγ|/|nβ−nα|≦0.2であれ
ば実用上問題ない。又、TFTにおけるTN液晶セルの
視野角特性を大幅に改良する条件としては、光学軸、即
ち屈折率nαの方向はシート面の法線方向から10度〜
40度傾いていることが好ましく、10度〜30度がよ
り好ましい。更に、シートの厚さをDとしたとき、10
0≦(nβ−nα)×D≦400nmの条件を満足する事
が好ましい。
In the present invention, the negative uniaxial property in which the optical axis is inclined means that the refractive index in the triaxial direction of a film or sheet having optical anisotropy is nα, nβ, nγ in the order of decreasing value.
Then, there is a relationship of nα <nβ = nγ. Therefore, it has a characteristic that the refractive index in the optical axis direction is the smallest. However, it is not necessary that the values of nβ and nγ be exactly equal, and it is sufficient if they are almost equal. Specifically, if | nβ-nγ | / | nβ-nα | ≦ 0.2, there is no practical problem. Further, as a condition for significantly improving the viewing angle characteristics of the TN liquid crystal cell in the TFT, the optical axis, that is, the direction of the refractive index nα is 10 degrees from the normal line direction of the sheet surface.
It is preferably inclined by 40 degrees, more preferably by 10 to 30 degrees. Further, when the thickness of the sheet is D, 10
It is preferable to satisfy the condition of 0 ≦ (nβ−nα) × D ≦ 400 nm.

【0018】せん断を加える前のフィルムの3軸屈折率
特性は、特に制限はなく光学的に等方的なものであって
もそうでなくてもよい。ただし、せん断を加える前のフ
ィルムが光学的に等方向である場合、負の一軸性を発現
するためには、せん断を加える前または後において幅方
向に延伸倍率数%の一軸延伸を行うか、二軸延伸の工程
を加えることが好ましい。この場合の二軸延伸の長手方
向、幅方向の延伸倍率に関しては幅方向の延伸倍率が数
%大きい方が好ましい。せん断変形後の延伸を省略する
ためには、せん断変形を加える前の3軸方向屈折率特性
が、nTD≧nMDであることが好ましい。
The triaxial refractive index characteristics of the film before shearing are not particularly limited and may be optically isotropic or not. However, when the film before shearing is optically isotropic, in order to express negative uniaxiality, uniaxial stretching of a stretching ratio of several% in the width direction before or after shearing is performed, It is preferable to add a step of biaxial stretching. Regarding the stretching ratio in the longitudinal direction and the width direction of the biaxial stretching in this case, the stretching ratio in the width direction is preferably a few percent higher. In order to omit the stretching after shear deformation, it is preferable that the triaxial direction refractive index characteristic before shear deformation is nTD ≧ nMD.

【0019】また、フィルム両面にせん断力差をつける
方法としては、フィルムを形成しているポリマーのTg
近傍かTg以上の熱変形が可能な温度にフィルムを加熱
し、且つ周速に差があるかまたは逆方向にフィルムを進
ませるように回転する2つのロール間に該フィルムを挟
み込んで、該フィルムを引き出すことによって可能であ
る。せん断力によって主屈折率を傾斜できたことについ
ては図4のようなひずみがフィルム内部に加わっている
ものと思われる。図4において、フィルム内部に仮定し
た立方体aは二つのロールの周速差によって、変形が加
えられ、立体bのように変形し、更に立体cとなって送
り出される。このとき立体内部の分子も傾斜したものと
考える。以下実施例によって詳細に説明する。
As a method for making a difference in shearing force on both sides of the film, the Tg of the polymer forming the film is
The film is sandwiched between two rolls that heat the film in the vicinity or at a temperature at which thermal deformation of Tg or more is possible, and rotate so that the peripheral speed is different or the film advances in the opposite direction. It is possible by pulling out. The fact that the main refractive index can be inclined by the shearing force is considered to be due to the strain as shown in FIG. In FIG. 4, the assumed cube a inside the film is deformed by the peripheral speed difference between the two rolls, deforms like a solid b, and is further sent out as a solid c. At this time, the molecules inside the cubic are also considered to be tilted. The details will be described below with reference to examples.

