JPH07155613A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH07155613A
JPH07155613A JP5304127A JP30412793A JPH07155613A JP H07155613 A JPH07155613 A JP H07155613A JP 5304127 A JP5304127 A JP 5304127A JP 30412793 A JP30412793 A JP 30412793A JP H07155613 A JPH07155613 A JP H07155613A
Authority
JP
Japan
Prior art keywords
parts
powder
mfi
weight
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5304127A
Other languages
Japanese (ja)
Other versions
JP3500675B2 (en
Inventor
Masanori Kamikubo
真紀 上久保
Takuya Ikeda
卓弥 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30412793A priority Critical patent/JP3500675B2/en
Publication of JPH07155613A publication Critical patent/JPH07155613A/en
Application granted granted Critical
Publication of JP3500675B2 publication Critical patent/JP3500675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To adsorb hydrocarbon less in the number of carbon atoms not adsorbed heretofore in addition to aromatic hydrocarbon or other hydrocarbon much in the number of carbons by a catalyst obtained by applying two or more kinds of different zeolites on a honeycomb carrier. CONSTITUTION:An exhaust gas purifying catalyst for purifying hydrocarbon in the exhaust gas of an internal combustion engine is produced by applying two or more kinds of different zeolites to a honeycomb carrier. For example, MFI zeolite having Pd, Ag or both of them supported thereon is used together with high silica mordenite, USY zeolite, beta-zeolite and MFI zeolite. These zeolites are a crystalline porous substance having uniform pores and have characteristics capable of adsorbing only molecules having a size possible to pass the inlet of pores. An effective pore size is different according to the kinds of zeolites. By these characteristics, hydrocarbon is adsorbed at a cold start time and hydrocarbon in a temp. region generating no catalytic reaction is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排ガス浄化
装置に使用される炭化水素(HC)を吸着して浄化する
排気浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification catalyst for adsorbing and purifying hydrocarbons (HC) used in an exhaust gas purification apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】従来HCを吸着して浄化する排気浄化用
触媒としては特開平2−135126号公報に開示され
ているようなものがある。
2. Description of the Related Art As a conventional exhaust gas purification catalyst for adsorbing and purifying HC, there is one disclosed in JP-A-2-135126.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報において、炭化水素吸着材としてモルデナイトおよび
Y型ゼオライトを用いて炭化水素を吸着除去している
が、モルデナイトおよびY型ゼオライトは、細孔径が大
きく、炭素数の多い芳香族およびその他の炭化水素は吸
着するが、炭素数の少ない(C2 〜C3 )炭化水素は吸
着されず、排出されてしまう。さらに、コールドスター
ト時には炭化水素と水との競争吸着になるため、Si/
2Al比が低いモルデナイト等では、炭化水素を充分吸
着できない。
However, in the above publication, hydrocarbons are adsorbed and removed by using mordenite and Y-type zeolite as the hydrocarbon adsorbent. However, mordenite and Y-type zeolite have large pore diameters, Although aromatics and other hydrocarbons having a large number of carbons are adsorbed, hydrocarbons having a small number of carbons (C 2 to C 3 ) are not adsorbed and are discharged. Furthermore, since it is a competitive adsorption between hydrocarbons and water during cold start, Si /
For example, mordenite having a low 2Al ratio cannot sufficiently adsorb hydrocarbons.

【0004】[0004]

【課題を解決するための手段】本発明は、このような従
来の問題点に着目してなされたもので、MFI型ゼオラ
イト(Si/2Al=10〜40)に金属を担持するこ
とを特徴とし、このことによって炭素数の少ない炭化水
素を化学吸着することができるようになった。Si/2
Alが40よりも大きい場合にはMFI型ゼオライト中
の酸点が少なく、金属の交換率が小さい。一方Si/2
Alが10未満のMFI型ゼオライトは、合成する際に
複生成物(モルデナイト)が生成するため一般的に存在
は知られていない。また、ハイシリカのゼオライトを併
用することによって、水の影響を受けにくく炭素数の多
い炭化水素を有効に吸着することが可能になった。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and is characterized in that a metal is supported on MFI type zeolite (Si / 2Al = 10-40). As a result, it becomes possible to chemisorb hydrocarbons having a small number of carbon atoms. Si / 2
When Al is larger than 40, the number of acid sites in the MFI zeolite is small and the metal exchange rate is small. On the other hand, Si / 2
MFI-type zeolite having an Al content of less than 10 is not generally known to exist because a multi-product (mordenite) is produced during synthesis. Further, by using the high silica zeolite in combination, it becomes possible to effectively adsorb hydrocarbons having a large number of carbons which are hardly affected by water.

【0005】このゼオライトの担持方法は、2種類以上
のゼオライトをブレンドしても、多層構造にしても、上
下流に配置してもよい。また、このゼオライトの担持比
については、排ガス中の成分比および基材中の金属の担
持量の影響もあるため、金属を担持したMFI型ゼオラ
イト(Si/2Al=10〜40)とH型MFI型ゼオ
ライト(Si/2Al=50〜2000)、モルデナイ
ト(Si/2Al=30〜2000)、USY型ゼオラ
イト(Si/2Al=10〜300)およびβ−ゼオラ
イト(Si/2Al=40〜2000)との比率は、
1:3〜3:1の範囲で用いることが必要である。また
金属を担持したMFI型ゼオライトと併用するH型MF
I型ゼオライト(Si/2Al=50〜2000)、モ
ルデナイト(Si/2Al=30〜2000)、USY
型ゼオライト(Si/2Al=10〜300)およびβ
−ゼオライト(Si/2Al=40〜2000)にも、
金属を1種類以上担持してもよい。金属はイオン交換、
含浸担持法、蒸発乾固法により担持させることができ
る。担持する金属の量はゼオライトの重量に対して、
0.5〜15%が好ましく、15%以上担持するとゼオ
ライトの細孔閉塞の原因となる。また、0.5%以下の
担持量では効果がえられない。
This zeolite loading method may be a blend of two or more kinds of zeolites, a multilayer structure, or upstream and downstream arrangements. In addition, since the loading ratio of this zeolite is influenced by the component ratio in the exhaust gas and the loading amount of the metal in the base material, the MFI type zeolite (Si / 2Al = 10-40) loaded with the metal and the H type MFI are supported. Type zeolite (Si / 2Al = 50 to 2000), mordenite (Si / 2Al = 30 to 2000), USY type zeolite (Si / 2Al = 10 to 300) and β-zeolite (Si / 2Al = 40 to 2000) The ratio is
It is necessary to use in the range of 1: 3 to 3: 1. H-type MF used in combination with MFI-type zeolite carrying metal
I-type zeolite (Si / 2Al = 50-2000), mordenite (Si / 2Al = 30-2000), USY
Type zeolite (Si / 2Al = 10-300) and β
-For zeolite (Si / 2Al = 40-2000),
One or more metals may be supported. Metal is ion exchanged,
It can be supported by the impregnation supporting method or the evaporation dryness method. The amount of supported metal is based on the weight of zeolite,
0.5 to 15% is preferable, and if 15% or more is supported, it will cause pore blockage of zeolite. In addition, the effect cannot be obtained with a loading amount of 0.5% or less.

