JPH0715960B2 - Semiconductor chip cooling device - Google Patents

Semiconductor chip cooling device

Info

Publication number
JPH0715960B2
JPH0715960B2 JP62117047A JP11704787A JPH0715960B2 JP H0715960 B2 JPH0715960 B2 JP H0715960B2 JP 62117047 A JP62117047 A JP 62117047A JP 11704787 A JP11704787 A JP 11704787A JP H0715960 B2 JPH0715960 B2 JP H0715960B2
Authority
JP
Japan
Prior art keywords
heat transfer
semiconductor chip
fin
transfer element
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62117047A
Other languages
Japanese (ja)
Other versions
JPS63283148A (en
Inventor
元宏 佐藤
俊宏 山田
崇弘 大黒
昭英 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62117047A priority Critical patent/JPH0715960B2/en
Publication of JPS63283148A publication Critical patent/JPS63283148A/en
Publication of JPH0715960B2 publication Critical patent/JPH0715960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体チップの冷却装置に係り、特に、回路
基板上に多数配置された半導体チップが発生する熱を冷
却するのに好適な半導体チップの冷却装置に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor chip cooling device, and more particularly to a semiconductor suitable for cooling heat generated by a large number of semiconductor chips arranged on a circuit board. The present invention relates to a chip cooling device.

[従来の技術] 従来の半導体チップの冷却装置としては、例えば特開昭
60−126853号公報記載のものがある。この従来技術を第
9図ないし第12図を参照して説明する。
[Prior Art] A conventional semiconductor chip cooling device is disclosed in
There is one described in JP-A-60-126853. This prior art will be described with reference to FIGS. 9 to 12.

第9図は、前記公報に記載されている従来の半導体チッ
プの冷却装置の一部断面斜視図、第10図は、第9図の熱
伝達子部の要部断面図、第11図および第12図は、フィン
嵌め合わせ部の拡大断面図である。
FIG. 9 is a partial cross-sectional perspective view of the conventional semiconductor chip cooling device described in the above publication, and FIG. 10 is a cross-sectional view of a main part of the heat transfer part of FIG. 9, FIG. FIG. 12 is an enlarged cross-sectional view of the fin fitting portion.

前記公報記載の半導体チップの冷却装置は、第9,10図に
示すように、ハウジング5′の内面に形成されたフィン
8′と、半導体チップ3′の伝熱面積より大きな底面積
を有する熱伝達子4′のベース上に形成されたフィン
7′とを、微小間隙を保って嵌め合わせるとともに、ば
ね21′によって熱伝達子4′のベースは半導体チップ
3′に押し付けられ、半導体チップ3′の背面と面接触
する構造となっていた。
As shown in FIGS. 9 and 10, the semiconductor chip cooling device described in the above publication has a fin 8'formed on the inner surface of the housing 5'and a heat source having a bottom area larger than the heat transfer area of the semiconductor chip 3 '. The fins 7'formed on the base of the transfer element 4'are fitted together with a minute gap kept therebetween, and the base of the heat transfer element 4'is pressed against the semiconductor chip 3'by the spring 21 ', so that the semiconductor chip 3'. It has a structure that makes surface contact with the back surface of.

[発明が解決しようとする問題点] 上記従来技術においては、第9,10図に示すように、回路
基板(以下単に基板という)1′に半田ボール2′によ
り接合された半導体チップ3′で発生した熱は、半導体
チップ3′背面から、半導体チップ3′背面に接触して
いる熱伝達子4′のベース、熱伝達子4′のベース上に
形成されたフィン7′へと伝わり、さらにフィン7′と
嵌め合わさっているハウジング5′内面のフィン8′へ
と伝わる。
[Problems to be Solved by the Invention] In the above conventional technology, as shown in FIGS. 9 and 10, a semiconductor chip 3'joined to a circuit board (hereinafter simply referred to as a board) 1'by solder balls 2 '. The generated heat is transmitted from the back surface of the semiconductor chip 3'to the base of the heat transfer element 4 ', which is in contact with the back surface of the semiconductor chip 3', the fins 7'formed on the base of the heat transfer element 4 ', and It is transmitted to the fins 8'on the inner surface of the housing 5'which are fitted with the fins 7 '.

このような熱伝達径路において、熱伝達子4′のベース
上のフィン7′とハウジング5′内面のフィン8′との
熱伝達が冷却性能を左右する。
In such a heat transfer path, the heat transfer between the fins 7'on the base of the heat transfer element 4'and the fins 8'on the inner surface of the housing 5'determines the cooling performance.