【0020】[0020]

【実施例】【Example】

実施例1 ホスゲンとビスフェノールAの縮合によって得られたス
チレン換算重量平均分子量3万のポリカーボネートを二
塩化メチレンに溶解し、20%溶液とした。これをスチ
ールドラム上に流延し、連続的にはぎ取り乾燥した後、
同じポリカーボネートの7%二塩化メチレン溶液をスラ
イドコート方式で固型分3mg/m2を塗布乾燥し、幅15
cm、厚さ80μmのフィルムを得た。該フィルムを図5
に示す周速の異なるロールに挟み込んでフィルム(F−
1)をロール形状で200m作製した。
Example 1 A polycarbonate having a styrene-equivalent weight average molecular weight of 30,000 obtained by condensation of phosgene and bisphenol A was dissolved in methylene dichloride to prepare a 20% solution. This is cast on a steel drum, continuously stripped and dried,
A 7% methylene dichloride solution of the same polycarbonate was applied by slide coating to a solid content of 3 mg / m 2 and dried to give a width of 15
A film having a thickness of cm and a thickness of 80 μm was obtained. The film is shown in FIG.
The film (F-
1) was manufactured in a roll shape for 200 m.

【0021】図5においてロールR1 は送りだしロー
ル、R2 〜R5 はそれぞれに駆動系を有するロールであ
り、周速差を任意に制御できるロールである。また、油
圧によって、R2 、R3 間、R4 、R5 間の圧力を制御
できる構造になっている。R6は駆動系を有する巻取り
ロールであり、テンションコントロールで巻取り速度を
制御している。R2 からR5 はロール内部にヒーターを
内蔵し、ロール表面に温度センサーが取り付けられてお
り、センサー温度をヒーターにフィードバックしPID
制御によって±1度の精度で温度コントロールしてい
る。
In FIG. 5, the roll R 1 is a feed roll, and R 2 to R 5 are rolls each having a drive system, and the peripheral speed difference can be arbitrarily controlled. Further, the structure is such that the pressure between R 2 and R 3, and between R 4 and R 5 can be controlled by hydraulic pressure. R 6 is a winding roll having a drive system, and the winding speed is controlled by tension control. From R 2 R 5 has a built-in heater inside the roll, and the temperature sensor is attached to the roll surface, and a feedback sensor temperature to the heater PID
The temperature is controlled with an accuracy of ± 1 degree by control.

【0022】図5の装置におけるF−1の成形条件は以
下の通りである。 R2 、R4 の周速:1,005m/min R3 、R5 の周速:1,000m/min R2 、R3 、R4 、R5 の表面温度:145℃ R2 、R3 及びR4 、R5 に挟まれたフィルムに加わる
力:2000kg R2 、R3 、R4 、R5 のロール径:150mm 次に、F−1をテンターによって横一軸延伸を行ないフ
ィルム(F−2)を得た。延伸条件は以下の通りであ
る。 延伸温度:150℃ 延伸倍率:3% フィルム送り出し速度:3m/min
The F-1 molding conditions in the apparatus of FIG. 5 are as follows. Peripheral speed of the R 2, R 4: 1,005m / min R 3, the peripheral speed of R 5: 1,000m / min R 2 , R 3, R 4, R 5 a surface temperature: 145 ℃ R 2, R 3 And force applied to the film sandwiched between R 4 and R 5 : 2000 kg Roll diameter of R 2 , R 3 , R 4 and R 5 : 150 mm Next, F-1 was transversely uniaxially stretched by a tenter (F- 2) was obtained. The stretching conditions are as follows. Stretching temperature: 150 ° C Stretching ratio: 3% Film feeding speed: 3 m / min

