JP3810969B2 - Optical compensation polarizing plate and manufacturing method of liquid crystal display device - Google Patents

Optical compensation polarizing plate and manufacturing method of liquid crystal display device Download PDF

Info

Publication number
JP3810969B2
JP3810969B2 JP34590999A JP34590999A JP3810969B2 JP 3810969 B2 JP3810969 B2 JP 3810969B2 JP 34590999 A JP34590999 A JP 34590999A JP 34590999 A JP34590999 A JP 34590999A JP 3810969 B2 JP3810969 B2 JP 3810969B2
Authority
JP
Japan
Prior art keywords
polarizing plate
liquid crystal
phase difference
optical compensation
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34590999A
Other languages
Japanese (ja)
Other versions
JP2001166133A (en
Inventor
伸一 佐々木
一喜 土本
誠司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP34590999A priority Critical patent/JP3810969B2/en
Publication of JP2001166133A publication Critical patent/JP2001166133A/en
Application granted granted Critical
Publication of JP3810969B2 publication Critical patent/JP3810969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の技術分野】
本発明は、表示品位に優れる液晶表示装置などを形成しうる薄型で製造効率に優れる光学補償偏光板の製造方法に関する。
【0002】
【従来の技術】
従来、TFT型液晶セル等の複屈折による位相差を正面及び斜視方向の広い角度で補償して広い視角範囲で表示品位に優れる液晶表示装置を形成しうる光学補償偏光板としては、一軸延伸フィルムを延伸方向を直交させて積層した位相差板を偏光板と接着したものが知られていた。しかしながら複数の位相差板の使用で嵩高となり液晶表示装置が厚型化すると共に、位相差板の光軸を規制した積層工程を要して製造効率にも乏しい問題点があった。
【0003】
【発明の技術課題】
本発明は、表示品位に優れる液晶表示装置を形成しう薄型で製造効率に優れる光学補償偏光板の開発を目的とする。
【0004】
【課題の解決手段】
本発明は、面内における遅相軸の角度のバラツキが±3度以内の二軸延伸フィルムからなる単層で、かつ長尺の位相差板と長尺の偏光板とを順次積層しつつその積層体を所定サイズに裁断し、その裁断体先に裁断したものからなる同構造の標準積層体とそれらの位相差板側を内側にして、かつ偏光板がクロスニコルとなるように配置した場合の法線方向における漏れ光率が全面において0.2%以下である当該裁断積層体を得ることを特徴とする光学補償偏光板の製造方法、及びその製造後の光学補償偏光板を液晶セルの少なくとも片側に配置することを特徴とする液晶表示装置の製造方法を提供するものである。
【0005】
【発明の効果】
本発明によれば、1枚、すなわち単層の位相差板の使用にて薄さに優れる光学補償偏光板を製造効率よく得ることができ、それを用いてTN型やπ型やVA型等のTFT型液晶セルなどの位相差を補償してコントラストや表示の均質性等の表示品位に優れる薄型の液晶表示装置を形成することができる。特に位相差板が法線方向の位相差をR1、遅相軸を回転軸として法線方向を基準に40度傾斜させた状態での垂直方向の位相差をR2としてそれらによるR2/R1をβとしたとき、R1≦1000nm、β≧1.12を満足するものである場合には、正面及び斜視の広い視角範囲で液晶セルによる位相差を補償してコントラスト等の表示品位に優れる液晶表示装置を形成することができる。
【0006】
すなわち位相差は、複屈折光の屈折率差(△n)と光路長(d)の積(△nd)にて定義されるが、その場合に前記のβは位相差の角度依存特性を意味することより、R1≦1000nmで、かつ光軸のバラツキを制御した小さいズレとすることによりTFT型液晶表示装置などの特に正面方向における位相差を高度に補償して高いコントラストや表示の均質性を達成でき、かつβ≧1.12を満足させることにより斜視方向における位相差を高度に補償して表示品位を向上させることができる。また本発明によれば、長尺の積層体を裁断してなる形成前後の隣接の光学補償偏光板間において先に形成したものを順次標準積層体として次に形成したものを検査できて検査効率に優れている。
【0007】
【発明の実施形態】
本発明による製造方法は、面内における遅相軸の角度のバラツキが±3度以内の二軸延伸フィルムからなる単層で、かつ長尺の位相差板と長尺の偏光板とを順次積層しつつその積層体を所定サイズに裁断し、その裁断体先に裁断したものからなる同構造の標準積層体とそれらの位相差板側を内側にして、かつ偏光板がクロスニコルとなるように配置した場合の法線方向における漏れ光率が全面において0.2%以下の当該裁断積層体からなる光学補償偏光板を得るものである。その例を図1に示した。1が光学補償偏光板で11、14が偏光板、12、13が位相差板である。なお図は、液晶表示装置としたものを例示しており、3が液晶セルで、2は接着層である。
【0008】
位相差板としては、光透過性の適宜なポリマーからなる、面内における遅相軸の角度のバラツキが±3度以内の二軸延伸フィルムが単層物として用いられる。就中、光透過率が75%以上、特に85%以上の透光性に優れるフィルムが好ましい。また耐熱性に優れる位相差板を得る点よりは、延伸方向の屈折率が高くなる正の複屈折性を示すポリマーからなるものが好ましい。
【0009】