【0006】[0006]

【作用】次に作用を説明する。内燃機関の排ガスを浄化
するために、排気ガス浄化用触媒が現在使用されている
が、排気ガスの有害成分のうちの炭化水素の排気浄化能
は排気ガスの温度の影響を強く受け、300℃以上の温
度にならないと貴金属触媒により浄化されないため、コ
ールドスタート時には多量の炭化水素が排出されてしま
う。このような、コールドスタート時に排出される炭化
水素を除去するためには炭化水素を吸着する吸着材を用
いることが必要となる。また、ゼオライト類は、均一な
細孔を有する結晶性の多孔性物質であり、混合物中から
その細孔入口を通過できる大きさの分子だけを選択的
に、細孔内に吸着する特性を持ち、ゼオライトの種類に
よって有効細孔径は異なる。この特性により、コールド
スタート時に排出される炭化水素を吸着し、触媒反応が
発生しない温度領域での排ガス中のHCを低減する。ま
た、自動車の排ガス中には多種の炭化水素が排出され
る。本発明者等はハイシリカのモルデナイト(Si/2
Al=30〜2000)、USY型ゼオライト(Si/
2Al=10〜300)、β−ゼオライト(Si/2A
l=40〜2000)、MFI型ゼオライト(Si/2
Al=50〜2000)にPdまたはAgもしくは両方
を担持したMFI型ゼオライト(Si/2Al=10〜
40)を併用することにより、炭素数の多い芳香族また
はその他の分子径の大きい炭化水素に加え、今までの吸
着されなかった炭素数の少ない炭化水素(C2 〜C3
を化学吸着することを可能にし、炭化水素吸着能が向上
することをみいだした。また、ハイシリカのゼオライト
を用いることにより、水の影響を受け難くなり、さらに
吸着能が向上した。なお、上記のハイシリカのモルデナ
イト、USY型ゼオライト、β−ゼオライトおよびMF
I型ゼオライトに関して、Si/2Alの値が上記の範
囲より低い場合には水の吸着が多くなり、金属を加えな
いと炭化水素を吸着しなくなってしまう。またこの値が
上記の範囲より高い場合には、炭化水素の吸着量が減少
してしまう。
[Operation] Next, the operation will be described. Exhaust gas purifying catalysts are currently used to purify exhaust gas from internal combustion engines, but the exhaust gas purifying ability of hydrocarbons among harmful components of exhaust gas is strongly affected by the temperature of the exhaust gas and is 300 ° C. If it does not reach the above temperature, it will not be purified by the precious metal catalyst, so a large amount of hydrocarbons will be emitted at the cold start. In order to remove such hydrocarbons discharged at cold start, it is necessary to use an adsorbent that adsorbs hydrocarbons. Zeolites are crystalline porous substances having uniform pores, and have the property of selectively adsorbing into the pores only molecules that are large enough to pass through the pore inlet from the mixture. , The effective pore size depends on the type of zeolite. Due to this characteristic, hydrocarbons discharged at cold start are adsorbed, and HC in exhaust gas in a temperature range where a catalytic reaction does not occur is reduced. In addition, various kinds of hydrocarbons are emitted into the exhaust gas of automobiles. The present inventors have found that high silica mordenite (Si / 2
Al = 30 to 2000), USY type zeolite (Si /
2Al = 10-300), β-zeolite (Si / 2A
1 = 40 to 2000), MFI type zeolite (Si / 2
MFI type zeolite (Si / 2Al = 10 to Al = 50 to 2000) carrying Pd or Ag or both.
40) together with aromatic hydrocarbons having a large number of carbon atoms or other hydrocarbons having a large molecular diameter, and hydrocarbons having a small number of carbon atoms (C 2 to C 3 ) which have not been adsorbed until now.
It has been found that it makes it possible to chemically adsorb, and that the hydrocarbon adsorption capacity is improved. In addition, the use of high silica zeolite made it less likely to be affected by water and further improved the adsorption capacity. The high silica mordenite, USY type zeolite, β-zeolite and MF
Regarding the I-type zeolite, when the value of Si / 2Al is lower than the above range, the amount of water adsorbed is large, and the hydrocarbon is not adsorbed unless a metal is added. If this value is higher than the above range, the amount of adsorbed hydrocarbon will decrease.

【0007】[0007]

【実施例】以下本発明を実施例、比較例および試験例に
より説明する。なお、すべての実施例および比較例を通
じて、「部」は特記しない限り「重量部」を示す。 実施例1 第1にPdをイオン交換したMFI型ゼオライト(以下
Pd/MFIと記す)(金属担持量1重量%、Si/2
Al=30)50部、USY型ゼオライト(以下USY
と記す、Si/2Al=12)50部、シリカゾル(固
形分20%)65部および水65部を磁性ポットに仕込
み、振動ミル装置で40分間もしくは、ユニバーサルボ
ールミル装置で6.5時間混合粉砕して、ウォッシュコ
ートスラリーを製造した。コーディライト製モノリス担
体を吸引コート法で吸水処理した後、前記で製造したス
ラリーを担体断面全体に均一に投入し吸引コート法で余
分なスラリーを除去した。その後、乾燥を行い400℃
で約1時間仮焼成した。
EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples. Throughout all of the examples and comparative examples, "part" means "part by weight" unless otherwise specified. Example 1 First, an MFI-type zeolite in which Pd was ion-exchanged (hereinafter referred to as Pd / MFI) (metal loading amount: 1% by weight, Si / 2)
Al = 30) 50 parts, USY type zeolite (hereinafter USY
, 50 parts of Si / 2Al = 12), 65 parts of silica sol (solid content 20%) and 65 parts of water were charged in a magnetic pot, and mixed and ground for 40 minutes with a vibration mill device or for 6.5 hours with a universal ball mill device. To produce a washcoat slurry. After the cordierite monolith carrier was subjected to water absorption treatment by a suction coating method, the slurry produced above was uniformly added to the entire cross section of the carrier and the excess slurry was removed by a suction coating method. Then, dry it at 400 ℃
It was calcined for about 1 hour.

【0008】これにより、Pd/MFIとUSY型ゼオ
ライトとの混合ゼオライトが約90g/Lコート量で担
体にコートされた。上記のウォッシュコート、乾燥およ
び焼成をさらに2回繰り返して合計約200g/Lの構
造の異なる2種のゼオライト(Pd/MFIおよびUS
Y)を混合したものをコートし空気雰囲気中で650℃
で4時間焼成を行い吸着材1を得た。
As a result, a mixed zeolite of Pd / MFI and USY type zeolite was coated on the carrier at a coating amount of about 90 g / L. The above washcoating, drying and calcination were repeated two more times to obtain a total of about 200 g / L of two kinds of zeolites having different structures (Pd / MFI and US
Y) is mixed and coated in an air atmosphere at 650 ° C
Then, the adsorbent 1 was obtained by firing for 4 hours.

【0009】実施例2 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Pdをイオン交
換したUSY型ゼオライト(以下Pd/USYと記す)
(金属担持量1重量%,Si/2Al=12)粉末50
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い吸着材
2を得た。
Example 2 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, USY type zeolite having Pd ion-exchanged (hereinafter referred to as Pd / USY)
(Metal supported amount 1% by weight, Si / 2Al = 12) Powder 50
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. The adsorbent 2 was obtained.