しかし、上記従来技術では、熱伝達子4′のフィン7′
とハウジング5′のフィン8′とが微小間隙を保って嵌
め合わされる構成となっており、第11図に示すように、
ハウジング5′の溝11′に嵌め合わされた熱伝達子4′
のフィン両側の隙間δ′が等しくなる場合と、第12図に
示すように、一方の隙間δ′nが狭く、他方の隙間δ′
wが広くなる場合とがあり、フィン嵌め合わせにおける
隙間状態が一定しない。隙間の熱伝達率は隙間のない接
触状態のとき最高であり、隙間の拡大とともに急激に低
下し、一定隙間以上離れるとほぼ一定値となる。
However, in the above prior art, the fins 7'of the heat transfer element 4 '
The fins 8'of the housing 5'are fitted with each other with a minute gap therebetween. As shown in FIG.
Heat transfer element 4'fitted in groove 11 'of housing 5'
When the clearances δ'on both sides of the fin are equal, as shown in FIG. 12, one clearance δ'n is narrow and the other clearance δ'n is small.
In some cases, w becomes wider, and the state of the gap during fin fitting is not constant. The heat transfer coefficient of the gap is the highest in the contact state without the gap, decreases rapidly with the expansion of the gap, and becomes substantially constant when the gap is separated by a certain amount or more.

したがって、フィン間の隙間が一定しない従来技術にお
いては、フィン間の熱伝達性能にばらつくという問題を
あった。
Therefore, in the conventional technology in which the gaps between the fins are not constant, there is a problem that the heat transfer performance between the fins varies.

本発明は、上記従来技術の問題点を解決するためになさ
れたもの、フィンを嵌め合わせる伝達構造において、互
いに嵌め合わされるフィンの伝達面が、フィンの嵌め合
いによって必ず接触し、安定したフィン間の熱伝達をな
しうる半導体チップの冷却装置を提供することを、その
目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art. In a transmission structure in which fins are fitted together, the transmission surfaces of the fins fitted together are inevitably in contact with each other due to the fitting of the fins, and a stable fin spacing is achieved. It is an object of the present invention to provide a cooling device for a semiconductor chip capable of performing the heat transfer of the above.

[問題点を解決するための手段] 上記目的を達成するために、本発明に係る半導体チップ
の冷却装置の構成は、回路基板上に実装された半導体チ
ップの発生熱をハウジングに伝えて冷却するために、一
方が前記半導体チップ背面に接触し他方が微小間隙を介
してハウジング側と係合する熱伝達子を備え、前記ハウ
ジングに形成した複数のフィンと前記熱伝達子に形成し
た複数のフィンとを互いに嵌め合わせるようにした半導
体チップの冷却装置において、前記ハウジングに形成し
た複数のフィンおよび前記熱伝達子に形成した複数のフ
ィンが、前記熱伝達子の半導体チップ背面に接する面を
基準としてその垂線に対し、所定の角度をもつように形
成したものである。
[Means for Solving the Problems] In order to achieve the above object, the structure of the semiconductor chip cooling device according to the present invention transfers the heat generated by the semiconductor chip mounted on the circuit board to the housing for cooling. For this purpose, a plurality of fins formed on the housing and a plurality of fins formed on the heat transfer element are provided, each of which has a heat transfer element that is in contact with the back surface of the semiconductor chip and the other is engaged with the housing side through a minute gap. In a semiconductor chip cooling device adapted to be fitted to each other, a plurality of fins formed in the housing and a plurality of fins formed in the heat transfer element are used as a reference with respect to a surface of the heat transfer element which is in contact with the back surface of the semiconductor chip. It is formed to have a predetermined angle with respect to the perpendicular.

なお、本発明の基本的な構成を第1図に示す。The basic structure of the present invention is shown in FIG.

第1図は、本発明の基本構成を示す半導体チップの冷却
装置の要部断面図である。
FIG. 1 is a cross-sectional view of essential parts of a semiconductor chip cooling device showing the basic configuration of the present invention.