ちなみに前記した正の複屈折性を示すポリマーの例としてはポリカーボネート、ポリビニルアルコール、セルロース系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートの如きポリエステル、ポリアリレート、ポリイミド、ノルボルネン系樹脂、ポリスルホン、ポリエーテルスルホン、ポリプロピレンの如きポリオレフィンなどがあげられる。
【0010】
本発明にて用いる位相差板は、例えばポリマーからなる長尺フィルムを延伸処理したり、厚さ方向の屈折率を制御する方式などの適宜な方式で位相差特性を制御することにより得ることができる。その長尺フィルムには、例えば流延法等のキャスティング法や、押出法などの適宜な方式で形成したものを用いうる。就中キャスティング法等の溶液製膜法による厚さムラや配向歪ムラ等の少ない長尺フィルムが好ましく用いうる。
【0011】
フィルム厚は、目的とする位相差板の位相差特性などにより適宜に決定することができる。一般には、5〜500μm、就中10〜400μm、特に20〜300μmの厚さとされる。なお処理対象のフィルムは、無配向のものであってもよいし、予め一軸延伸等の適宜な配向処理を施した配向フィルムであってもよい。
【0012】
TN型液晶セルにおける正面(法線)方向のコントラストの低下を抑制した斜視方向の位相差の補償、π型やVA型の液晶セルにおける正面と斜視での位相差の補償による正面と斜視の広い視野角でのコントラストや表示の均質性等の表示品位に優れる液晶表示装置を得る点よりは、法線方向の位相差をR1、遅相軸を回転軸として法線方向を基準に40度傾斜させた状態での垂直方向の位相差をR2としてそれらによるR2/R1をβとしたとき、R1≦1000nm、β≧1.12を満足する位相差板が好ましく用いうる。
【0013】
前記の位相差特性や光軸のバラツキ特性を示す位相差板は、例えば同時方式や逐次方式等による二軸延伸方式でフィルムをそれを形成するポリマーのガラス転移温度近傍、特にガラス転移温度以上の温度で延伸処理する方法などにより効率よく得ることができる。なお二軸延伸方式において、上記のR1とβと光軸のズレを効率よく満足させる点より、短軸方向、すなわち長尺フィルムの幅(横)方向の延伸倍率を50%以下とすることが好ましい。
【0014】
なお上記したフィルムの厚さ方向の屈折率制御は、例えばフィルムの片面又は両面に1枚又は2枚以上の熱収縮性フィルムを粘着層等を介して接着し、加熱によるその熱収縮性フィルムの収縮力をフィルムに付加してその収縮力の作用下にフィルムを縦又は横の一方向又は両方向に延伸又は収縮させる方法などにより行うことができる。
【0015】
好ましく用いうる位相差板は、複屈折による位相差と遅相軸等の配向軸のバラツキが可及的に小さく、就中そのフィルム面に垂直な法線方向の透過光における位相差のバラツキが10nm以下、特に5nm以下に形成されたものである。なお上記のR1やβ等の特性は、フィルムの種類や厚さ、延伸倍率や延伸温度等の条件を変える方式などにて制御することができる。
【0016】
光学補償偏光板は、図例の如く位相差板12、13と偏光板11、14の積層体として得られるが、これは長尺の位相差板と長尺の偏光板とを順次積層しつつその積層体を所定サイズに裁断することにより形成することができる。かかる積層は、液晶表示装置の製造過程で順次別個に積層する方式にても行いうるが、予め積層することにより品質の安定性や積層作業性等に優れて液晶表示装置の製造効率を向上させうる利点などがある。積層に際し位相差板と偏光板の遅相軸や透過軸等の光軸の配置角度については特に限定はないが、一般には平行関係又は直交関係に配置することが補償効果等の点より好ましい。
【0017】
位相差板と偏光板の積層には適宜な接着剤を用いうるが、熱応力の抑制による光学特性の維持性などの点よりは粘着層が好ましく用いうる。その粘着層には、例えばアクリル系やシリコーン系、ポリエステル系やポリウレタン系、ポリエーテル系やゴム系などの適宜なものを用いることができ特に限定はない。就中、耐熱性や光学特性などの点よりアクリル系のものが好ましく用いられる。
【0018】
粘着層には、必要に応じて例えば天然物や合成物の樹脂類、ガラス繊維やガラスビーズ、金属粉やその他の無機粉末等からなる充填剤や顔料、着色剤や酸化防止剤などの適宜な添加剤を配合することもできる。また微粒子を含有させて光拡散性を示す粘着層とすることもできる。
【0019】
前記した長尺の偏光板には、適宜なものを用いうる。ちなみにその例としては、ポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムにヨウ素及び/又は二色性染料を吸着させて延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルム等からなる偏光フィルムなどがあげられる。
【0020】
また偏光板は、前記した偏光フィルムの片側又は両側に透明保護層を有するものであってもよい。さらに偏光板は、反射層やハーフミラー等を有する反射型や半透過型のものなどであってもよい。反射型の偏光板は、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化をはかりやすいなどの利点を有する。
【0021】
前記の透明保護層は、ポリマーの塗布層や保護フィルムの接着層などとして適宜に形成でき、その形成には透明性や機械的強度、熱安定性や水分遮蔽性等に優れるポリマーなどが好ましく用いられる。その例としてはポリエステル系樹脂やアセテート系樹脂、ポリエーテルサルホン系樹脂やポリカーボネート系樹脂、ポリアミド系樹脂やポリイミド系樹脂、ポリオレフィン系樹脂やアクリル系樹脂、あるいはアクリル系やウレタン系、アクリルウレタン系やエポキシ系やシリコーン系等の熱硬化型、ないし紫外線硬化型の樹脂などがあげられる。透明保護層は、微粒子の含有によりその表面が微細凹凸構造に形成されていてもよい。
【0022】
また反射型偏光板の形成は、必要に応じ透明樹脂層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式で行うことができる。その具体例としては必要に応じマット処理した保護フィルム等の透明樹脂層の片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設したものや、前記透明樹脂層の微粒子含有による表面微細凹凸構造の上に蒸着方式やメッキ方式等の適宜な方式で金属反射層を付設したものなどがあげられる。半透過型偏光板は、前記の反射層をハーフミラー等の半透過型のものとすることにより得ることができる。
【0023】