【0010】実施例3 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Agをイオン交
換したUSY型ゼオライト(以下Ag/USYと記す)
(金属担持量2重量%,Si/2Al=12)粉末50
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い吸着材
3を得た。
Example 3 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, USY type zeolite ion-exchanged with Ag (hereinafter referred to as Ag / USY).
(Metal supported amount 2% by weight, Si / 2Al = 12) Powder 50
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. The adsorbent 3 was obtained.

【0011】実施例4 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、H型MFI(S
i/2Al=700)粉末50部、シリカゾル(固形分
20%)65部および水65部を磁性ボールミルに投入
し、混合粉砕したスラリーを吸引コート法でコーティン
グし、乾燥焼成してコート量が約200g/Lになるよ
うにコーティングを行い、吸着材4を得た。
Example 4 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, H-type MFI (S
50 parts of i / 2Al = 700) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to obtain a coating amount of about Coating was performed so as to be 200 g / L to obtain an adsorbent 4.

【0012】実施例5 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Pd/MFI
(金属担持量1重量%,Si/2Al=700)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材5を得た。
Example 5 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, Pd / MFI
(Metal supported amount 1% by weight, Si / 2Al = 700) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Parts were put into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L to obtain an adsorbent 5.

【0013】実施例6 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Ag/MFI
(金属担持量2重量%,Si/2Al=700)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材6を得た。
Example 6 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, Ag / MFI
(Metal supported amount 2% by weight, Si / 2Al = 700) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Part was put into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method and dried and baked so that the coating amount was about 200 g / L to obtain an adsorbent 6.

【0014】実施例7 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、H型モルデナイ
ト(Si/2Al=100)粉末50部、シリカゾル
(固形分20%)65部および水65部を磁性ボールミ
ルに投入し、混合粉砕したスラリーを吸引コート法でコ
ーティングし、乾燥焼成してコート量が約200g/L
になるようにコーティングを行い、吸着材7を得た。
Example 7 In the same manner as in Example 1, 50 parts of Pd / MFI (1 wt% metal loading, Si / 2Al = 30) powder, 50 parts of H-type mordenite (Si / 2Al = 100) powder, silica sol ( 65 parts of solid content (20%) and 65 parts of water are charged into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, dried and baked to obtain a coating amount of about 200 g / L.
Was coated to obtain an adsorbent 7.

【0015】実施例8 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Pdをイオン交
換したモルデナイト(以下Pd/モルデナイトと記す)
(金属担持量1重量%,Si/2Al=100)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材8を得た。
Example 8 In the same manner as in Example 1, 50 parts of Pd / MFI (1 wt% metal loading, Si / 2Al = 30) powder, mordenite ion-exchanged with Pd (hereinafter referred to as Pd / mordenite)
(Metal supported amount 1% by weight, Si / 2Al = 100) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Parts were put in a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 8 was obtained.

【0016】実施例9 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Agをイオン交
換したモルデナイト(以下Ag/モルデナイトと記す)
(金属担持量2重量%,Si/2Al=100)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材9を得た。
Example 9 In the same manner as in Example 1, 50 parts of Pd / MFI (metal loading amount 1% by weight, Si / 2Al = 30) powder, mordenite ion-exchanged with Ag (hereinafter referred to as Ag / mordenite).
(Metal supported amount 2% by weight, Si / 2Al = 100) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Part was put into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L, whereby an adsorbent 9 was obtained.

【0017】実施例10 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、β−ゼオライト
(Si/2Al=80)粉末50部、シリカゾル(固形
分20%)65部および水65部を磁性ボールミルに投
入し、混合粉砕したスラリーを吸引コート法でコーティ
ングし、乾燥焼成してコート量が約200g/Lになる
ようにコーティングを行い、吸着材10を得た。
Example 10 In the same manner as in Example 1, 50 parts of Pd / MFI (1 wt% metal loading, Si / 2Al = 30) powder, 50 parts of β-zeolite (Si / 2Al = 80) powder, silica sol ( 65 parts of solid content (20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L, and adsorption is performed. Material 10 was obtained.

【0018】実施例11 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Pdをイオン交
換したβ−ゼオライト(以下Pd/β−ゼオライトと記
す)(金属担持量1重量%,Si/2Al=80)粉末
50部、シリカゾル(固形分20%)65部および水6
5部を磁性ボールミルに投入し、混合粉砕したスラリー
を吸引コート法でコーティングし、乾燥焼成してコート
量が約200g/Lになるようにコーティングを行い、
吸着材11を得た。
Example 11 In the same manner as in Example 1, 50 parts of Pd / MFI (1 wt% metal loading, Si / 2Al = 30) powder, β-zeolite ion-exchanged with Pd (hereinafter referred to as Pd / β-zeolite) (Note) (50% by weight of metal supported, Si / 2Al = 80) powder, 65 parts of silica sol (solid content 20%) and water 6
5 parts were put into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount became about 200 g / L,
Adsorbent 11 was obtained.

【0019】実施例12 実施例1と同様にしてPd/MFI(金属担持量1重量
%,Si/2Al=30)粉末50部、Agをイオン交
換したβ−ゼオライト(以下Ag/β−ゼオライトと記
す)(金属担持量2重量%,Si/2Al=80)粉末
50部、シリカゾル(固形分20%)65部および水6
5部を磁性ボールミルに投入し、混合粉砕したスラリー
を吸引コート法でコーティングし、乾燥焼成してコート
量が約200g/Lになるようにコーティングを行い、
吸着材12を得た。
Example 12 In the same manner as in Example 1, 50 parts of Pd / MFI (1 wt% metal loading, Si / 2Al = 30) powder, β-zeolite ion-exchanged with Ag (hereinafter referred to as Ag / β-zeolite) (Note) (metal loading 2% by weight, Si / 2Al = 80) powder 50 parts, silica sol (solid content 20%) 65 parts and water 6
5 parts were put into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount became about 200 g / L,
The adsorbent 12 was obtained.

【0020】実施例13 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、H型USY(S
i/2Al=12)粉末50部、シリカゾル(固形分2
0%)65部および水65部を磁性ボールミルに投入
し、混合粉砕したスラリーを吸引コート法でコーティン
グし、乾燥焼成してコート量が約200g/Lになるよ
うにコーティングを行い、吸着材13を得た。
Example 13 In the same manner as in Example 1, 50 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, H-type USY (S
i / 2Al = 12) powder 50 parts, silica sol (solid content 2
(0%) 65 parts and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Got

【0021】実施例14 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Pd/USY
(金属担持量1重量%,Si/2Al=12)粉末50
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材14を得た。
Example 14 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, Pd / USY.
(Metal supported amount 1% by weight, Si / 2Al = 12) Powder 50
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 14 was obtained.

【0022】実施例15 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Ag/USY
(金属担持量2重量%,Si/2Al=12)粉末50
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材15を得た。
Example 15 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Ag / USY.
(Metal supported amount 2% by weight, Si / 2Al = 12) Powder 50
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 15 was obtained.