【0023】〈光学異方素子の光学特性の測定〉実施例
1におけるF−2の光学異方素子から15cm×60cmの
サンプルを採取し、均等に36点を選び、島津製作所製
エリプソメーターAEP−100を透過モードで使用
し、Re値及びその入射角度依存性を求めた。また、幅
方向の屈折率、フィルムの厚さはそれぞれアッペの屈折
率計、マイクロメーターで測定した。これらの平均値か
ら、フィルムの3軸方向屈折率及び主屈折率軸の傾斜角
を計算した。表1に計算で求めた3軸屈折率の関係を示
す。ここで、最も小さい屈折率をn1 、幅方向の屈折率
をn2 、前記n1 、n2 と直交するもう一つの主屈折率
をn3 、n1 がフィルム法線方向から傾いた角度をβと
した。傾斜角のぶれ(Δβ)は、上記36点の最大値と
最小値の差を平均値で除した値、またRe値の変化率
(ΔRe)は、隣接する測定点の測定値の差の絶対値を
平均値で除した値のうちで最大の値をいう。結果を表1
に示す。
<Measurement of Optical Properties of Optically Anisotropic Element> A 15 cm × 60 cm sample was taken from the optical anisotropic element of F-2 in Example 1, and 36 points were evenly selected, and the ellipsometer AEP- manufactured by Shimadzu Corporation was used. 100 was used in the transmission mode, and the Re value and its incident angle dependence were determined. The refractive index in the width direction and the thickness of the film were measured with an Appe's refractometer and a micrometer, respectively. From these average values, the triaxial refractive index of the film and the tilt angle of the main refractive index axis were calculated. Table 1 shows the relationship of the triaxial refractive index calculated. Here, the smallest refractive index is n 1 , the refractive index in the width direction is n 2 , the other main refractive index orthogonal to n 1 and n 2 is n 3 , and the angle at which n 1 is inclined from the normal direction of the film. Was defined as β. The inclination angle deviation (Δβ) is a value obtained by dividing the difference between the maximum value and the minimum value of the 36 points by the average value, and the rate of change of the Re value (ΔRe) is the absolute difference between the measured values at adjacent measurement points. The maximum value among the values obtained by dividing the value by the average value. The results are shown in Table 1.
Shown in.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 実施例1で用いたポリカーボネートの20%二塩化メチ
レン溶液(ドープA)と15%の二塩化メチレン溶液
(ドープB)を調整した 25℃での粘度はそれぞれドープAが700ポイズ、ド
ープBが220ポイズであった。図6に示す共流延ダイ
の送液口1aからドープA、送液口1b及び1cからド
ープBを送液し、スチールバンド上に共押出しし、連続
的に剥取り、乾燥し、1a、1b、1cから送液された
ドープの乾燥後の膜厚がそれぞれ60μm、10μm、
10μmであり、巾15cmのフィルムを得た。該フィル
ムを実施例1と同様に図5の装置で成形したロールフィ
ルムをテンターによって横一軸延伸を行い、フィルム
(F−3)を得た。結果を表1に示す。
Example 2 A 20% methylene dichloride solution (dope A) and a 15% methylene dichloride solution (dope B) of the polycarbonate used in Example 1 were prepared. The viscosities at 25 ° C. were 700 for dope A respectively. Poise and Dope B were 220 poise. The dope A is fed from the liquid feed port 1a and the dope B is fed from the liquid feed ports 1b and 1c of the co-casting die shown in FIG. 6, co-extruded on a steel band, continuously peeled, and dried 1a, The film thickness after drying of the dope fed from 1b and 1c is 60 μm and 10 μm, respectively.
A film having a thickness of 10 μm and a width of 15 cm was obtained. A roll film obtained by molding the film in the same manner as in Example 1 by the apparatus shown in FIG. 5 was subjected to transverse uniaxial stretching with a tenter to obtain a film (F-3). The results are shown in Table 1.

【0026】比較例1 実施例2で用いたドープAのみをスチールバンド上に流
延し、連続的に剥取り、乾燥し、幅15cm、厚さ80μ
mのフィルムを得た。該フィルムを実施例1と同様に図
5の装置で成形したロールフィルムをテンターによって
横一軸延伸を行い、フィルム(F−4)を得た。結果を
表1に示す。
Comparative Example 1 Only the dope A used in Example 2 was cast on a steel band, continuously peeled and dried, and the width was 15 cm and the thickness was 80 μm.
m film was obtained. A roll film obtained by molding the film in the same manner as in Example 1 by the apparatus shown in FIG. 5 was subjected to transverse uniaxial stretching with a tenter to obtain a film (F-4). The results are shown in Table 1.