上記目的は、第1図に示すように、基板1上に半田ボー
ル2により取付けられた半導体チップ3の背面に接触
し、半導体チップ3から発生する熱をハウジング5に伝
導させる熱伝達子4に形成したフィン7と、ハウジング
5に形成したフィン8とが、半導体チップ3の背面に接
する熱伝達子4の基準平面9の垂線12に対し、角度θを
持たせることにより、達成される。
As shown in FIG. 1, the above purpose is to provide a heat transfer element 4 that contacts the back surface of the semiconductor chip 3 mounted on the substrate 1 by the solder balls 2 and conducts the heat generated from the semiconductor chip 3 to the housing 5. The fins 7 formed and the fins 8 formed on the housing 5 are achieved by forming an angle θ with respect to the perpendicular 12 of the reference plane 9 of the heat transfer element 4 that contacts the back surface of the semiconductor chip 3.

[作用] 上記技術的手段による働きを第1図ないし第6図を参照
して説明する。
[Operation] The operation of the above technical means will be described with reference to FIGS. 1 to 6.

ここに第2図は、第1図の装置におけるフィン部の嵌め
合わせ前の状態を示す要部断面図、第3図は、そのフィ
ン部の嵌め合わせ時のフィン角度θ,隙間δ,挿入長さ
lの関係を示す線図、第4図および第5図は、第1図の
装置におけるばね挿入部を示す要部断面図、第6図は、
フィン角度と摩擦角との関係を示す局部断面図である。
Here, FIG. 2 is a sectional view of an essential part showing a state before fitting of the fin portion in the apparatus of FIG. 1, and FIG. 3 is a fin angle θ, a gap δ, an insertion length at the time of fitting the fin portion. FIG. 4, FIG. 5 and FIG. 5 are cross-sectional views of the main part showing the spring insertion portion in the device of FIG. 1, and FIG.
It is a local cross section which shows the relationship between a fin angle and a friction angle.

第2図に示すように、半導体チップ3の背面に接する面
を基準平面9とする熱伝達子4の、当該基準平面9に対
する垂線12に対し、角度θ(以下フィン角度という)を
もつフィン7と、半導体チップ3の背面に平行に形成し
たハウジング5の基準平面10に対する垂線13に対し、前
記熱伝達子4のフィン7のフィン角度と同じフィン角度
θをもつフィン8とを嵌め合わせる場合を考える。
As shown in FIG. 2, a fin 7 having an angle θ (hereinafter referred to as a fin angle) with respect to a perpendicular 12 to the reference plane 9 of the heat transfer element 4 whose reference plane 9 is a surface in contact with the back surface of the semiconductor chip 3. And a case where a fin 8 having the same fin angle θ as the fin angle of the fin 7 of the heat transfer element 4 is fitted to a perpendicular 13 to the reference plane 10 of the housing 5 formed parallel to the back surface of the semiconductor chip 3. Think

第2図に示す状態を、フィン嵌め合わせ前の一状態と
し、ハウジング5のフィン8の熱伝達面8bと熱伝達子4
のフィン7の熱伝達面7bとは一部接触しているものとす
る。このような状態において、第5図に示すように、熱
伝達子4に設けたばね挿入部20と、熱伝達子4が嵌め合
わされるハウジング5の所定位置に形成したばね挿入部
21との間に、熱伝達子4をハウジング5に挿入したとき
に反発するばね22を装着しておく。また、この状態にお
けるハウジング5のフィン8の熱伝達面8aと熱伝達子4
のフィン7の熱伝達面7aとの隙間δはあらかじめ設定し
ておく。この隙間δは、第3図に示すように、熱伝達子
4のハウジング5への基準平面10の垂線方向に対する挿
入長さlと、ハウジング5および熱伝達子4の基準平面
10,9に対するフィン8,フィン7のフィン角度θに依存す
る。
The state shown in FIG. 2 is a state before fin fitting, and the heat transfer surface 8b of the fin 8 of the housing 5 and the heat transfer element 4 are set.
It is assumed that the heat transfer surface 7b of the fin 7 is partially in contact with the heat transfer surface 7b. In such a state, as shown in FIG. 5, a spring insertion portion 20 provided on the heat transfer element 4 and a spring insertion portion formed at a predetermined position of the housing 5 into which the heat transfer element 4 is fitted.
A spring 22 that repels when the heat transfer element 4 is inserted into the housing 5 is mounted between the heat transfer element 21 and the heat transfer element 21. Further, in this state, the heat transfer surface 8a of the fin 8 of the housing 5 and the heat transfer element 4 are
The gap δ between the fin 7 and the heat transfer surface 7a is set in advance. As shown in FIG. 3, the gap δ is defined by the insertion length 1 of the heat transfer element 4 into the housing 5 in the direction perpendicular to the reference plane 10 and the reference plane of the housing 5 and the heat transfer element 4.
It depends on the fin angle θ of the fin 8 and the fin 7 with respect to 10, 9.