【0023】実施例16 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、H型MFI(S
i/2Al=700)粉末50部、シリカゾル(固形分
20%)65部および水65部を磁性ボールミルに投入
し、混合粉砕したスラリーを吸引コート法でコーティン
グし、乾燥焼成してコート量が約200g/Lになるよ
うにコーティングを行い、吸着材16を得た。
Example 16 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, H-type MFI (S
50 parts of i / 2Al = 700) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to obtain a coating amount of about The adsorbent 16 was obtained by performing coating so that the amount was 200 g / L.

【0024】実施例17 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Pd/MFI
(金属担持量1重量%,Si/2Al=700)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材17を得た。
Example 17 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, Pd / MFI
(Metal supported amount 1% by weight, Si / 2Al = 700) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Parts were put into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L, whereby an adsorbent 17 was obtained.

【0025】実施例18 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Ag/MFI
(金属担持量2重量%,Si/2Al=700)粉末5
0部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材18を得た。
Example 18 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal supporting amount: 2% by weight, Si / 2Al = 30) powder, Ag / MFI
(Metal supported amount 2% by weight, Si / 2Al = 700) Powder 5
0 part, silica sol (solid content 20%) 65 parts and water 65
Part was put into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method and dried and baked so that the coating amount was about 200 g / L, whereby an adsorbent 18 was obtained.

【0026】実施例19 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、H型モルデナイ
ト(Si/2Al=100)粉末50部、シリカゾル
(固形分20%)65部および水65部を磁性ボールミ
ルに投入し、混合粉砕したスラリーを吸引コート法でコ
ーティングし、乾燥焼成してコート量が約200g/L
になるようにコーティングを行い、吸着材19を得た。
Example 19 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, 50 parts of H-type mordenite (Si / 2Al = 100) powder, silica sol ( 65 parts of solid content (20%) and 65 parts of water are charged into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, dried and baked to obtain a coating amount of about 200 g / L.
Coating was performed so as to obtain the adsorbent 19.

【0027】実施例20 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Pd/モルデナ
イト(金属担持量1重量%,Si/2Al=100)粉
末50部、シリカゾル(固形分20%)65部および水
65部を磁性ボールミルに投入し、混合粉砕したスラリ
ーを吸引コート法でコーティングし、乾燥焼成してコー
ト量が約200g/Lになるようにコーティングを行
い、吸着材20を得た。
Example 20 In the same manner as in Example 1, 50 parts of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, Pd / mordenite (metal loading amount 1% by weight, Si / 2Al = 100) ) 50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. The coating was performed as described above to obtain an adsorbent 20.

【0028】実施例21 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Ag/モルデナ
イト(金属担持量2重量%,Si/2Al=100)粉
末50部、シリカゾル(固形分20%)65部および水
65部を磁性ボールミルに投入し、混合粉砕したスラリ
ーを吸引コート法でコーティングし、乾燥焼成してコー
ト量が約200g/Lになるようにコーティングを行
い、吸着材21を得た。
Example 21 In the same manner as in Example 1, 50 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Ag / mordenite (metal loading 2% by weight, Si / 2Al = 100). ) 50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. The coating was performed as described above to obtain the adsorbent 21.

【0029】実施例22 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、β−ゼオライト
(Si/2Al=80)粉末50部、シリカゾル(固形
分20%)65部および水65部を磁性ボールミルに投
入し、混合粉砕したスラリーを吸引コート法でコーティ
ングし、乾燥焼成してコート量が約200g/Lになる
ようにコーティングを行い、吸着材22を得た。
Example 22 In the same manner as in Example 1, 50 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, 50 parts of β-zeolite (Si / 2Al = 80) powder, silica sol ( 65 parts of solid content (20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L, and adsorption is performed. Material 22 was obtained.

【0030】実施例23 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Pd/β−ゼオ
ライト(金属担持量1重量%,Si/2Al=80)粉
末50部、シリカゾル(固形分20%)65部および水
65部を磁性ボールミルに投入し、混合粉砕したスラリ
ーを吸引コート法でコーティングし、乾燥焼成してコー
ト量が約200g/Lになるようにコーティングを行
い、吸着材23を得た。
Example 23 As in Example 1, 50 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Pd / β-zeolite (metal loading 1% by weight, Si / 2Al) = 80) 50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, dried and baked to give a coating amount of about 200 g / L. Coating was performed to obtain an adsorbent 23.

【0031】実施例24 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末50部、Ag/β−ゼオ
ライト(金属担持量2重量%,Si/2Al=80)粉
末50部、シリカゾル(固形分20%)65部および水
65部を磁性ボールミルに投入し、混合粉砕したスラリ
ーを吸引コート法でコーティングし、乾燥焼成してコー
ト量が約200g/Lになるようにコーティングを行
い、吸着材24を得た。
Example 24 As in Example 1, 50 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Ag / β-zeolite (metal loading 2% by weight, Si / 2Al) = 80) 50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, dried and baked to give a coating amount of about 200 g / L. Coating was performed to obtain an adsorbent 24.

【0032】実施例25 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末75部、USY(Si/
2Al=12)粉末25部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材25を得た。
Example 25 In the same manner as in Example 1, 75 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, USY (Si / Si /
2Al = 12) powder 25 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 25 was obtained.

【0033】実施例26 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末75部、Pd/USY
(金属担持量1重量%,Si/2Al=12)粉末25
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材26を得た。
Example 26 As in Example 1, 75 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Pd / USY
(Metal supported amount 1% by weight, Si / 2Al = 12) Powder 25
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 26 was obtained.

【0034】実施例27 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末75部、Ag/USY
(金属担持量2重量%,Si/2Al=12)粉末25
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材27を得た。
Example 27 In the same manner as in Example 1, 75 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, Ag / USY.
(Metal supported amount 2% by weight, Si / 2Al = 12) Powder 25
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 27 was obtained.

【0035】実施例28 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末25部、USY(Si/
2Al=12)粉末75部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材28を得た。
Example 28 In the same manner as in Example 1, 25 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, USY (Si / Si /
2Al = 12) powder 75 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and fired so that the coating amount was about 200 g / L to obtain an adsorbent 28.

【0036】実施例29 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末25部、Pd/USY
(金属担持量1重量%,Si/2Al=12)粉末75
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材29を得た。
Example 29 In the same manner as in Example 1, 25 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, Pd / USY.
(Metal supported amount 1% by weight, Si / 2Al = 12) Powder 75
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 29 was obtained.

【0037】実施例30 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末25部、Ag/USY
(金属担持量2重量%,Si/2Al=12)粉末75
部、シリカゾル(固形分20%)65部および水65部
を磁性ボールミルに投入し、混合粉砕したスラリーを吸
引コート法でコーティングし、乾燥焼成してコート量が
約200g/Lになるようにコーティングを行い、吸着
材30を得た。
Example 30 In the same manner as in Example 1, 25 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, Ag / USY.
(Metal supported amount 2% by weight, Si / 2Al = 12) Powder 75
Part, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, and the slurry obtained by mixing and pulverizing is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Then, the adsorbent 30 was obtained.

【0038】実施例31 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=10)粉末50部、USY(Si/
2Al=12)粉末50部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材31を得た。
Example 31 50 parts by weight of Ag / MFI (metal loading 2% by weight, Si / 2Al = 10) powder, USY (Si / Si)
2Al = 12) powder 50 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The admixture 31 was obtained by coating the mixed and pulverized slurry by a suction coating method and drying and firing so that the coating amount was about 200 g / L.

【0039】実施例32 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=40)粉末50部、USY(Si/
2Al=12)粉末50部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材32を得た。
Example 32 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 40) powder, USY (Si / Si /
2Al = 12) powder 50 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 32 was obtained.

【0040】実施例33 実施例1と同様にして含浸法によってAgを担持したM
FIゼオライト(金属担持量2重量%,Si/2Al=
30)粉末50部、H型USY(Si/2Al=12)
粉末50部、シリカゾル(固形分20%)65部および
水65部を磁性ボールミルに投入し、混合粉砕したスラ
リーを吸引コート法でコーティングし、乾燥焼成してコ
ート量が約200g/Lになるようにコーティングを行
い、吸着材33を得た。
Example 33 M carrying Ag by the impregnation method in the same manner as in Example 1
FI zeolite (metal loading 2% by weight, Si / 2Al =
30) 50 parts of powder, H type USY (Si / 2Al = 12)
50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are put into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Was coated to obtain an adsorbent 33.

【0041】実施例34 実施例1と同様にして蒸発乾固法によってAgを担持し
たMFIゼオライト(金属担持量2重量%,Si/2A
l=30)粉末50部、USY(Si/2Al=12)
粉末50部、シリカゾル(固形分20%)65部および
水65部を磁性ボールミルに投入し、混合粉砕したスラ
リーを吸引コート法でコーティングし、乾燥焼成してコ
ート量が約200g/Lになるようにコーティングを行
い、吸着材34を得た。
Example 34 MFI zeolite supporting Ag by the dry evaporation method in the same manner as in Example 1 (metal loading: 2% by weight, Si / 2A).
1 = 30) powder 50 parts, USY (Si / 2Al = 12)
50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are put into a magnetic ball mill, and the mixed and pulverized slurry is coated by a suction coating method, and dried and baked so that the coating amount becomes about 200 g / L. Was coated to obtain an adsorbent 34.

【0042】実施例35 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末100部、シリカゾル
(固形分20%)65部および水65部を磁性ボールミ
ルに投入し、混合粉砕したスラリーを吸引コート法でコ
ーティングし、乾燥焼成してコート量が約100g/L
になるようにコーティングを行った。次に、USY(S
i/2Al=12)粉末100部、シリカゾル(固形分
20%)65部および水65部を磁性ボールミルに投入
し、混合粉砕したスラリーを吸引コート法でコーティン
グし、乾燥焼成してコート量が約100g/Lになるよ
うにコーティングを行い、吸着材35を得た。
Example 35 In the same manner as in Example 1, 100 parts of Ag / MFI (metal supporting amount 2% by weight, Si / 2Al = 30) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water were magnetic ball milled. The mixture is mixed and pulverized and coated by a suction coating method, dried and baked to give a coating amount of about 100 g / L.
Coating was performed. Next, USY (S
100 parts of i / 2Al = 12) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to obtain a coating amount of about Coating was performed so as to be 100 g / L to obtain an adsorbent 35.

【0043】実施例36 実施例1と同様にしてAg/MFI(金属担持量2重量
%,Si/2Al=30)粉末100部、シリカゾル
(固形分20%)65部および水65部を磁性ボールミ
ルに投入し、混合粉砕したスラリーを吸引コート法でハ
ニカム担体の前方1/2にコーティングし、乾燥焼成し
てコート量が約100g/Lになるようにコーティング
を行った。次に、USY(Si/2Al=12)粉末1
00部、シリカゾル(固形分20%)65部および水6
5部を磁性ボールミルに投入し、混合粉砕したスラリー
を吸引コート法でハニカム担体の後方1/2にコーティ
ングし、乾燥焼成してコート量が約100g/Lになる
ようにコーティングを行い、吸着材36を得た。
Example 36 In the same manner as in Example 1, 100 parts of Ag / MFI (metal loading 2% by weight, Si / 2Al = 30) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water were magnetic ball milled. Then, the slurry pulverized and mixed and pulverized was coated on the front half of the honeycomb carrier by a suction coating method, and dried and baked so that the coating amount was about 100 g / L. Next, USY (Si / 2Al = 12) powder 1
00 parts, silica sol (solid content 20%) 65 parts and water 6
5 parts of the mixture was put into a magnetic ball mill, and the slurry obtained by mixing and pulverizing was coated on the rear half of the honeycomb carrier by a suction coating method, and dried and baked so that the coating amount was about 100 g / L. I got 36.

【0044】実施例37 実施例1と同様にしてイオン交換法によってAgを担持
したMFI(金属担持量2重量%、Si/2Al=3
0)粉末50部、H型USY粉末(Si/2Al=1
2)25部、H型MFI型(Si/2Al=700)粉
末25部、シリカゾル(固形分20%)65部および水
65部を磁性ボールミルに投入し、混合粉砕したスラリ
ーを吸引コート法でコーティングし、乾燥焼成してコー
ト量が約200g/Lになるようにコーティングを行
い、吸着材37を得た。
Example 37 MFI carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading: 2% by weight, Si / 2Al = 3)
0) 50 parts of powder, H type USY powder (Si / 2Al = 1
2) 25 parts, 25 parts of H-type MFI type (Si / 2Al = 700) powder, 65 parts of silica sol (solid content 20%) and 65 parts of water were charged into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method. Then, it was dried and baked so that the coating amount was about 200 g / L to obtain an adsorbent 37.

【0045】実施例38 実施例1と同様にしてイオン交換法によってPdとAg
とを担持したMFI型ゼオライト(Pd担持量1重量
%、Ag担持量1重量%、Si/2Al=30)粉末5
0部、H型USY粉末(Si/2Al=12)50部、
シリカゾル(固形分20%)65部および水65部を磁
性ボールミルに投入し、混合粉砕したスラリーを吸引コ
ート法でコーティングし、乾燥焼成してコート量が約2
00g/Lになるようにコーティングを行い、吸着材3
8を得た。
Example 38 Pd and Ag were prepared by the ion exchange method in the same manner as in Example 1.
Powder of MFI type zeolite carrying and (1% by weight of Pd, 1% by weight of Ag, Si / 2Al = 30)
0 part, H-type USY powder (Si / 2Al = 12) 50 parts,
65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 2
Adsorbent 3 is coated so that it becomes 00g / L.
Got 8.

【0046】実施例39 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、USY粉末(Si/2Al
=12)25部、β−ゼオライト(Si/2Al=8
0)粉末25部、シリカゾル(固形分20%)65部お
よび水65部を磁性ボールミルに投入し、混合粉砕した
スラリーを吸引コート法でコーティングし、乾燥焼成し
てコート量が約200g/Lになるようにコーティング
を行い、吸着材39を得た。
Example 39 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 50 parts, USY powder (Si / 2Al)
= 12) 25 parts, β-zeolite (Si / 2Al = 8
0) 25 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water were charged into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. Coating was performed so as to obtain an adsorbent 39.

【0047】実施例40 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、USY粉末(Si/2Al
=12)25部、モルデナイト(Si/2Al=10
0)粉末25部、シリカゾル(固形分20%)65部お
よび水65部を磁性ボールミルに投入し、混合粉砕した
スラリーを吸引コート法でコーティングし、乾燥焼成し
てコート量が約200g/Lになるようにコーティング
を行い、吸着材40を得た。
Example 40 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount 2% by weight, Si /
2Al = 30) powder 50 parts, USY powder (Si / 2Al)
= 12) 25 parts, mordenite (Si / 2Al = 10
0) 25 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water were charged into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. Coating was performed so that the adsorbent 40 was obtained.

【0048】実施例41 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、H型MFI粉末(Si/2
Al=700)25部、β−ゼオライト(Si/2Al
=80)粉末25部、シリカゾル(固形分20%)65
部および水65部を磁性ボールミルに投入し、混合粉砕
したスラリーを吸引コート法でコーティングし、乾燥焼
成してコート量が約200g/Lになるようにコーティ
ングを行い、吸着材41を得た。
Example 41 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 50 parts, H type MFI powder (Si / 2
Al = 700) 25 parts, β-zeolite (Si / 2Al
= 80) powder 25 parts, silica sol (solid content 20%) 65
Parts and 65 parts of water were charged into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L to obtain an adsorbent 41.

【0049】実施例42 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、β−ゼオライト粉末(Si
/2Al=80)25部、モルデナイト(Si/2Al
=100)粉末25部、シリカゾル(固形分20%)6
5部および水65部を磁性ボールミルに投入し、混合粉
砕したスラリーを吸引コート法でコーティングし、乾燥
焼成してコート量が約200g/Lになるようにコーテ
ィングを行い、吸着材42を得た。
Example 42 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 50 parts, β-zeolite powder (Si
/ 2Al = 80) 25 parts, mordenite (Si / 2Al)
= 100) powder 25 parts, silica sol (solid content 20%) 6
5 parts of water and 65 parts of water were charged into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L, and an adsorbent 42 was obtained. .

【0050】実施例43 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、H型MFI粉末(Si/2
Al=80)25部、モルデナイト(Si/2Al=1
00)粉末25部、シリカゾル(固形分20%)65部
および水65部を磁性ボールミルに投入し、混合粉砕し
たスラリーを吸引コート法でコーティングし、乾燥焼成
してコート量が約200g/Lになるようにコーティン
グを行い、吸着材43を得た。
Example 43 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 50 parts, H type MFI powder (Si / 2
Al = 80) 25 parts, mordenite (Si / 2Al = 1
00) 25 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. Coating was performed so that the adsorbent 43 was obtained.

【0051】実施例44 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末25部、MFI粉末(Si/2Al
=700)25部、β−ゼオライト(Si/2Al=8
0)粉末25部、USY(Si/2Al=12)粉末2
5部、シリカゾル(固形分20%)65部および水65
部を磁性ボールミルに投入し、混合粉砕したスラリーを
吸引コート法でコーティングし、乾燥焼成してコート量
が約200g/Lになるようにコーティングを行い、吸
着材44を得た。
Example 44 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 25 parts, MFI powder (Si / 2Al)
= 700) 25 parts, β-zeolite (Si / 2Al = 8
0) powder 25 parts, USY (Si / 2Al = 12) powder 2
5 parts, silica sol (solid content 20%) 65 parts and water 65
Parts were put into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method and dried and baked so that the coating amount was about 200 g / L, whereby an adsorbent 44 was obtained.

【0052】実施例45 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末25部、β−ゼオライト粉末(Si
/2Al=80)25部、モルデナイト(Si/2Al
=100)粉末25部、H型MFI粉末(Si/2Al
=700)25部、シリカゾル(固形分20%)65部
および水65部を磁性ボールミルに投入し、混合粉砕し
たスラリーを吸引コート法でコーティングし、乾燥焼成
してコート量が約200g/Lになるようにコーティン
グを行い、吸着材45を得た。
Example 45 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2 Al = 30) powder 25 parts, β-zeolite powder (Si
/ 2Al = 80) 25 parts, mordenite (Si / 2Al)
= 100) powder 25 parts, H-type MFI powder (Si / 2Al
= 700) 25 parts, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. The coating was performed so that an adsorbent 45 was obtained.

【0053】実施例46 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末25部、H型MFI粉末(Si/2
Al=80)25部、モルデナイト(Si/2Al=1
00)粉末25部、USY(Si/2Al=12)粉末
25部、シリカゾル(固形分20%)65部および水6
5部を磁性ボールミルに投入し、混合粉砕したスラリー
を吸引コート法でコーティングし、乾燥焼成してコート
量が約200g/Lになるようにコーティングを行い、
吸着材46を得た。
Example 46 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2 Al = 30) powder 25 parts, H type MFI powder (Si / 2
Al = 80) 25 parts, mordenite (Si / 2Al = 1
00) powder 25 parts, USY (Si / 2Al = 12) powder 25 parts, silica sol (solid content 20%) 65 parts and water 6
5 parts were put into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount became about 200 g / L,
The adsorbent 46 was obtained.

【0054】比較例1 実施例1と同様にしてAg/MFI(金属担持量2重量
%、Si/2Al=30)粉末15部、USY(Si/
2Al=12)粉末85部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材47を得た。
Comparative Example 1 In the same manner as in Example 1, 15 parts of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, USY (Si / Si /
2Al = 12) powder 85 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 47 was obtained.

【0055】比較例2 実施例1と同様にしてAg/MFI(金属担持量2重量
%、Si/2Al=30)粉末85部、USY(Si/
2Al=12)粉末15部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材48を得た。
Comparative Example 2 In the same manner as in Example 1, 85 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 30) powder, USY (Si / Si /
2Al = 12) powder 15 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 48 was obtained.

【0056】比較例3 実施例1と同様にしてAg/MFI(金属担持量2重量
%、Si/2Al=100)粉末50部、USY(Si
/2Al=6)粉末50部、シリカゾル(固形分20
%)65部および水65部を磁性ボールミルに投入し、
混合粉砕したスラリーを吸引コート法でコーティング
し、乾燥焼成してコート量が約200g/Lになるよう
にコーティングを行い、吸着材49を得た。
Comparative Example 3 In the same manner as in Example 1, 50 parts by weight of Ag / MFI (metal loading amount 2% by weight, Si / 2Al = 100) powder, USY (Si
/ 2Al = 6) powder 50 parts, silica sol (solid content 20
%) 65 parts and 65 parts of water are charged into a magnetic ball mill,
The mixed and pulverized slurry was coated by a suction coating method, dried and baked so that the coating amount was about 200 g / L, and an adsorbent 49 was obtained.

【0057】比較例4 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=100)粉末50部、USY(Si/2Al=
12)粉末50部、シリカゾル(固形分20%)65部
および水65部を磁性ボールミルに投入し、混合粉砕し
たスラリーを吸引コート法でコーティングし、乾燥焼成
してコート量が約200g/Lになるようにコーティン
グを行い、吸着材50を得た。
Comparative Example 4 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 100) powder 50 parts, USY (Si / 2Al =
12) 50 parts of powder, 65 parts of silica sol (solid content 20%) and 65 parts of water are charged into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. Coating was performed so as to obtain an adsorbent 50.

【0058】比較例5 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、H型MFI(Si/2Al
=30)粉末50部、シリカゾル(固形分20%)65
部および水65部を磁性ボールミルに投入し、混合粉砕
したスラリーを吸引コート法でコーティングし、乾燥焼
成してコート量が約200g/Lになるようにコーティ
ングを行い、吸着材51を得た。
Comparative Example 5 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount 2% by weight, Si /
2Al = 30) powder 50 parts, H type MFI (Si / 2Al
= 30) powder 50 parts, silica sol (solid content 20%) 65
Parts and 65 parts of water were charged into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked to a coating amount of about 200 g / L to obtain an adsorbent 51.

【0059】比較例6 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、モルデナイト(Si/2A
l=10)粉末50部、シリカゾル(固形分20%)6
5部および水65部を磁性ボールミルに投入し、混合粉
砕したスラリーを吸引コート法でコーティングし、乾燥
焼成してコート量が約200g/Lになるようにコーテ
ィングを行い、吸着材52を得た。
Comparative Example 6 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount 2% by weight, Si /
2Al = 30) powder 50 parts, mordenite (Si / 2A)
l = 10) powder 50 parts, silica sol (solid content 20%) 6
5 parts of water and 65 parts of water were charged into a magnetic ball mill, the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L, and an adsorbent 52 was obtained. .

【0060】比較例7 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、USY粉末(Si/2Al
=7)50部、シリカゾル(固形分20%)65部およ
び水65部を磁性ボールミルに投入し、混合粉砕したス
ラリーを吸引コート法でコーティングし、乾燥焼成して
コート量が約200g/Lになるようにコーティングを
行い、吸着材53を得た。
Comparative Example 7 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount 2% by weight, Si /
2Al = 30) powder 50 parts, USY powder (Si / 2Al)
= 7) 50 parts, 65 parts of silica sol (solid content 20%) and 65 parts of water are put into a magnetic ball mill, the mixed and pulverized slurry is coated by a suction coating method, dried and baked to a coating amount of about 200 g / L. Coating was performed so that the adsorbent 53 was obtained.

【0061】比較例8 実施例1と同様にしてイオン交換法によってAgを担持
したMFI型ゼオライト(金属担持量2重量%、Si/
2Al=30)粉末50部、β−ゼオライト粉末(Si
/2Al=30)50部、シリカゾル(固形分20%)
65部および水65部を磁性ボールミルに投入し、混合
粉砕したスラリーを吸引コート法でコーティングし、乾
燥焼成してコート量が約200g/Lになるようにコー
ティングを行い、吸着材54を得た。
Comparative Example 8 MFI type zeolite carrying Ag by the ion exchange method in the same manner as in Example 1 (metal loading amount: 2% by weight, Si /
2Al = 30) powder 50 parts, β-zeolite powder (Si
/ 2Al = 30) 50 parts, silica sol (solid content 20%)
65 parts of water and 65 parts of water were charged into a magnetic ball mill, and the mixed and pulverized slurry was coated by a suction coating method, and dried and baked so that the coating amount was about 200 g / L, and an adsorbent 54 was obtained. .

【0062】試験例 各実施例および比較例について車両(排気量2000c
c)を用いて、表1に示すHC排出特性を有するLA−
4モードエミッションの最初の1分間のHC吸着率を評
価した。その結果を表2に示す。
Test Example Vehicles (displacement 2000c
LA- having the HC emission characteristics shown in Table 1 using c)
The HC adsorption rate for the first minute of 4-mode emission was evaluated. The results are shown in Table 2.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【発明の効果】以上説明してきたように、本発明におい
て、モルデナイト(Si/2Al=30〜2000)、
USY(Si/2Al=10〜300)、MFI型(S
i/2Al=50〜2000)、β−ゼオライト(Si
/2Al=40〜2000)に、PdまたはAgもしく
は両方を担持したMFI型(Si/2Al=10〜4
0)を併用することにより、炭素数の多い芳香族または
その他の分子径の大きい炭化水素に加え、今まで吸着さ
れなかった炭素数の少ない炭化水素(C2 〜C3 )を吸
着することが可能になった。また、ハイシリカのゼオラ
イトを用いることにより、水の影響を受け難くなり、さ
らに炭化水素吸着能が向上した。
As described above, in the present invention, mordenite (Si / 2Al = 30 to 2000),
USY (Si / 2Al = 10-300), MFI type (S
i / 2Al = 50-2000), β-zeolite (Si
/ 2Al = 40-2000) with Pd or Ag or both supported on the MFI type (Si / 2Al = 10-4)
When used in combination with 0), hydrocarbons with a small number of carbons (C 2 to C 3 ) that have not been adsorbed until now can be adsorbed in addition to aromatics with a large number of carbons or other hydrocarbons with a large molecular diameter. It became possible. In addition, by using the high silica zeolite, it became difficult to be affected by water, and the hydrocarbon adsorption capacity was further improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム担体に異なるゼオライトを2種
類以上コーティングしたことを特徴とする内燃機関の排
気中の炭化水素を浄化するための排気浄化用触媒。
1. An exhaust gas purification catalyst for purifying hydrocarbons in the exhaust gas of an internal combustion engine, characterized in that a honeycomb carrier is coated with two or more kinds of different zeolites.
【請求項2】 炭化水素を吸着するゼオライトとしてH
型MFI型ゼオライト(Si/2Al=50〜200
0)、モルデナイト(Si/2Al=30〜200
0)、USY型ゼオライト(Si/2Al=10〜30
0)およびβ−ゼオライト(Si/2Al=40〜20
00)の少なくとも1種類と、PdまたはAgもしくは
両方を担持したMFI型ゼオライト(Si/2Al=1
0〜40)とを用いたことを特徴とする請求項1記載の
排気浄化用触媒。
2. H as a zeolite that adsorbs hydrocarbons
Type MFI type zeolite (Si / 2Al = 50-200
0), mordenite (Si / 2Al = 30 to 200)
0), USY type zeolite (Si / 2Al = 10 to 30)
0) and β-zeolite (Si / 2Al = 40 to 20)
00) and at least one of Pd and Ag or both of them are supported on the MFI type zeolite (Si / 2Al = 1).
0-40) was used, The exhaust gas purification catalyst according to claim 1.
【請求項3】 H型MFI型ゼオライト(Si/2Al
=50〜2000)、モルデナイト(Si/2Al=3
0〜2000)、USY型ゼオライト(Si/2Al=
10〜300)およびβ−ゼオライト(Si/2Al=
40〜2000)と、PdまたはAgもしくは両方を担
持したMFI型ゼオライト(Si/2Al=10〜4
0)との重量比が1:3〜3:1であることを特徴とす
る請求項1記載の排気浄化用触媒。
3. H-type MFI-type zeolite (Si / 2Al
= 50 to 2000), mordenite (Si / 2Al = 3)
0-2000), USY type zeolite (Si / 2Al =
10-300) and β-zeolite (Si / 2Al =
40-2000) and Pd or Ag or both MFI type zeolite (Si / 2Al = 10-4).
The exhaust purification catalyst according to claim 1, wherein the weight ratio with respect to 0) is 1: 3 to 3: 1.
【請求項4】 MFI型ゼオライト(Si/2Al=5
0〜2000)、モルデナイト(Si/2Al=30〜
2000)、USY型ゼオライト(Si/2Al=10
〜300)およびβ−ゼオライト(Si/2Al=40
〜2000)が、H型あるいはPdまたはAgのいずれ
かまたは両方を担持されていることを特徴とする請求項
1記載の排気浄化用触媒。
4. MFI-type zeolite (Si / 2Al = 5
0-2000), mordenite (Si / 2Al = 30-
2000), USY type zeolite (Si / 2Al = 10)
~ 300) and β-zeolite (Si / 2Al = 40)
To 2000) are loaded with either or both of H type, Pd, and Ag, and the exhaust purification catalyst according to claim 1.
JP30412793A 1993-10-14 1993-12-03 Exhaust gas purification catalyst Expired - Lifetime JP3500675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30412793A JP3500675B2 (en) 1993-10-14 1993-12-03 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-256982 1993-10-14
JP25698293 1993-10-14
JP30412793A JP3500675B2 (en) 1993-10-14 1993-12-03 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH07155613A true JPH07155613A (en) 1995-06-20
JP3500675B2 JP3500675B2 (en) 2004-02-23

Family

ID=26542998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30412793A Expired - Lifetime JP3500675B2 (en) 1993-10-14 1993-12-03 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3500675B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867218A2 (en) * 1997-03-26 1998-09-30 Ngk Insulators, Ltd. System for exhaust gas purification
WO1999013981A1 (en) * 1997-09-12 1999-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst
EP0909579A1 (en) * 1997-10-15 1999-04-21 Ngk Insulators, Ltd. Adsorbent material or adsorbent comprising porous material for automobile exhaust gas purification
EP0947236A1 (en) * 1998-03-20 1999-10-06 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
US6042797A (en) * 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6147023A (en) * 1997-10-28 2000-11-14 Toyota Jidosha Kabushiki Kaisha Hydrocarbon-adsorbent
WO2001043854A1 (en) * 1999-12-14 2001-06-21 Engelhard Corporation Compositions for abatement of volatile organic compounds and apparatus and methods using the same
EP1129774A1 (en) * 1998-10-28 2001-09-05 Toyota Jidosha Kabushiki Kaisha Adsorbent for hydrocarbon and catalyst for exhaust gas purification
JPWO2014069676A1 (en) * 2012-11-01 2016-09-08 日本碍子株式会社 Ceramic separation membrane structure and repair method thereof
US9968916B2 (en) 2013-10-30 2018-05-15 Johnson Matthey Public Limited Company Three-way catalyst and its use in exhaust systems
WO2020205444A1 (en) * 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Catalysts and processes for converting aromatics
EP3077112B1 (en) * 2013-12-06 2022-02-16 Johnson Matthey Public Limited Company Exhaust gas catalyst containing two different palladium-molecular sieve catalysts
US12011705B2 (en) 2021-01-08 2024-06-18 Johnson Matthey Public Limited Company Method and composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309616B1 (en) 1977-11-26 2001-10-30 Tosoh Corporation Method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6171557B1 (en) 1997-03-26 2001-01-09 Ngk Insulators, Ltd. System for exhaust gas purification
EP0867218A3 (en) * 1997-03-26 1999-01-27 Ngk Insulators, Ltd. System for exhaust gas purification
EP0867218A2 (en) * 1997-03-26 1998-09-30 Ngk Insulators, Ltd. System for exhaust gas purification
US6042797A (en) * 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6103208A (en) * 1997-07-02 2000-08-15 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
WO1999013981A1 (en) * 1997-09-12 1999-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst
US6559086B1 (en) 1997-09-12 2003-05-06 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst
EP0909579A1 (en) * 1997-10-15 1999-04-21 Ngk Insulators, Ltd. Adsorbent material or adsorbent comprising porous material for automobile exhaust gas purification
US6147023A (en) * 1997-10-28 2000-11-14 Toyota Jidosha Kabushiki Kaisha Hydrocarbon-adsorbent
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
EP0947236A1 (en) * 1998-03-20 1999-10-06 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
EP1129774A1 (en) * 1998-10-28 2001-09-05 Toyota Jidosha Kabushiki Kaisha Adsorbent for hydrocarbon and catalyst for exhaust gas purification
EP1129774A4 (en) * 1998-10-28 2003-04-16 Toyota Motor Co Ltd Adsorbent for hydrocarbon and catalyst for exhaust gas purification
WO2001043854A1 (en) * 1999-12-14 2001-06-21 Engelhard Corporation Compositions for abatement of volatile organic compounds and apparatus and methods using the same
JPWO2014069676A1 (en) * 2012-11-01 2016-09-08 日本碍子株式会社 Ceramic separation membrane structure and repair method thereof
US9782729B2 (en) 2012-11-01 2017-10-10 Ngk Insulators, Ltd. Ceramic separation membrane structure, and repair method thereof
US9968916B2 (en) 2013-10-30 2018-05-15 Johnson Matthey Public Limited Company Three-way catalyst and its use in exhaust systems
EP3077112B1 (en) * 2013-12-06 2022-02-16 Johnson Matthey Public Limited Company Exhaust gas catalyst containing two different palladium-molecular sieve catalysts
WO2020205444A1 (en) * 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Catalysts and processes for converting aromatics
US12011705B2 (en) 2021-01-08 2024-06-18 Johnson Matthey Public Limited Company Method and composition

Also Published As

Publication number Publication date
JP3500675B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
US6074973A (en) Catalyzed hydrocarbon trap material and method of making the same
JP4497560B2 (en) Four-way diesel exhaust gas catalyst and method of use
EP0888815B1 (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
EP0593898A1 (en) Exhaust gas conversion method and apparatus using thermally stable zeolites
JPH07144128A (en) Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JP2800499B2 (en) Hydrocarbon adsorbent
JP3500675B2 (en) Exhaust gas purification catalyst
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH11179158A (en) Adsorbent and adsorber for cleaning of exhaust gas of automobile containing fine hole porous body and exhaust gas cleaning system using them and method for cleaning of exhaust gas
JPH08224449A (en) Combined catalyst and hydrocarbon trap for preventing air pollution from occurring
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JPH07256114A (en) Hydrocarbon adsorption catalyst for purification of exhaust gas
JP3282344B2 (en) Exhaust gas purification device
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH07332073A (en) Exhaust emission control device
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JPH10192699A (en) Adsorbent
JP3546547B2 (en) HC adsorbent for exhaust gas purification device and method for producing the same
JP3616112B2 (en) Hydrocarbon adsorbent
JPH04293519A (en) Exhaust gas purification device
JP3458624B2 (en) Exhaust purification catalyst device for internal combustion engine
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH0999217A (en) Exhaust gas purifying system
JPH09225265A (en) Exhaust gas purifying device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

EXPY Cancellation because of completion of term