【0027】実施例3 〈視角特性の評価〉図1に示す光学異方性素子として実
施例及び比較例のF−3、F−4の光学異方素子を液晶
セルに用いた場合及びフィルムを配置しない場合につい
て、30Hz矩形波における0V/5Vのコントラスト
の視角特性を大塚電子製LCD−5000によって測定
した。コントラスト10の角度を視野角と定義し上下左
右の視野角特性の結果を表2に示す。ここで使用した液
晶セルに使われている液晶の異常光と常光の屈折率の差
と、液晶セルのギャップサイズの積は480nmでねじれ
角が90度である。尚、この測定におけるTN液晶セル
の偏光板の偏光軸、液晶セルのラビング軸、光学補償シ
ートの光軸の方向については、図7に示す。
Example 3 <Evaluation of viewing angle characteristics> When optically anisotropic elements F-3 and F-4 of Examples and Comparative Examples were used in the liquid crystal cell as the optically anisotropic element shown in FIG. With no arrangement, the viewing angle characteristics of 0 V / 5 V contrast in a 30 Hz rectangular wave were measured by LCD-5000 manufactured by Otsuka Electronics. The angle of the contrast 10 is defined as the viewing angle, and the results of the viewing angle characteristics in the vertical and horizontal directions are shown in Table 2. The product of the difference in refractive index between the extraordinary ray and the ordinary ray of the liquid crystal used in the liquid crystal cell used here and the gap size of the liquid crystal cell is 480 nm, and the twist angle is 90 degrees. The directions of the polarization axis of the polarizing plate of the TN liquid crystal cell, the rubbing axis of the liquid crystal cell, and the optical axis of the optical compensation sheet in this measurement are shown in FIG.

【0028】[0028]

【表2】 [Table 2]

【0029】本発明によれば、TN型液晶表示素子の視
角特性及び色ムラが改善され、視認性にすぐれるかつ全
画面でムラの少ない高品位表示の液晶表示素子を提供す
ることができる。また、本発明をTFTやMIMなどの
3端子、2端子素子を用いたアクティブマトリクス液晶
表示素子に応用しても優れた効果が得られることは言う
までもない。
According to the present invention, it is possible to provide a liquid crystal display device of high quality display, in which the viewing angle characteristics and color unevenness of the TN type liquid crystal display device are improved, the visibility is excellent, and the unevenness on the entire screen is small. Needless to say, even if the present invention is applied to an active matrix liquid crystal display element using a three-terminal or two-terminal element such as TFT or MIM, excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示素子の構成の実施例を説明す
る図である。
FIG. 1 is a diagram illustrating an example of a configuration of a liquid crystal display element of the present invention.

【図2】従来のTN型液晶表示素子の構成図と表示面に
垂直に光が入射する場合の光の透過状態を説明する図で
ある。
FIG. 2 is a diagram illustrating a configuration of a conventional TN type liquid crystal display element and a diagram for explaining a light transmission state when light is perpendicularly incident on a display surface.

【図3】従来のTN型液晶表示素子の構成図と表示面に
斜めに光が入射する場合の光の透過状態を説明する図で
ある。
FIG. 3 is a diagram illustrating a configuration of a conventional TN type liquid crystal display element and a light transmission state when light obliquely enters a display surface.

【図4】せん断によるフィルム変形のメカニズムを示す
図である。
FIG. 4 is a diagram showing a mechanism of film deformation due to shearing.

【図5】本発明に使用した異周速ロール装置の図であ
る。
FIG. 5 is a view of a different peripheral speed roll device used in the present invention.

【図6】本発明に使用した共流延ダイの巾方向に垂直な
面での断面図である。
FIG. 6 is a sectional view of a co-casting die used in the present invention, taken along a plane perpendicular to the width direction.

【図7】本実施例に使用した液表示素子の光軸の方向を
示す構成図である。
FIG. 7 is a configuration diagram showing the direction of the optical axis of the liquid crystal display element used in this example.

【符号の説明】[Explanation of symbols]

A、B:偏光板 PA、PB:偏光軸 CE:TN型液晶セル RF:光学異方性素子 L0:入射光 L1:偏光板Aを通過した直線偏光 L2:TN型液晶セルを通過した偏光(主に楕円偏光) LC:TN型液晶セル内の液晶をモデル的に表現したも
の。 θ:直線偏光入射角度 R1 〜R8 :ロール n1 〜n3 :フィルムの主屈折率 1a、1b、1c:ドープの送液口 2a、2b、2c:マニホールド 3:リップ
A, B: Polarizing plates PA, PB: Polarizing axes CE: TN type liquid crystal cell RF: Optical anisotropic element L0: Incident light L1: Linearly polarized light passing through polarizing plate A L2: Polarized light passing through TN type liquid crystal cell ( Mainly elliptically polarized light) LC: A model representation of liquid crystal in a TN liquid crystal cell. θ: incident angle of linearly polarized light R 1 to R 8 : roll n 1 to n 3 : main refractive index of the film 1a, 1b, 1c: dope feed port 2a, 2b, 2c: manifold 3: lip