熱伝達面の接触は、所定の挿入長さを挿入する前に発生
することが望ましく、隙間δの設定もこの点を考慮して
設定する。
It is desirable that the contact of the heat transfer surface occurs before the insertion of the predetermined insertion length, and the setting of the gap δ is also set in consideration of this point.

このような準備のもとに、ハウジング5の基準平面10に
垂直な方向に熱伝達子4を挿入する。所定の挿入長さを
挿入した状態は第1図となる。
Under such preparation, the heat transfer element 4 is inserted in a direction perpendicular to the reference plane 10 of the housing 5. A state in which the predetermined insertion length is inserted is shown in FIG.

隙間δを少なく設定すると、所定挿入長さlを挿入する
前に、フィン7,8の両熱伝達面7a,8aが接触し、その後の
挿入により両熱伝達面7a,8aが滑る。。設定位置まで熱
伝達子4をハウジング5に挿入した場合、第4図に示す
ように、熱伝達子4とハウジング5との間に装着されて
いるばね22には、両熱伝達面7a,8aの接触後の挿入長さ
lに応じた熱伝達子4の基準平面9方向、すなわち横方
向の変位と同等の変位が加わる。ばね22として圧縮コイ
ルばねを用いた場合、ばね22に横方向の変位が加わるこ
とにより生ずる反力は両接合面を密着させる方向とな
り、さらに密着の信頼性が増すものである。
When the gap δ is set to be small, both the heat transfer surfaces 7a, 8a of the fins 7, 8 come into contact with each other before the predetermined insertion length 1 is inserted, and the heat transfer surfaces 7a, 8a slide by the subsequent insertion. . When the heat transfer element 4 is inserted into the housing 5 to the set position, as shown in FIG. 4, the spring 22 mounted between the heat transfer element 4 and the housing 5 has both heat transfer surfaces 7a and 8a. A displacement equivalent to the displacement in the reference plane 9 direction of the heat transfer element 4, that is, the lateral direction, is applied in accordance with the insertion length 1 after the contact. When a compression coil spring is used as the spring 22, a reaction force generated by applying a lateral displacement to the spring 22 tends to bring the two joint surfaces into close contact with each other, further increasing the reliability of the close contact.

次に、ハウジング5および熱伝達子4の基準平面に対す
るフィン7,フィン8のフィン角度θにつき述べる。
Next, the fin angle θ of the fins 7 and 8 with respect to the reference plane of the housing 5 and the heat transfer element 4 will be described.

フィン角度θは、フィン7の熱伝達面7aと、フィン8の
熱伝達面8aとの間の摩擦係数により限界が決定される。
The fin angle θ is limited by the coefficient of friction between the heat transfer surface 7a of the fin 7 and the heat transfer surface 8a of the fin 8.

ハウジング5と熱伝達子4の材質として、金属およびセ
ラミックを考える。
Metals and ceramics are considered as materials of the housing 5 and the heat transfer element 4.

金属間、セラミック間、金属,セラミック間等の乾燥摩
擦係数は、最大約1.5であり、摩擦角λ(第6図参照)
に換算すると約56゜となる。摩擦角λとフィン角θとの
関係は、熱伝達面8aに対する熱伝達面7aの負荷方向6を
定めると第6図に示すようになり、摩擦角λを60゜とす
るとフィン角度θは30゜となる。すなわち、基準平面に
対するフィン角度θが30゜以下の場合、熱伝達子4の熱
伝達面7aとハウジング5の熱伝達面8aとの間は、接触後
滑りを生じる。
The maximum coefficient of dry friction between metals, between ceramics, between metals and ceramics is about 1.5, and the friction angle λ (see Fig. 6)
When converted to, it becomes approximately 56 °. The relationship between the friction angle λ and the fin angle θ is as shown in FIG. 6 when the load direction 6 of the heat transfer surface 7a with respect to the heat transfer surface 8a is determined, and when the friction angle λ is 60 °, the fin angle θ is 30. It becomes ゜. That is, when the fin angle θ with respect to the reference plane is 30 ° or less, the post-contact slippage occurs between the heat transfer surface 7a of the heat transfer element 4 and the heat transfer surface 8a of the housing 5.