上記した位相差板や偏光板、透明保護層や粘着層などの各層は、例えばサリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などにより紫外線吸収能をもたせることもできる。
【0024】
本発明による光学補償偏光板は、それを同構造の標準積層体とそれらの位相差板側を内側にして、かつ偏光板がクロスニコルとなるように配置した場合の法線方向における漏れ光率、すなわち入射光に対する漏れ光の割合(百分率)が全面において0.2%以下であるものからなるが、これにより液晶表示装置とした場合に、位相差や偏光度のバラツキによる輝度の不均一化等を防止できて表示の均質性に優れるものとすることができる。表示の均質性の向上等より好ましい前記漏れ光率は、0.15%以下、就中0.10%以下、特に0.08%以下である。
【0025】
なお前記の漏れ光率を判定するための光学補償偏光板と同構造の標準積層体としては、前記と同様にして調べた漏れ光率が0.2%以下の可及的に小さいものを用いうるが、光学補償偏光板の製造工程を踏まえた検査効率などの点よりは、長尺の位相差板と偏光板との長尺の積層体を所定サイズに裁断して得た各裁断積層体からなる光学補償偏光板に基づき、その形成前後の隣接の光学補償偏光板間において先に形成したものを順次標準積層体として次に形成したものを検査する方式が好ましい。
【0026】
本発明による光学補償偏光板は、例えば正面(法線)方向でのコントラストの低下を防止した斜視方向の位相差の補償や、正面方向と斜視方向の位相差の補償等の、TN型やSTN型やπ型等の各種の液晶セルにおける複屈折による視角特性の補償などに好ましく用いうる。その実用に際しては、例えば液晶セル等の他部材と接着することを目的にその片面又は両面に粘着層を設けたものなどの適宜な形態の光学部材として適用することもできる。
【0027】
光学補償偏光板を用いての液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと光学補償偏光板及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては図例の如く本発明による光学補償偏光板を用いてそれを液晶セル3の少なくとも片側に設ける点を除いて特に限定はなく、従来に準じうる。
【0028】
従って液晶セルの片側又は両側に偏光板を配置した液晶表示装置や、照明システムにバックライトあるいは反射板や半透過型反射板を用いてなる透過型や反射型、あるいは反射・透過両用型などの適宜な液晶表示装置を形成することができる。その場合、光学補償偏光板は、図例の如く液晶セル3の視認側又は/及び視認背面側、特に少なくとも視認側に、位相差板12、13が液晶セル3と偏光板11、14の間に位置するように配置することが補償効果の点などより好ましい。
【0029】
前記において液晶表示装置の形成部品は、積層一体化されていてもよいし、分離状態にあってもよい。また液晶表示装置の形成に際しては、例えば拡散板やアンチグレア層、反射防止膜、保護層や保護板などの適宜な光学素子を適宜に配置することができる。かかる素子は、光学補償偏光板と積層してなる上記した光学部材の形態にて液晶表示装置の形成に供することもできる。
【0030】
【実施例】
実施例1
ホスゲンとビスフィノールAの重縮合物からなる分子量約8万のポリカーボネートの20重量%二塩化メチレン溶液をスチールドラム上に流延し、それを連続的に剥ぎ取って乾燥させて得た厚さ60μmで位相差がほぼ0の長尺フィルムを同時二軸延伸機を介し162℃で縦方向35%、横方向35%の二軸延伸加工を施して位相差板を得、それをクロスニコルでの漏れ光率が0.02%の偏光板とそれらの遅相軸と透過軸とが平行関係となるようにアクリル系粘着層を介し積層して光学補償偏光板を得た。
【0031】
実施例2
ロール延伸機にて157℃で縦方向15%の一軸延伸加工を施した後、テンターにて176℃で横方向40%の一軸延伸加工を施す逐次二軸延伸方式としたほかは実施例1に準じて位相差板を得、それを偏光板と積層して光学補償偏光板を得た。
【0032】
(削除)
【0033】
比較例
ロール延伸機にて160℃で縦方向82%の一軸延伸加工を施した後、テンターにて160℃で横方向55%の一軸延伸加工を施す逐次二軸延伸方式としたほかは実施例1に準じて位相差板を得、それを偏光板と積層して光学補償偏光板を得た。
【0034】
評価試験
実施例、比較例で得た位相差板について、平行ニコル回転法を原理とする位相差計(王子計測機器社製、KOBRA21−ADH)にて位相差、遅相軸角度のバラツキ(ズレ)を測定してそれより上記したβを算出した。
【0035】
また実施例、比較例で得た光学補償偏光板について隣接位置より切り出した二枚をそれらの位相差板側を内側にして、かつ偏光板がクロスニコルとなるように配置して、法線方向の漏れ光率を調べた(村上色彩技術研究所社製、CMS−500)。
【0036】
前記の結果を次表に示した。
R1 β ズレ(度) 漏れ光率(%)
実施例1 14 6.79 ±3.0 0.03
実施例2 48 1.65 ±1.5 0.06
比 較 例 117 1.99 ±6.0 3.3
【0037】
実施例1、2で得た光学補償偏光板をTN型液晶セルの両面に偏光板が外側となるように接着して液晶表示装置を形成し、その表示特性を調べたところ、正面と斜視の広い視角範囲でコントラストと表示の均質性に優れて良好な表示品位であった。前記の結果と表より、実施例では光学補償偏光板の漏れ光率の上昇を使用偏光板の漏れ光率の数倍程度に抑制できており、その光学補償偏光板を用いて正面及び斜視の広い視角範囲で液晶セルによる位相差を補償して表示品位に優れる液晶表示装置を形成できることがわかる。
【図面の簡単な説明】
【図1】液晶表示装置例(光学補償偏光板例)の断面図。
【符号の説明】
1:光学補償偏光板
11、14:偏光板
12、13:位相差板
3:液晶セル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a thin optical compensation plate that is excellent in manufacturing efficiency and capable of forming a liquid crystal display device having excellent display quality.
[0002]
[Prior art]