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月27日[Submission date] May 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】実施例3 〈視角特性の評価〉図1に示す光学異方性素子として実
施例F−2、F−3の光学異方素子を液晶セルに用いた
場合及びフィルムを配置しない場合について、30Hz
矩形波における0V/5Vのコントラストの視角特性を
大塚電子製LCD−5000によって測定した。コント
ラスト10の角度を視野角と定義し上下左右の視野角特
性の結果を表2に示す。ここで使用した液晶セルに使わ
れている液晶の異常光と常光の屈折率の差と、液晶セル
のギャップサイズの積は480nmでねじれ角が90度で
ある。尚、この測定におけるTN液晶セルの偏光板の偏
光軸、液晶セルのラビング軸、光学補償シートの光軸の
方向については、図7に示す。
Example 3 <Evaluation of viewing angle characteristics> When the optically anisotropic element of Examples F-2 and F-3 as the optically anisotropic element shown in FIG. 1 was used in a liquid crystal cell and no film was arranged. , 30Hz
The viewing angle characteristics of a 0 V / 5 V contrast in a rectangular wave were measured by LCD-5000 manufactured by Otsuka Electronics. The angle of the contrast 10 is defined as the viewing angle, and the results of the viewing angle characteristics in the vertical and horizontal directions are shown in Table 2. The product of the difference in refractive index between the extraordinary ray and the ordinary ray of the liquid crystal used in the liquid crystal cell used here and the gap size of the liquid crystal cell is 480 nm, and the twist angle is 90 degrees. The directions of the polarization axis of the polarizing plate of the TN liquid crystal cell, the rubbing axis of the liquid crystal cell, and the optical axis of the optical compensation sheet in this measurement are shown in FIG.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【表2】 [Table 2]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】本発明によれば、TN型液晶表示素子の視
角特性及び色ムラが改善され、視認性にすぐれかつ全画
面でムラの少ない高品位表示の液晶表示素子を提供する
ことができる。また、本発明をTFTやMIMなどの3
端子、2端子素子を用いたアクティブマトリクス液晶表
示素子に応用しても優れた効果が得られることは言うま
でもない。
According to the present invention, it is possible to provide a liquid crystal display device of high quality display, in which the viewing angle characteristics and color unevenness of the TN type liquid crystal display device are improved, the visibility is excellent and the unevenness is small on the entire screen. In addition, the present invention can be applied to 3 such as TFT and MIM.
It goes without saying that excellent effects can be obtained even when applied to an active matrix liquid crystal display element using a terminal and a two-terminal element.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなり光透過性を有する
フィルム基板の少なくとも一方の面にポリマー溶液を塗
布した後に、両面にせん断力差をつけることによってフ
ィルムに変形を与える工程を有することを特徴とする光
軸がフィルム面内にも法線方向にもない光学異方素子の
製造方法。
1. A method comprising: applying a polymer solution to at least one surface of a film substrate made of a thermoplastic resin and having a light-transmitting property, and then applying a shearing force difference to both surfaces to deform the film. A method of manufacturing an optical anisotropic element whose optical axis is neither in the film plane nor in the normal direction.
【請求項2】 複数のマニホールドを有する共流延ダイ
を用いて、複数のポリマー溶液を共押し出しして得られ
た光透過性を有するフィルムの両面にせん断力差をつけ
ることによって、フィルムに変形を与える工程を有する
ことを特徴とする光軸がフィルム面内にも法線方向にも
ない光学異方素子の製造方法。
2. A film is deformed by applying a shearing force difference to both sides of a light-transmissive film obtained by co-extruding a plurality of polymer solutions using a co-casting die having a plurality of manifolds. A method for producing an optical anisotropic element having an optical axis neither in the plane of the film nor in the normal direction, which comprises a step of providing
【請求項3】 該共流延ダイを用いた共押し出しにおい
て、副流側のポリマー溶液の粘度が主流側のポリマー溶
液の粘度よりも小さいことを特徴とする請求項2記載の
光学異方素子の製造方法。
3. The optical anisotropic element according to claim 2, wherein in the co-extrusion using the co-casting die, the viscosity of the polymer solution on the side stream side is smaller than the viscosity of the polymer solution on the side stream. Manufacturing method.
【請求項4】 該光学異方素子が光学的に負の一軸性を
有することを特徴とする請求項1ないし3記載の光学異
方素子の製造方法。
4. The method for producing an optical anisotropic element according to claim 1, wherein the optical anisotropic element has an optically negative uniaxial property.
【請求項5】 周速の異なるロール間にフィルムを挟み
こんで、該フィルムの両面にせん断力差をつけることに
よって変形を与えることを特徴とする請求項1ないし4
記載の光学異方素子の製造方法。
5. The deformation is given by sandwiching the film between rolls having different peripheral speeds and applying a shearing force difference to both surfaces of the film.
A method for manufacturing the optically anisotropic element described.
【請求項6】 2枚の電極基板間にねじれ角がほぼ90
°のTN型液晶を挟持してなる液晶セルと、その両側に
配列された2枚の偏光素子と、該液晶セルと該偏光素子
の間に、請求項1ないし5記載の方法により製造された
光学異方素子を少なくとも一枚配置したことを特徴とす
る液晶表示素子。
6. The twist angle between the two electrode substrates is approximately 90.
6. A liquid crystal cell sandwiching a TN type liquid crystal of 2 °, two polarizing elements arranged on both sides of the liquid crystal cell, and between the liquid crystal cell and the polarizing element, manufactured by the method according to claim 1. A liquid crystal display element comprising at least one optically anisotropic element.
JP5301815A 1993-12-01 1993-12-01 Production of optically anisotropic element and liquid crystal display element using the same Pending JPH07159614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301815A JPH07159614A (en) 1993-12-01 1993-12-01 Production of optically anisotropic element and liquid crystal display element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301815A JPH07159614A (en) 1993-12-01 1993-12-01 Production of optically anisotropic element and liquid crystal display element using the same

Publications (1)

Publication Number Publication Date
JPH07159614A true JPH07159614A (en) 1995-06-23

Family

ID=17901497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301815A Pending JPH07159614A (en) 1993-12-01 1993-12-01 Production of optically anisotropic element and liquid crystal display element using the same

Country Status (1)

Country Link
JP (1) JPH07159614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156525A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical retardation plate and method for manufacturing the same
US6483561B2 (en) 1996-06-27 2002-11-19 Nec Corporation Wide viewing angle liquid crystal display having both optical compensator and optical diffuser
JP2010160483A (en) * 2008-12-10 2010-07-22 Fujifilm Corp Film, method for manufacturing film, polarizing plate, and liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483561B2 (en) 1996-06-27 2002-11-19 Nec Corporation Wide viewing angle liquid crystal display having both optical compensator and optical diffuser
US6741306B2 (en) 1996-06-27 2004-05-25 Nec Lcd Technologies, Ltd. Wide viewing angle liquid crystal display having both optical compensator and optical diffuser
JP2002156525A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical retardation plate and method for manufacturing the same
JP2010160483A (en) * 2008-12-10 2010-07-22 Fujifilm Corp Film, method for manufacturing film, polarizing plate, and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3044681B2 (en) Liquid crystal display
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
JP5989859B2 (en) Liquid crystal display
KR101322512B1 (en) Liquid crystal display device
JPH07191217A (en) Elliptical polarizing plate and liquid crystal display device using the same
US5244713A (en) Optical film
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
JPH06222213A (en) Manufacture of optical anisotropic element and liquid crystal display element using it
JPH07159614A (en) Production of optically anisotropic element and liquid crystal display element using the same
JP3568641B2 (en) Optical anisotropic element and liquid crystal display element using the same
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JPH07287120A (en) Optical compensating sheet
JP3810969B2 (en) Optical compensation polarizing plate and manufacturing method of liquid crystal display device
JPH07110406A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH08101381A (en) Liquid crystal display element
JP2706902B2 (en) Color liquid crystal display
JPH07128659A (en) Liquid crystal display element formed by using optical anisotropic element
JPH07151915A (en) Optical anisotropic element, its production and liquid crystal display element using the same
JPH0843625A (en) Production of optical compensating sheet
KR101818448B1 (en) In-plane switching mode liquid crystal display having the compensation film
JPH08304628A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JPH07333437A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH09146085A (en) Elliptic polarizing plate and liquid crystal display element
JPH0895032A (en) Elliptically polarizing plate and color liquid crystal display device
JPH08101380A (en) Reflection type liquid crystal display device