以上のように、熱伝達子4およびハウジング5の基準平
面の垂線に対し、若干の角度θを有するフィン7,8を互
いに嵌め合わせる構造を用い、相手フィンの基準平面の
垂線方向に当該フィンを挿入させることによって、互い
のフィンの熱伝達面が必ず接触する状態となり、安定し
た良好な熱伝達が得られる。
As described above, the fins 7 and 8 having a slight angle θ with respect to the normal line of the reference plane of the heat transfer element 4 and the housing 5 are fitted to each other, and the fins are arranged in the direction perpendicular to the reference plane of the mating fin. By inserting the fins, the heat transfer surfaces of the fins always come into contact with each other, and stable and good heat transfer can be obtained.

[実施例] 以下、本発明の一実施例を第7図および第8図を参照し
て説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 7 and 8.

第7図は、本発明の一実施例に係る半導体チップの冷却
装置のフィン嵌め合わせ前を示す縦断面図、第8図は、
第7図の装置のフィン嵌め合わせ状態を示す縦断面図で
ある。両図面において、先に基本構成を示した第1図と
同等部分は同一符号をもって示す。
FIG. 7 is a vertical sectional view showing a semiconductor chip cooling device according to an embodiment of the present invention before fin fitting, and FIG.
FIG. 8 is a vertical cross-sectional view showing a fin fitting state of the device of FIG. 7. In both drawings, the same parts as those in FIG. 1 showing the basic structure are designated by the same reference numerals.

第7図に示すように、基板1上には半田ボール2で接合
した半導体チップ3が実装されており、この基板1の下
面にはピン14が設けられ、保持板15に保持されている。
As shown in FIG. 7, a semiconductor chip 3 joined by solder balls 2 is mounted on a substrate 1, and pins 14 are provided on the lower surface of the substrate 1 and held by a holding plate 15.

半導体チップ3の背面に当接して配置された熱伝達子4
には複数のフィン7がフィン角度θを保つように形成さ
れている。
Heat transfer element 4 arranged in contact with the back surface of the semiconductor chip 3.
The plurality of fins 7 are formed so as to maintain the fin angle θ.

一方、これに対向するハウジング5は、内面に複数のフ
ィン8と溝11とがフィン角度θを保つように形成されて
おり、フィン7,フィン8に嵌め合わせ可能になってい
る。
On the other hand, the housing 5 facing this is formed with a plurality of fins 8 and grooves 11 on the inner surface so as to maintain the fin angle θ, and can be fitted to the fins 7 and 8.

熱伝達子4とハウジング5との間には、両者が反発する
方向にばねが装着されている。その構成は第4,5図に示
したものと同等であるから、ここでは図示を省略してい
る。
A spring is mounted between the heat transfer element 4 and the housing 5 in a direction in which they repel each other. Since the structure is the same as that shown in FIGS. 4 and 5, it is omitted here.

本実施例では、熱伝達子4が半導体チップ3と接触する
基準平面9の垂線12に対するフィン7のフィン角度θを
10゜とし、フィン幅mと溝幅nとの寸法差、すなわち嵌
め合わせの隙間δを0.5mmとした。同様に、ハウジング
5に形成されるフィン8のフィン幅m、溝11の溝幅nと
も熱伝達子4と同様とし、ハウジング5の基準平面10の
垂線13に対する角度θも10゜とした。また、ハウジング
5への熱伝達子の挿入長さlを7mmとした。
In this embodiment, the fin angle θ of the fin 7 with respect to the perpendicular 12 of the reference plane 9 where the heat transfer element 4 contacts the semiconductor chip 3 is
The fin width was 10 °, and the dimensional difference between the fin width m and the groove width n, that is, the fitting gap δ was 0.5 mm. Similarly, the fin width m of the fin 8 and the groove width n of the groove 11 formed in the housing 5 are the same as those of the heat transfer element 4, and the angle θ of the reference plane 10 of the housing 5 with respect to the perpendicular 13 is 10 °. Further, the insertion length l of the heat transfer element into the housing 5 is set to 7 mm.

第3図から明らかなように、フィン角度θが10゜、熱伝
達面隙間δが0.5mmの場合、挿入長さlは約3mmで両熱伝
達面が接触する。
As is apparent from FIG. 3, when the fin angle θ is 10 ° and the heat transfer surface gap δ is 0.5 mm, the insertion length l is about 3 mm and both heat transfer surfaces are in contact with each other.