Conventionally, as an optical compensation polarizing plate capable of forming a liquid crystal display device excellent in display quality in a wide viewing angle range by compensating a phase difference due to birefringence in a TFT type liquid crystal cell or the like with a wide angle in the front and perspective directions, a uniaxially stretched film is used. It is known that a retardation plate in which the stretching directions are orthogonally laminated is bonded to a polarizing plate. However, the use of a plurality of retardation plates increases the thickness of the liquid crystal display device, and requires a lamination process in which the optical axis of the retardation plate is regulated, resulting in poor manufacturing efficiency.
[0003]
[Technical Problem of the Invention]
The present invention is directed to the development of optical compensation polarizing plate excellent in manufacturing efficiency thin Ru bovine form a liquid crystal display device having excellent display quality.
[0004]
[Means for solving problems]
The present invention is a single layer made of a biaxially stretched film with an in-plane slow axis angle variation of ± 3 degrees or less , and a long retardation plate and a long polarizing plate are sequentially laminated. of the laminate was cut into a predetermined size, and a standard laminate of the same structure made of those cut cut of its the first and their phase difference plate side inward, and as a polarizing plate is crossed Nicols A method for producing an optical compensation polarizing plate , characterized in that the cut laminated body having a leakage light rate in the normal direction when arranged is 0.2% or less over the entire surface, and an optical compensation polarizing plate after the production The present invention provides a method for manufacturing a liquid crystal display device , which is arranged on at least one side of a liquid crystal cell.
[0005]
【The invention's effect】
According to the present invention, it is possible to efficiently obtain an optical compensation polarizing plate that is excellent in thinness by using one , that is, a single-layer retardation plate, and using it, TN type, π type, VA type, etc. A thin liquid crystal display device excellent in display quality such as contrast and display uniformity can be formed by compensating the phase difference of the TFT type liquid crystal cell. In particular, the phase difference plate R1 represents the phase difference in the normal direction, R2 represents the phase difference in the vertical direction with the slow axis as the rotation axis and the tilt angle of 40 degrees with respect to the normal direction as a reference, and R2 / R1 resulting therefrom is β when a, R1 ≦ 1000 nm, when it is the even you satisfied beta ≧ 1.12, the liquid crystal display excellent compensates the phase difference due to the liquid crystal cell in a wide viewing angle range of front and perspective display quality such as contrast A device can be formed.
[0006]
That is, the phase difference is defined by the product (Δnd) of the refractive index difference (Δn) of the birefringent light and the optical path length (d), in which case β means the angle-dependent characteristic of the phase difference. Therefore, by setting R1 ≦ 1000 nm and a small shift in which the optical axis variation is controlled, the phase difference particularly in the front direction of the TFT type liquid crystal display device and the like is highly compensated for high contrast and display uniformity. By satisfying β ≧ 1.12, the display quality can be improved by highly compensating for the phase difference in the oblique direction. Further, according to the present invention, it is possible to inspect the next formed as a standard laminated body sequentially between the adjacent optical compensation polarizing plates before and after the formation formed by cutting a long laminated body, and the inspection efficiency. Is excellent.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The production method according to the present invention is a single layer made of a biaxially stretched film with an in-plane slow axis angle variation of ± 3 degrees or less , and a long retardation plate and a long polarizing plate are sequentially laminated. and while cutting the laminate it to the predetermined size, and a standard laminate of the same structure made of those cut cut of its the first and their phase difference plate side inward, and the polarizing plate cross-Nicol so as leakage light ratio in the normal direction when arranged is Ru shall der to obtain an optical compensation polarizing plate consisting of 0.2% or less of the cutting laminate the entire surface. An example thereof is shown in FIG. 1 is an optical compensation polarizing plate, 11 and 14 are polarizing plates, and 12 and 13 are retardation plates. The figure illustrates a liquid crystal display device, 3 is a liquid crystal cell, and 2 is an adhesive layer.
[0008]
As the retardation plate, a biaxially stretched film made of a suitable light-transmitting polymer and having an in-plane slow axis angle variation of within ± 3 degrees is used as a single layer . In particular, a film having a light transmittance of 75% or more, particularly 85% or more is preferable. Moreover, what consists of a polymer which shows the positive birefringence from which the refractive index of a extending direction becomes high is preferable from the point which obtains the phase difference plate excellent in heat resistance.
[0009]
Incidentally, examples of the polymer exhibiting positive birefringence described above include polycarbonate, polyvinyl alcohol, cellulose resin, polyester such as polyethylene terephthalate and polyethylene naphthalate, polyarylate, polyimide, norbornene resin, polysulfone, polyethersulfone, polypropylene. And the like.
[0010]
The retardation plate used in the present invention can be obtained by, for example, stretching a long film made of a polymer or controlling the retardation characteristics by an appropriate method such as a method of controlling the refractive index in the thickness direction. it can. As the long film, for example, a film formed by an appropriate method such as a casting method such as a casting method or an extrusion method can be used. In particular, a long film with little thickness unevenness and alignment strain unevenness by a solution casting method such as a casting method can be preferably used.
[0011]
The film thickness can be appropriately determined depending on the retardation characteristics of the target retardation plate. In general, the thickness is 5 to 500 μm, especially 10 to 400 μm, especially 20 to 300 μm. The film to be treated may be non-oriented or may be an oriented film that has been subjected to appropriate orientation treatment such as uniaxial stretching in advance.
[0012]
Compensation of the phase difference in the perspective direction that suppresses the decrease in contrast in the front (normal) direction in the TN liquid crystal cell, and wide front and perspective by compensation of the phase difference between the front and the perspective in the π-type and VA-type liquid crystal cells. From the point of obtaining a liquid crystal display device with excellent display quality such as contrast at the viewing angle and display homogeneity, the phase difference in the normal direction is R1, and the slow axis is the rotation axis and the normal direction is tilted by 40 degrees. when the the R2 / R1 by their beta phase difference in the vertical direction as R2 in a state of being, R1 ≦ 1000 nm, phase difference plate you satisfied beta ≧ 1.12 may preferably used.
[0013]
Retardation plate showing a variation characteristic of the phase difference characteristics and the optical axis of the can, for example simultaneous method or a sequential method biaxial glass transition temperature near the stretching scheme forming the same film with a polymer, in particular a glass transition temperature or higher due to such It can obtain efficiently by the method of extending | stretching at the temperature of. In the biaxial stretching method , the stretching ratio in the minor axis direction, that is, the width (lateral) direction of the long film is set to 50% or less from the viewpoint of efficiently satisfying the deviation between R1 and β and the optical axis. preferable.
[0014]
In addition, the refractive index control in the thickness direction of the film described above is performed by, for example, bonding one or two or more heat-shrinkable films to one or both sides of the film via an adhesive layer or the like, and heating the heat-shrinkable film. It can be performed by a method in which a shrinkage force is applied to the film and the film is stretched or shrunk in one or both of the longitudinal and lateral directions under the action of the shrinkage force.
[0015]
The retardation plate that can be preferably used has as little variation as possible in the phase difference due to birefringence and the orientation axis such as the slow axis, and in particular, in the transmitted light in the normal direction perpendicular to the film surface. It is formed to 10 nm or less, particularly 5 nm or less. The characteristics such as R1 and β can be controlled by a method of changing conditions such as the type and thickness of the film, the draw ratio and the draw temperature.
[0016]
The optical compensation polarizing plate is obtained as a laminated body of retardation plates 12 and 13 and polarizing plates 11 and 14 as shown in the figure . This is achieved by sequentially laminating a long retardation plate and a long polarizing plate. It can be formed by cutting the laminate into a predetermined size . Such stacking can be performed by a method of sequentially stacking separately in the manufacturing process of the liquid crystal display device, but by stacking in advance, the stability of the quality and the stacking workability are excellent, and the manufacturing efficiency of the liquid crystal display device is improved. There are advantages. There are no particular restrictions on the angle of arrangement of the optical axis such as the slow axis and transmission axis of the retardation plate and polarizing plate during lamination, but in general, it is preferable to arrange them in a parallel relationship or an orthogonal relationship in view of the compensation effect and the like.
[0017]
An appropriate adhesive can be used for laminating the retardation plate and the polarizing plate, but an adhesive layer can be preferably used from the standpoint of maintaining optical characteristics by suppressing thermal stress. As the adhesive layer, for example, an appropriate material such as acrylic, silicone, polyester, polyurethane, polyether, or rubber can be used, and there is no particular limitation. In particular, acrylic materials are preferably used in view of heat resistance and optical characteristics.
[0018]
For the adhesive layer, for example, natural or synthetic resins, glass fibers or glass beads, fillers or pigments made of metal powder or other inorganic powders, coloring agents, antioxidants, etc. Additives can also be blended. Moreover, it can also be set as the adhesion layer which contains microparticles | fine-particles and shows light diffusibility.
[0019]
As the above-described long polarizing plate, an appropriate one can be used. For example, iodine and / or dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. Examples thereof include a polarizing film made of a polyene oriented film such as a stretched product, a dehydrated polyvinyl alcohol product or a dehydrochlorinated polyvinyl chloride product.
[0020]
The polarizing plate may have a transparent protective layer on one side or both sides of the polarizing film. Further, the polarizing plate may be a reflective type or a transflective type having a reflective layer, a half mirror, or the like. The reflective polarizing plate is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side) and displays a liquid crystal display that can omit the incorporation of a light source such as a backlight. It has an advantage that the display device can be easily thinned.
[0021]
The transparent protective layer can be appropriately formed as a polymer coating layer, a protective film adhesive layer, etc., and a polymer excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc. is preferably used for its formation. It is done. Examples include polyester resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, acrylic resins, urethane resins, acrylic urethane resins, Examples thereof include thermosetting resins such as epoxy and silicone resins, and ultraviolet curable resins. The surface of the transparent protective layer may be formed in a fine concavo-convex structure by containing fine particles.
[0022]
The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is provided on one side of the polarizing plate via a transparent resin layer or the like as necessary. Specific examples thereof include a foil or a vapor deposition film made of a reflective metal such as aluminum on one side of a transparent resin layer such as a protective film matted as necessary, or a fine surface of the transparent resin layer containing fine particles. For example, a metal reflective layer provided on the concavo-convex structure by an appropriate method such as vapor deposition or plating. The transflective polarizing plate can be obtained by making the reflective layer a transflective type such as a half mirror.
[0023]
Each layer such as the retardation plate, polarizing plate, transparent protective layer and adhesive layer is made of an ultraviolet absorber such as a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. It can also be provided with ultraviolet absorbing ability depending on the type of treatment.
[0024]
The optically compensatory polarizing plate according to the present invention has a leak rate of light in the normal direction when it is arranged so that the standard laminated body having the same structure and the retardation plate side thereof are inward and the polarizing plate is crossed Nicol. That is, the ratio (percentage) of leaked light to incident light is 0.2% or less over the entire surface, but in this case, when a liquid crystal display device is obtained, nonuniform luminance due to variations in phase difference and polarization degree. Etc. can be prevented and the uniformity of display can be improved. The light leakage rate, which is more preferable than improvement in display uniformity, is 0.15% or less, especially 0.10% or less, particularly 0.08% or less.
[0025]
In addition, as a standard laminated body having the same structure as the optical compensation polarizing plate for determining the leakage light rate, one having a leakage light rate as small as possible of 0.2% or less was used as described above. However, from the viewpoint of inspection efficiency based on the manufacturing process of the optical compensation polarizing plate, each cut laminate obtained by cutting a long laminate of a long retardation plate and a polarizing plate into a predetermined size based on the optical compensation polarizer formed of, method of inspecting those then form what previously formed sequentially as a standard laminate the optical compensation polarizing plates of the adjacent before and after formation is preferable.
[0026]
The optical compensation polarizing plate according to the present invention is, for example, a TN type or STN type that compensates for a phase difference in a perspective direction that prevents a decrease in contrast in the front (normal) direction, and compensates for a phase difference between the front direction and the perspective direction. It can be preferably used for compensation of viewing angle characteristics due to birefringence in various liquid crystal cells such as type and π type. In practical use, it can also be applied as an optical member of an appropriate form, such as one provided with an adhesive layer on one or both sides for the purpose of bonding to another member such as a liquid crystal cell.
[0027]
Formation of a liquid crystal display device using an optical compensation polarizing plate can be performed according to the conventional method. In other words, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical compensation polarizing plate, and an illumination system as necessary, and incorporating a drive circuit. As described above, there is no particular limitation except that the optical compensation polarizing plate according to the present invention is used and provided on at least one side of the liquid crystal cell 3, and the conventional method can be applied.
[0028]
Therefore, a liquid crystal display device in which a polarizing plate is arranged on one or both sides of a liquid crystal cell, a transmission type or a reflection type using a backlight, a reflection plate or a semi-transmission type reflection plate in an illumination system, or a reflection / transmission type An appropriate liquid crystal display device can be formed. In that case, as shown in the figure, the optical compensation polarizing plate has retardation plates 12, 13 between the liquid crystal cell 3 and the polarizing plates 11, 14 on the viewing side or / and the viewing back side of the liquid crystal cell 3, particularly at least the viewing side. It is more preferable to arrange them so that they are positioned at the position of compensation.
[0029]
In the above description, the components for forming the liquid crystal display device may be laminated and integrated, or may be in a separated state. In forming the liquid crystal display device, appropriate optical elements such as a diffusion plate, an antiglare layer, an antireflection film, a protective layer and a protective plate can be appropriately disposed. Such an element can also be used for the formation of a liquid crystal display device in the form of the above-described optical member laminated with an optical compensation polarizing plate.
[0030]
【Example】
Example 1
A 20% by weight methylene dichloride solution of a polycarbonate having a molecular weight of about 80,000 consisting of a polycondensate of phosgene and bisfinol A was cast on a steel drum, and it was continuously peeled off and dried at a thickness of 60 μm. A phase difference plate is obtained by subjecting a long film with a phase difference of approximately 0 to a biaxial stretching process of 35% in the longitudinal direction and 35% in the transverse direction at 162 ° C. through a simultaneous biaxial stretching machine. An optical compensation polarizing plate was obtained by laminating a polarizing plate having an optical rate of 0.02% and an acrylic adhesive layer so that the slow axis and the transmission axis thereof were in a parallel relationship.
[0031]
Example 2
Example 1 except that a uniaxial stretching process was performed at 157 ° C. in the longitudinal direction at 157 ° C. with a roll stretching machine, followed by a uniaxial stretching process at 176 ° C. in the transverse direction at 40%. Similarly, a retardation plate was obtained and laminated with a polarizing plate to obtain an optical compensation polarizing plate.
[0032]
(Delete)
[0033]
Comparative Example Example of a sequential biaxial stretching method in which a uniaxial stretching process was performed at 160 ° C. in the longitudinal direction at 160 ° C. and then a uniaxial stretching process at 160 ° C. in the transverse direction at 55%. According to 1, a retardation plate was obtained and laminated with a polarizing plate to obtain an optical compensation polarizing plate.
[0034]
About the phase difference plate obtained in the evaluation test example and the comparative example, the phase difference and the slow axis angle variation (deviation) by the phase difference meter (KOBRA21-ADH, manufactured by Oji Scientific Instruments) based on the parallel Nicol rotation method. ) Was measured and β was calculated from the above.
[0035]
Moreover, about the optical compensation polarizing plate obtained by the Example and the comparative example, the two sheets cut out from the adjacent positions are arranged so that the retardation plate side is inside, and the polarizing plate is crossed Nicol, and the normal direction (Murakami Color Research Laboratory Co., Ltd., CMS-500).
[0036]
The results are shown in the following table.
R1 β Deviation (degree) Leakage rate (%)
Example 1 14 6.79 ± 3.0 0.03
Example 2 48 1.65 ± 1.5 0.06
Comparative Example 117 1.99 ± 6.0 3.3
[0037]
Example 1 The optical compensation polarizing plate obtained in 2 was adhered to both surfaces of a TN type liquid crystal cell so that the polarizing plate was on the outside, and a liquid crystal display device was formed. Excellent display quality with excellent contrast and display uniformity over a wide viewing angle range. From the above results and table, in the examples, the increase of the leakage light rate of the optical compensation polarizing plate can be suppressed to about several times the leakage light rate of the polarizing plate used. It can be seen that a liquid crystal display device excellent in display quality can be formed by compensating the phase difference caused by the liquid crystal cell in a wide viewing angle range.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a liquid crystal display device (an example of an optical compensation polarizing plate).
[Explanation of symbols]
1: Optical compensation polarizing plate 11, 14: Polarizing plate 12, 13: Retardation plate 3: Liquid crystal cell

Claims (4)

面内における遅相軸の角度のバラツキが±3度以内の二軸延伸フィルムからなる単層で、かつ長尺の位相差板と長尺の偏光板とを順次積層しつつその積層体を所定サイズに裁断し、その裁断体先に裁断したものからなる同構造の標準積層体とそれらの位相差板側を内側にして、かつ偏光板がクロスニコルとなるように配置した場合の法線方向における漏れ光率が全面において0.2%以下である当該裁断積層体を得ることを特徴とする光学補償偏光板の製造方法 In monolayer angle of dispersion of the slow axis in the plane consists of biaxially oriented film within 3 ° ±, and sequentially laminated with its laminate of a polarizing plate of the retardation plate and the elongate elongated and cut into a predetermined size, the standard laminate of the same structure made of those cut cut of its the first and them by the phase difference plate side inward, and the polarizing plate of the case of arranging so as to be in a cross nicol A method for producing an optically compensatory polarizing plate , comprising obtaining the cut laminate having a leakage light rate in the normal direction of 0.2% or less over the entire surface. 請求項1において、位相差板が正の複屈折性を示すポリマーからなり、かつ法線方向の位相差をR1、遅相軸を回転軸として法線方向を基準に40度傾斜させた状態での垂直方向の位相差をR2としてそれらによるR2/R1をβとしたとき、R1≦1000nm、β≧1.12を満足するものである光学補償偏光板の製造方法The phase difference plate according to claim 1, wherein the retardation plate is made of a polymer exhibiting positive birefringence, and is tilted by 40 degrees with respect to the normal direction with the phase difference in the normal direction as R1 and the slow axis as the rotation axis. A method for producing an optically compensatory polarizing plate satisfying R1 ≦ 1000 nm and β ≧ 1.12 where R2 is a phase difference in the vertical direction of R2 and R2 / R1 is β. 請求項1又は2において、裁断積層体の片側又は両側に粘着層を付設する光学補償偏光板の製造方法According to claim 1 or 2, process for producing an optical compensation polarizer for attaching a pressure-sensitive adhesive layer on one or both sides of the cut laminate. 請求項1〜3の一に記載の方法で光学補償偏光板を製造後、その光学補償偏光板を液晶セルの少なくとも片側に配置することを特徴とする液晶表示装置の製造方法A method for producing a liquid crystal display device , comprising producing an optical compensation polarizing plate by the method according to claim 1, and then disposing the optical compensation polarizing plate on at least one side of a liquid crystal cell.
JP34590999A 1999-12-06 1999-12-06 Optical compensation polarizing plate and manufacturing method of liquid crystal display device Expired - Lifetime JP3810969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34590999A JP3810969B2 (en) 1999-12-06 1999-12-06 Optical compensation polarizing plate and manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34590999A JP3810969B2 (en) 1999-12-06 1999-12-06 Optical compensation polarizing plate and manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2001166133A JP2001166133A (en) 2001-06-22
JP3810969B2 true JP3810969B2 (en) 2006-08-16

Family

ID=18379827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34590999A Expired - Lifetime JP3810969B2 (en) 1999-12-06 1999-12-06 Optical compensation polarizing plate and manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3810969B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1802724B1 (en) 2004-10-21 2009-04-29 LG Chem, Ltd. Acrylic pressure sensitive adhesive with good antistatic property
KR100732325B1 (en) 2005-02-16 2007-06-25 주식회사 엘지화학 A Retardation Film Having A Homeotropic Alignment Liquid Crystal film and Method for Preparing the Same
KR101065916B1 (en) 2007-05-22 2011-09-19 주식회사 엘지화학 Polymerizable liquid crystal composition and optical film and device using the same
CN105452947B (en) * 2013-08-08 2017-08-01 学校法人东京理科大学 Improve the method for optic response and use the liquid crystal display cells of this method

Also Published As

Publication number Publication date
JP2001166133A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
US7075604B2 (en) Optical film and display system
KR100805504B1 (en) Laminated quarter-wave plate or circularly polarizing plate, liquid-crystal display device using the same and method for producing the same
US7505099B2 (en) Optical resin film and polarizing plate and liquid crystal display using same
US20050213012A1 (en) IPS mode liquid crystal display
JP2003121641A (en) Laminated optical retardation film, polarizing member and liquid crystal display device
JP2001091745A (en) Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
KR20020070856A (en) Optically compensatory polarizer and liquid-crystal display device
US7466381B2 (en) Optical film and image viewing display
JP3620839B2 (en) Liquid crystal display device, retardation film and laminated polarizing plate used therefor
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
JP2001147323A (en) Laminated phase difference plate, elliptically polarizing plate and liquid crystal display device
JP2002365428A (en) Method for manufacturing optical film and laminated polarizing plate and liquid crystal display device using the same
JP2001272538A (en) Phase difference plate, optical compensating polarizing plate and liquid crystal display device
JPH0545520A (en) Polarizing plate and liquid crystal display device
JP4077244B2 (en) VA mode optical film, laminated polarizing plate, and image display device using the same
JP3810969B2 (en) Optical compensation polarizing plate and manufacturing method of liquid crystal display device
JP2002148437A (en) Optical compensation film, method for manufacturing the same, and polarizing plate and liquid crystal display device which use the film
JP2012252084A (en) Liquid crystal panel and liquid crystal display device
JP2002148439A (en) Optical compensating film, method for producing the same, polarizing plate using the same and liquid crystal display
JP2002148438A (en) Optical compensating film, method for producing the same, polarizing plate using the same and liquid crystal display
JP2012252085A (en) Liquid crystal panel and liquid crystal display device
JPH10142423A (en) Polarizing plate with wide visual field
JPH09318816A (en) Optical film, its production, laminated polarizing plate and liquid crystal display device
JP2002196134A (en) Optically compensated film, method for manufacturing the same and polarization plate and liquid crystal display device using the film
JPH09318815A (en) Production of optical film, laminated polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Ref document number: 3810969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150602

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term