第8図は、両熱伝達面が接触した状態からさらにハウジ
ング5に熱伝達子4を約4mm挿入した状態を示す。この
状態において、熱伝達子4とハウジング5との両熱伝達
面は密着し、良好な熱伝達を得ることができた。
FIG. 8 shows a state in which the heat transfer element 4 is further inserted into the housing 5 by about 4 mm from the state where both heat transfer surfaces are in contact with each other. In this state, both heat transfer surfaces of the heat transfer element 4 and the housing 5 were in close contact with each other, and good heat transfer could be obtained.

このように本実施例によれば、熱伝達子4およびハウジ
ング5の互いに嵌め合わされるフィン7,8にフィン角度
を付けておくことにより、両フィン7,8の熱伝達面がフ
ィンの嵌め合いによって必ず接触するため、フィン間の
熱伝達が良好になるとともに安定し、半導体チップ3で
発生した熱は、熱伝達子4およびハウジング5を経て、
ハウジング5に取付けられる冷却器(図示せず)へ効率
よく伝達される。
As described above, according to the present embodiment, the fins 7 and 8 of the heat transfer element 4 and the housing 5 that are fitted to each other have a fin angle, so that the heat transfer surfaces of the fins 7 and 8 are fitted to each other. Therefore, the heat transfer between the fins is improved and stabilized, and the heat generated in the semiconductor chip 3 passes through the heat transfer element 4 and the housing 5,
It is efficiently transmitted to a cooler (not shown) attached to the housing 5.

[発明の効果] 以上述べたように、本発明によれば、フィンを嵌め合わ
せる伝達構造において、互いに嵌め合わされるフィンの
伝達面が、フィンの嵌め合いによって必ず接触し、安定
したフィン間の熱伝達をなしうる半導体チップの冷却装
置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, in the transmission structure in which the fins are fitted together, the transmission surfaces of the fins fitted together are inevitably in contact with each other due to the fitting of the fins, and stable heat transfer between the fins is achieved. It is possible to provide a cooling device for a semiconductor chip that can perform transmission.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の基本構成を示す半導体チップの冷却
装置の要部断面図、第2図は、第1図の装置におけるフ
ィン部の嵌め合わせ前の状態を示す要部断面図、第3図
は、そのフィン部の嵌め合わせ時のフィン角度,隙間,
挿入長さの関係を示す線図、第4図および第5図は、第
1図の装置におけるばね挿入部を示す要部断面図、第6
図は、フィン角度と摩擦角との関係を示す局部断面図、
第7図は、本発明の一実施例に係る半導体チップの冷却
装置のフィン嵌め合わせ前を示す縦断面図、第8図は、
第7図の装置のフィン嵌め合わせ状態を示す縦断面図、
第9図は、従来の半導体チップの冷却装置の一部断面斜
視図、第10図は、第9図の熱伝達子の要部縦断面図、第
11図および第12図は、フィン嵌め合わせ部の拡大断面図
である。 1……基板、3……半導体チップ、4……熱伝達子、5
……ハウジング、7,8……フィン、7a,8a……熱伝達面、
9,10……基準平面、12,13……垂線、θ……フィン角
度。
FIG. 1 is a cross-sectional view of an essential part of a semiconductor chip cooling device showing the basic structure of the present invention, and FIG. 2 is a cross-sectional view of an essential part of the device shown in FIG. Fig. 3 shows the fin angle, clearance, and
Diagrams showing the relationship of insertion length, FIGS. 4 and 5 are cross-sectional views of a main part showing a spring insertion part in the device of FIG. 1, and FIG.
The figure is a local sectional view showing the relationship between the fin angle and the friction angle,
FIG. 7 is a vertical sectional view showing a semiconductor chip cooling device according to an embodiment of the present invention before fin fitting, and FIG.
FIG. 7 is a vertical cross-sectional view showing a fin fitting state of the apparatus of FIG.
FIG. 9 is a partial cross-sectional perspective view of a conventional semiconductor chip cooling device, and FIG. 10 is a longitudinal cross-sectional view of a main part of the heat transfer element of FIG.
11 and 12 are enlarged cross-sectional views of the fin fitting portion. 1 ... Substrate, 3 ... Semiconductor chip, 4 ... Heat transfer element, 5
...... Housing, 7,8 ...... Fin, 7a, 8a ...... Heat transfer surface,
9,10 …… Reference plane, 12,13 …… perpendicular, θ …… Fin angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回路基板上に実装された半導体チップの発
生熱をハウジングに伝えて冷却するために、一方が前記
半導体チップ背面に接触し他方が微小間隙を介してハウ
ジング側と係合する熱伝達子を備え、前記ハウジングに
形成した複数のフィンと前記熱伝達子に形成した複数の
フィンとを互いに嵌め合わせるようにした半導体チップ
の冷却装置において、前記ハウジングに形成した複数の
フィンおよび前記熱伝達子に形成した複数のフィンが、
前記熱伝達子の半導体チップ背面に接する面を基準とし
てその垂線に対し、所定の角度をもつように形成したこ
とを特徴とする半導体チップの冷却装置。
Claim: What is claimed is: 1. In order to transfer heat generated by a semiconductor chip mounted on a circuit board to a housing for cooling, one of the heat contacts the rear surface of the semiconductor chip and the other heat engages with the housing through a minute gap. A cooling device for a semiconductor chip, comprising: a plurality of fins formed in the housing, and a plurality of fins formed in the heat transfer element fitted to each other; The fins formed on the transmitter are
A cooling device for a semiconductor chip, wherein the heat transfer element is formed to have a predetermined angle with respect to a vertical line of the heat transfer element in contact with the back surface of the semiconductor chip.
【請求項2】特許請求の範囲第1項記載のものにおい
て、熱伝達子の半導体チップ背面に接する面を基準とし
てその垂線に対し、ハウジングおよび熱伝達子の各フィ
ンの角度を30゜以下にしたことを特徴とする半導体チッ
プの冷却装置。
2. The device according to claim 1, wherein an angle of each fin of the housing and the heat transfer element is 30 ° or less with respect to a vertical line of the surface of the heat transfer element in contact with the back surface of the semiconductor chip. A semiconductor chip cooling device characterized by the above.
JP62117047A 1987-05-15 1987-05-15 Semiconductor chip cooling device Expired - Fee Related JPH0715960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117047A JPH0715960B2 (en) 1987-05-15 1987-05-15 Semiconductor chip cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117047A JPH0715960B2 (en) 1987-05-15 1987-05-15 Semiconductor chip cooling device

Publications (2)

Publication Number Publication Date
JPS63283148A JPS63283148A (en) 1988-11-21
JPH0715960B2 true JPH0715960B2 (en) 1995-02-22

Family

ID=14702110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117047A Expired - Fee Related JPH0715960B2 (en) 1987-05-15 1987-05-15 Semiconductor chip cooling device

Country Status (1)

Country Link
JP (1) JPH0715960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288839B2 (en) * 2004-02-27 2007-10-30 International Business Machines Corporation Apparatus and methods for cooling semiconductor integrated circuit package structures

Also Published As

Publication number Publication date
JPS63283148A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
JP2675173B2 (en) Electronic device cooling system
JP3273505B2 (en) Heat sink provided with heat radiation fins and method of fixing heat radiation fins
US7342797B2 (en) Interposable heat sink for adjacent memory modules
US4298904A (en) Electronic conduction cooling clamp
JP3845408B2 (en) Memory module heat dissipation device
US7768121B2 (en) Apparatus and methods for cooling semiconductor integrated circuit package structures
JPH0578183B2 (en)
US7819173B2 (en) Base plate for a dual base plate heatsink
US6554060B2 (en) Heat sink with fins
EP0288183B1 (en) Cooling apparatus and semiconductor device employing the same
US4314311A (en) Plug-in card support providing electric and thermal connections
US20020015288A1 (en) High performance thermal/mechanical interface for fixed-gap references for high heat flux and power semiconductor applications
JPH02398A (en) Cooling structure of integrated circuit
JP6432676B2 (en) Multi-chip self-adjusting cooling solution
JPS635904B2 (en)
TWI406390B (en) High density integrated circuit module structure
JP2856193B2 (en) Multi-chip module mounting structure
US6142811A (en) Electrical connector
JPH0715960B2 (en) Semiconductor chip cooling device
JPH02224263A (en) Cooling device for semiconductor chip
TWM268766U (en) Electrical connector
JPH0864731A (en) Heat conducting member and cooler and electronic apparatus employing the same
JP2704241B2 (en) heatsink
US6281437B1 (en) Method of forming an electrical connection between a conductive member having a dual thickness substrate and a conductor and electronic package including said connection
US7342794B1 (en) Heat sink with integral card guide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees