JPH07154956A - Polyphase and multipolar linear motor - Google Patents

Polyphase and multipolar linear motor

Info

Publication number
JPH07154956A
JPH07154956A JP29924193A JP29924193A JPH07154956A JP H07154956 A JPH07154956 A JP H07154956A JP 29924193 A JP29924193 A JP 29924193A JP 29924193 A JP29924193 A JP 29924193A JP H07154956 A JPH07154956 A JP H07154956A
Authority
JP
Japan
Prior art keywords
phase
armature coil
current
effective conductor
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29924193A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakagawa
良幸 中川
Katsuya Hattori
克也 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP29924193A priority Critical patent/JPH07154956A/en
Publication of JPH07154956A publication Critical patent/JPH07154956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the mutual interference characteristic of all current phases equal and to sufficiently reduce a propulsive-force ripple by a method wherein effective conductor parts at end parts of armature coil groups are set so as to be the same in number regarding their current phases. CONSTITUTION:A linear DC motor 1 is constituted of a stator 2 and of a mover 7 which is arranged so as to be movable in the length direction of the stator 2. The stator 2 is provided with a lower-part holder 3 and an upper-part holder 4 which are arranged in parallel so as to be separated from each other at the upper part and the lower part, and both holders 3, 4 are arranged so as to be of different polarities in positions in which field magnets 5, 6 in which different polarities are arranged alternately are faced with each other in their length direction. Thereby, a propulsive force is generated in a second magnetic- substance arrangement with reference to a first magnetic-substance arrangement. At this time, since effective conductors parts at end parts of armature coil groups are set so as to be the same in number regarding their current phases, a difference in a mutual intereference characteristic is reduced, and a propulsive- force ripple can be reduced sufficiently by a simple constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リニアモータに関し、
特に、移動方向に沿って異なる磁極を交互に配列した第
1磁性体配列と、前記移動方向に沿って配列された複数
の電機子コイル群を有する第2磁性体配列とを備えた多
相多極型リニアモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor,
In particular, a multi-phase multi-phase arrangement including a first magnetic body array in which different magnetic poles are alternately arranged along the moving direction and a second magnetic body array having a plurality of armature coil groups arranged along the moving direction Pole type linear motor.

【0002】[0002]

【従来の技術及びその課題】リニアモータの一例とし
て、「リニアモータとその応用」(電気学会;磁気アク
チュエータ調査専門委員会編)に示される多極型リニア
直流モータがあり、例えば半導体製造装置、FPD製造
装置、プリント基板製造装置等の精密位置決め及び精密
送り用ステージの駆動に使われ得る。
2. Description of the Related Art As an example of a linear motor, there is a multi-pole type linear DC motor shown in "Linear motor and its application" (ed. It can be used for precision positioning and driving of a precision feed stage in FPD manufacturing equipment, printed circuit board manufacturing equipment, and the like.

【0003】この多極型リニア直流モータは、移動方向
に沿って異なる磁極を交互に配列した永久磁石群からな
る第1磁性体配列と、前記移動方向に沿って多数配列さ
れた電機子コイルを有する第2磁性体配列とを備えてい
る。第2磁性体配列の電機子コイルは多相の電流によっ
て制御され、磁極とコイルの相対位置を検出しつつ電流
を制御することによって一方向の推力が発生する。
This multi-pole type linear DC motor has a first magnetic body array consisting of a group of permanent magnets in which different magnetic poles are alternately arranged along the moving direction, and a large number of armature coils arranged along the moving direction. And a second magnetic material array having the same. The armature coil of the second magnetic body array is controlled by a multi-phase current, and a thrust in one direction is generated by controlling the current while detecting the relative position of the magnetic pole and the coil.

【0004】このような多極多相型リニア直流モータで
は、異なる磁極間をコイルが横切る際に推力リップルと
呼ばれる推力の変動が発生するので、これを平滑化する
必要がある。推力リップルを平滑にする方法として、コ
イル位置に応じた推力補正係数を予め求め、これを電流
制御部のROMに記憶しておき、動作時に読み出してコ
イル電流に重畳することが上記文献に示されている。
In such a multi-pole / multi-phase type linear DC motor, when a coil crosses between different magnetic poles, a variation in thrust called a thrust ripple occurs. Therefore, it is necessary to smooth this. As a method for smoothing the thrust ripple, the above-mentioned document shows that a thrust correction coefficient corresponding to the coil position is obtained in advance, stored in the ROM of the current control unit, read during operation, and superposed on the coil current. ing.

【0005】しかしその構成では、補正精度を上げるた
めには、コイルの位置を代えながら実測によりデータを
得る必要があり煩雑な作業を伴う。また、測定で得たデ
ータをもとに補正データを作成しROM化する必要があ
る。さらに、位置情報に基づいて補正データを読み込む
制御が必要になるので、制御装置が複雑になる。しか
も、推力変動を実測データで完全に補正することは不可
能である。
However, in that configuration, in order to improve the correction accuracy, it is necessary to obtain data by actual measurement while changing the position of the coil, which involves complicated work. In addition, it is necessary to create correction data based on the data obtained by the measurement and store it in ROM. Furthermore, since it is necessary to control the reading of the correction data based on the position information, the control device becomes complicated. Moreover, it is impossible to completely correct the thrust fluctuation with the actual measurement data.

【0006】ところで、サーボモータの分野では、推力
リップルを低減する構成として、各電流相によって引き
起こされる逆起電力波形を正弦波に近付ける構成が既に
採用されている(「ブラシレスサーボモータの選び方、
使い方」54〜56頁:川村昭著、総合電子出版)。各
電流相毎に発生する正弦波の逆起電力を重畳すれば、推
力リップルは相殺されて軽減されることになる。
By the way, in the field of servo motors, as a structure for reducing the thrust ripple, a structure has been adopted in which the back electromotive force waveform caused by each current phase is approximated to a sine wave.
How to use "54-56: Akira Kawamura, Comprehensive Electronic Publishing). If the sinusoidal back electromotive force generated for each current phase is superimposed, the thrust ripples are canceled and reduced.

【0007】そこで、本願発明者は、この構成をリニア
モータの分野に適用することを考えた。しかし、回転方
向にエンドレス構造を有する通常のモータとは異なり、
両端を有するリニアモータの場合には、各電流相の逆起
電力波形を正弦波に近づけるだけでは不十分である。例
えば、矩形枠状の複数の電機子コイルを連続的に並設す
ることで単純に3相以上の多相型リニアモータを構成し
た場合、各電流相のうち電機子の両端に位置するものと
位置しないものとができ、全ての電流相の相互干渉特性
を同一にできない。各電流相間で相互干渉特性に差が生
じれば、推力リップル補正を充分に行うことができなく
なる。
Therefore, the inventor of the present application considered applying this configuration to the field of linear motors. However, unlike a normal motor that has an endless structure in the direction of rotation,
In the case of a linear motor having both ends, it is not enough to bring the back electromotive force waveform of each current phase close to a sine wave. For example, when a multi-phase linear motor having three or more phases is simply constructed by continuously arranging a plurality of rectangular frame-shaped armature coils, it is assumed that one of the current phases is located at both ends of the armature. They cannot be located, and the mutual interference characteristics of all current phases cannot be made the same. If there is a difference in the mutual interference characteristics between the current phases, thrust ripple correction cannot be performed sufficiently.

【0008】本発明の目的は、簡素な構成で、推力リッ
プルを充分に低減することにある。
An object of the present invention is to sufficiently reduce the thrust ripple with a simple structure.

【0009】[0009]

【課題を解決するための手段】本願の第1発明に係る多
相多極型リニアモータは、n(nは3以上の整数)相の
電流により制御されて駆動されるものであり、第1磁性
体配列と第2磁性体配列とを備えている。第1磁性体配
列では、移動方向に沿って異なる磁極が交互に配列され
ている。第2磁性体配列は、移動方向に交差する方向に
延びる有効導体部を有しかつ前記移動方向に沿って配列
された複数の電機子コイルからなるnの整数倍の電機子
コイル群を有している。電機子コイル群の端部に位置す
る有効導体部は、電流相に関して同数となるように設定
されている。
A multi-phase multi-pole linear motor according to a first invention of the present application is driven by being controlled by an n-phase (n is an integer of 3 or more) phase current. The magnetic material array and the second magnetic material array are provided. In the first magnetic material arrangement, different magnetic poles are arranged alternately along the moving direction. The second magnetic body array has an effective conductor portion extending in a direction intersecting with the moving direction, and has an armature coil group having an integral multiple of n and including a plurality of armature coils arranged along the moving direction. ing. The effective conductor portions located at the ends of the armature coil group are set to have the same number with respect to the current phase.

【0010】本願の第2発明に係る多相多極型リニアモ
ータは、n(nは4以上の偶数)相の電流により制御さ
れて駆動されるものであり、第1磁性体配列と第2磁性
体配列とを備えている。第1磁性体配列では、移動方向
に沿って異なる磁極が交互に配列されている。第2磁性
体配列は、移動方向に交差する方向に延びる有効導体部
を有し、かつ前記移動方向に沿って配列された複数の電
機子コイルからなるn/2の整数倍の電機子コイル群を
有している。電機子コイル群の端部に位置する有効導体
部は、電流相に関して同数となるように設定されてい
る。
The multi-phase multi-pole linear motor according to the second aspect of the present invention is driven by being controlled by an n-phase (n is an even number equal to or greater than 4) phase current, and has a first magnetic material array and a second magnetic body array. And a magnetic material array. In the first magnetic material arrangement, different magnetic poles are arranged alternately along the moving direction. The second magnetic body array has an effective conductor portion extending in a direction intersecting with the movement direction, and is an armature coil group of an integer multiple of n / 2, which includes a plurality of armature coils arranged along the movement direction. have. The effective conductor portions located at the ends of the armature coil group are set to have the same number with respect to the current phase.

【0011】[0011]

【作用】本発明に係る多相多極型リニアモータでは、第
2磁性体配列の電機子コイル群の電機子コイルにn相の
電流が供給される。これにより、第1磁性体配列に対し
て、第2磁性体配列に推力が発生する。ただしここで
は、電機子コイル群の端部に位置する有効導体部が電流
相に関して同数となるように設定されているので、全て
の電流相の相互干渉特性が等しくなり、各電流相間での
相互干渉特性差を低減できる。この結果、簡素な構成
で、推力リップルを充分に低減することが可能となる。
In the multi-phase multi-pole linear motor according to the present invention, an n-phase current is supplied to the armature coil of the armature coil group of the second magnetic body array. As a result, thrust is generated in the second magnetic body array with respect to the first magnetic body array. However, here, since the effective conductors located at the ends of the armature coil group are set to have the same number with respect to the current phases, the mutual interference characteristics of all the current phases become equal, and the mutual interference characteristics between the current phases are the same. The difference in interference characteristics can be reduced. As a result, it is possible to sufficiently reduce the thrust ripple with a simple configuration.

【0012】[0012]

【実施例】図1において、本発明の一実施例が採用され
た多相多極型リニア直流モータ1は、固定子2と、この
固定子2の長さ方向に移動可能に配置された移動子7と
から構成されている。固定子2は、上下に互いに離隔し
て平行に配置された下部ホルダ3及び上部ホルダ4を有
しており、両ホルダ3,4にはそれぞれ長さ方向に異極
が交互に配置された界磁マグネット5,6が設けられて
いる。また、この界磁マグネット5,6は互いに対向す
る位置で異極となるように配置されている(図3参
照)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a multi-phase multi-pole linear DC motor 1 to which an embodiment of the present invention is applied is a stator 2 and a movable member arranged so as to be movable in the longitudinal direction of the stator 2. It is composed of a child 7. The stator 2 has a lower holder 3 and an upper holder 4 which are vertically spaced apart from each other and arranged in parallel. The holders 3 and 4 each have a field in which different poles are alternately arranged in the longitudinal direction. Magnetic magnets 5 and 6 are provided. The field magnets 5 and 6 are arranged so as to have different polarities at positions facing each other (see FIG. 3).

【0013】移動子7は、断面コ字状に形成され、固定
子2の長さ方向に移動可能に上下ホルダ4に嵌め込まれ
ている。移動子7において、固定子2の界磁マグネット
5,6間に位置する部分は、図2に示すようにコイル保
持部8を有している。コイル保持部8には多数のコイル
9が装着されており、このコイル9にはプリント基板1
0により制御された電流が与えられるようになってい
る。図3に示すように、コイル保持部8に保持された多
数のコイル9が3つの電機子コイル群15,16,17
を構成している。コイル保持部8にはさら位置検出素子
18が保持されている。位置検出素子18はホール素子
で構成されており、界磁マグネット5,6の磁場により
信号を発生することで移動子7の位置を検出する。
The mover 7 is formed in a U-shaped cross section, and is fitted into the upper and lower holders 4 so as to be movable in the length direction of the stator 2. In the mover 7, the portion of the stator 2 located between the field magnets 5 and 6 has a coil holding portion 8 as shown in FIG. A large number of coils 9 are attached to the coil holding portion 8, and the printed circuit board 1 is attached to the coils 9.
A current controlled by 0 is given. As shown in FIG. 3, a large number of coils 9 held by the coil holding unit 8 are arranged in three armature coil groups 15, 16, 17
Are configured. The coil holding portion 8 holds a further position detecting element 18. The position detection element 18 is composed of a Hall element, and detects the position of the mover 7 by generating a signal by the magnetic fields of the field magnets 5 and 6.

【0014】移動子7に装着されるコイル9は、図4〜
図7に示す形状であり、線材を矩形枠状に巻回したもの
である。ここで4辺に構成される導体部のうち、1対の
長編部分が第1有効導体部11及び第2有効導体部12
であり、1対の短辺部分が第1無効導体部13及び第2
無効導体部14である。有効導体部11,12は互いに
平行に延びており、その延在方向は移動方向(図3の左
右方向)に直交している。両有効導体部11,12は平
板状に形成されており、その延在平面は移動方向に沿っ
ている。
The coil 9 mounted on the moving element 7 is shown in FIGS.
The shape shown in FIG. 7 is obtained by winding a wire into a rectangular frame shape. Here, of the conductor portions formed on the four sides, a pair of long-length portions is the first effective conductor portion 11 and the second effective conductor portion 12.
And the pair of short sides is the first invalid conductor portion 13 and the second
It is the invalid conductor portion 14. The effective conductor portions 11 and 12 extend in parallel with each other, and the extending direction thereof is orthogonal to the moving direction (the horizontal direction in FIG. 3). Both effective conductor portions 11 and 12 are formed in a flat plate shape, and their extending planes are along the moving direction.

【0015】無効導体部13,14は、図4の方向に見
て有効導体部11,12の幅方向(移動方向)に対し角
度θだけ傾斜している。この傾斜角θは、無効導体部1
3,14の厚さd、有効導体部11,12の幅をuとす
ると、θ=sin-1(d/u)で表される。これによ
り、多数のコイル9を図8のように重ねて配列した場合
にも、界磁マグネット5,6の磁束が有効に作用する導
体長さxは移動子7の移動方向で一定に保たれる。
The ineffective conductor portions 13 and 14 are inclined by an angle θ with respect to the width direction (moving direction) of the effective conductor portions 11 and 12 when viewed in the direction of FIG. This inclination angle θ is
If the thickness d of 3, 14 and the width of the effective conductor portions 11, 12 are u, then θ = sin −1 (d / u). As a result, even when a large number of coils 9 are arranged in an overlapping manner as shown in FIG. 8, the conductor length x in which the magnetic flux of the field magnets 5 and 6 effectively acts is kept constant in the moving direction of the moving element 7. Be done.

【0016】第1無効導体部13は両有効導体部11,
12に対し上方(図4の手前方向)に90°折曲され、
第2無効導体部14は下方(図4の奥方向)に90°折
曲されている。この結果、1種類のコイル9を図8のよ
うに多数個重ね合わせることが可能になっている。ま
た、各無効導体部13,14が逆方向に折曲されている
ので、巻き数を大きくするためにコイル厚みが厚くなっ
ていても、折曲加工するのが容易である。このため、曲
げ工程で線材に加わる応力が小さく、絶縁性の低下や寸
法精度の低下が生じにくい。
The first ineffective conductor portion 13 includes both effective conductor portions 11,
It is bent 90 degrees upward (toward the front of Fig. 4) with respect to 12,
The second invalid conductor portion 14 is bent downward (inward in FIG. 4) by 90 °. As a result, it is possible to stack a large number of one type of coil 9 as shown in FIG. Further, since each of the invalid conductor portions 13 and 14 is bent in the opposite direction, it is easy to bend even if the coil thickness is large in order to increase the number of turns. Therefore, the stress applied to the wire in the bending step is small, and the deterioration of the insulation and the dimensional accuracy are unlikely to occur.

【0017】図5〜図7に示すように、第1有効導体部
11及び第2有効導体部12は、有効導体部の厚さt分
だけコイル厚み方向に偏位して設けられている。この結
果、1種類のコイル9を傾斜させずに図9のように重ね
合わせることができる。ここで、コイル9の有効導体部
の幅をu、有効導体部11の間隔をwとすると、有効導
体部の幅uは概ねu=w/3の関係にあるように設定さ
れており、各コイル9の両有効導体部11,12間に、
他のコイルの有効導体部の一方が位置するように重ねら
れる。
As shown in FIGS. 5 to 7, the first effective conductor portion 11 and the second effective conductor portion 12 are provided so as to be displaced in the coil thickness direction by the thickness t of the effective conductor portion. As a result, one type of coil 9 can be overlapped as shown in FIG. 9 without tilting. Here, if the width of the effective conductor portion of the coil 9 is u and the interval between the effective conductor portions 11 is w, the width u of the effective conductor portion is set to have a relationship of approximately u = w / 3. Between the effective conductor portions 11 and 12 of the coil 9,
The coils are overlapped so that one of the effective conductor portions of the other coil is positioned.

【0018】この実施例では、18個のコイル9の有効
導体部11,12が図3に示すように重ねられて、移動
子7のコイル保持部8に収納されている。ここでは3相
モータが想定されており、2個1組でかつU相,V相,
W相の電流相に対応する3組のコイルからなる電機子コ
イル群15,16,17が、3組使用されている。隣接
する2個1組のコイル9は、図8に示すように並列接続
されることで、同位相の電流が供給されるようになって
いる。これにより、それぞれのコイルペアがU相,V
相,W相を構成するように設定している。また、この構
成では、第2有効導体部12の上面に次のコイル9の第
1有効導体部11が位置するように重ねられている(図
3及び図9参照)。
In this embodiment, the effective conductor portions 11 and 12 of the 18 coils 9 are piled up as shown in FIG. 3 and housed in the coil holding portion 8 of the moving element 7. A 3-phase motor is assumed here, and a set of two U-phase, V-phase,
Three armature coil groups 15, 16 and 17 each including three coils corresponding to the W-phase current phase are used. The two adjacent coils 9 are connected in parallel as shown in FIG. 8 so that currents of the same phase are supplied. As a result, each coil pair has U-phase and V-phase.
Phase and W phase are set to be configured. Further, in this configuration, the first effective conductor portion 11 of the next coil 9 is overlapped on the upper surface of the second effective conductor portion 12 (see FIGS. 3 and 9).

【0019】固定子2に設けられる界磁マグネット5,
6のN極/S極対の長さを磁極サイクル長L(図10)
とすると、ここで用いたコイル9の幅wはw=L/2に
設定されており、有効導体部の幅uはu=w/3である
から概ねu=L/6となっている。ここで、推力リップ
ルを少なくするためには、コイル9の有効導体部の幅u
が、0.30L≦u≦0.36Lの範囲であることが好
ましく、この実施例では、隣接する2つのコイル9,9
に同位相の電流を供給することによって、有効導体部1
1,12の幅を等価的にほぼL/3となるように設定し
ている。
The field magnet 5 provided on the stator 2
The length of the N pole / S pole pair of 6 is the magnetic pole cycle length L (Fig. 10)
Then, the width w of the coil 9 used here is set to w = L / 2, and the width u of the effective conductor portion is u = w / 3, so that it is approximately u = L / 6. Here, in order to reduce the thrust ripple, the width u of the effective conductor portion of the coil 9 is reduced.
Is preferably in the range of 0.30L ≦ u ≦ 0.36L. In this embodiment, two adjacent coils 9 and 9 are
By supplying currents of the same phase to the
The widths of 1 and 12 are set to be equivalently approximately L / 3.

【0020】このように構成されたコイル9,9を界磁
マグネット5,6間に挿入すると、図10(a)に示す
ようになる。ただし、図10では、理解の便宜のため、
1つの電機子コイル群のみが示されている。図10にお
いて、たとえばV相に着目すると、第1有効導体部11
Vが上向きの磁束内になるとき、第2有効導体部12V
が下向きの磁束内にあるように配置される。
When the coils 9 and 9 constructed in this way are inserted between the field magnets 5 and 6, it becomes as shown in FIG. However, in FIG. 10, for convenience of understanding,
Only one armature coil group is shown. In FIG. 10, focusing on the V phase, for example, the first effective conductor portion 11
When V is in the upward magnetic flux, the second effective conductor portion 12V
Are arranged so that they are in the downward magnetic flux.

【0021】さらに、図3に示すように、3つの電機子
コイル群15,16,17の間は、2個のコイル9に相
当する間隙が設けられている。この結果、電機子コイル
群15に関してはU相とW相とが両端に位置し、電機子
コイル群16に関してはV相とU相とが両端に位置し、
電機子コイル群17に関してはW相とV相とが両端に位
置していることになる。即ち、この実施例では、電機子
コイル群15,16,17の全体としては、端に位置す
る電流相が同数となるように構成されている。
Further, as shown in FIG. 3, a gap corresponding to the two coils 9 is provided between the three armature coil groups 15, 16 and 17. As a result, the U-phase and the W-phase are located at both ends of the armature coil group 15, and the V-phase and the U-phase are located at both ends of the armature coil group 16.
With respect to the armature coil group 17, the W phase and the V phase are located at both ends. That is, in this embodiment, the armature coil groups 15, 16 and 17 are configured so that the current phases at the ends are the same in number as a whole.

【0022】上述の実施例は、次のように動作する。図
10のV相に着目すると、第1有効導体部11Vに紙面
手前から奥へ向かう電流を流せば、第2有効導体部12
Vには紙面奥から手前へ向かう電流が流れ、ともに右向
きの推力fv ,fv ’を発生する。これによりコイル9
はfv +fv’=2fv の力で図右方向に動かされるこ
とになる。
The above described embodiment operates as follows. Focusing on the V phase in FIG. 10, if a current flowing from the front side to the back side of the paper surface is applied to the first effective conductor portion 11V, the second effective conductor portion 12
A current flows from V to the front in the plane of the paper, and both generate thrusts f v and f v 'to the right. This makes the coil 9
Will be moved to the right in the figure by the force of f v + f v '= 2f v .

【0023】各電流相U相,V相,W相によって得られ
る推力fu ,fv ,fw は、図10(b),(c),
(d)に実線で示すようになる。ここで、コイルの有効
導体部の位置が単一の磁極の中心近傍にあるときには、
有効導体部を通過する磁束密度が均一となるため、理想
的には図10(b),(c),(d)に点線で示すよう
に各推力fu ,fv ,fw の波形は台形状となるべきで
あるが、界磁マグネット5,6の磁界分布になまりが存
在するので、実際の波形は図示したようにほぼ正弦波と
なる。したがって、各電流相の推力fu ,fv ,fw
合成推力であるモータ1全体の推力fは、図10(e)
に実線で示すように推力リップルが除去されたほぼ一定
値となる。
[0023] Each current phase U phase, V phase, the thrust f u obtained by W-phase, f v, f w is FIG 10 (b), (c) ,
The solid line is shown in (d). Here, when the position of the effective conductor portion of the coil is near the center of a single magnetic pole,
Since the magnetic flux density passing through the effective conductors is uniform, 10 ideally (b), the waveform of (c), the thrust in (d) of as indicated by the dotted line f u, f v, f w It should have a trapezoidal shape, but since there is a roundness in the magnetic field distribution of the field magnets 5 and 6, the actual waveform is almost a sine wave as shown in the figure. Therefore, the thrust force f of the motor 1 as a whole, which is the combined thrust force of each current phase f u , f v , and f w , is shown in FIG.
As shown by the solid line, the value is almost constant with the thrust ripple removed.

【0024】さらに、この実施例では、電機子コイル群
15,16,17の全体として、端に位置する電流相が
同数となるように構成されているので、全ての電流相の
相互干渉特性が等しくなり、各電流相間での相互干渉特
性差が低減される。この結果、推力リップルの発生がさ
らに低減される。実験の結果、U相,V相,W相の相互
干渉特性のゲイン差が、従来のようにU相,V相,W相
のコイルを連続配置して電機子を構成した場合には、1
kHzの電流で16.3dB、10kHzの電流で1
1.3dBであったが、本実施例においては、1kHz
の電流で4.5dB、10kHzの電流で5.0dBと
なった。即ち、本実施例に従った実験装置においては、
各相の相互干渉特性の差が殆どなくなり、推力リップル
が軽減された。
Furthermore, in this embodiment, the armature coil groups 15, 16 and 17 are configured so that the current phases located at the ends are the same in number as a whole, so that the mutual interference characteristics of all the current phases are reduced. Therefore, the mutual interference characteristic difference between the current phases is reduced. As a result, the occurrence of thrust ripple is further reduced. As a result of the experiment, the gain difference of the mutual interference characteristics of the U phase, V phase, and W phase is 1 when the armature is configured by continuously arranging the U phase, V phase, and W phase coils as in the conventional case.
16.3 dB at a current of 10 kHz and 1 at a current of 10 kHz
Although it was 1.3 dB, in this embodiment, it is 1 kHz.
The current was 4.5 dB, and the current at 10 kHz was 5.0 dB. That is, in the experimental device according to this example,
The difference in the mutual interference characteristics of each phase was almost eliminated, and the thrust ripple was reduced.

【0025】〔他の実施例〕 (a) 図11に示すように、3つの電機子コイル群1
5,16,17の間隙をコイル4個分としてもよい。電
機子コイル群15は左からU相,V相,W相となってお
り、電機子コイル群16は左からW相,U相,V相とな
っており、電機子コイル群17は左からV相,W相,U
相となっている。
[Other Embodiments] (a) As shown in FIG. 11, three armature coil groups 1
The gap of 5, 16 and 17 may be four coils. The armature coil group 15 is U phase, V phase, W phase from the left, the armature coil group 16 is W phase, U phase, V phase from the left, and the armature coil group 17 is from the left. V phase, W phase, U
Are in phase.

【0026】この構成についての実験結果では、1kH
zの電流でゲイン差が1.8dB、10kHzの電流で
ゲイン差が1.5dBとなり、推力リップルをほぼ取り
除くことができた。 (b) 図12に示す3個のコイル群19,20,21
を用いて本発明を実施してもよい。
The experimental result of this configuration shows that 1 kH
The gain difference was 1.8 dB at the current of z, and the gain difference was 1.5 dB at the current of 10 kHz, and the thrust ripple could be almost removed. (B) Three coil groups 19, 20, 21 shown in FIG.
May be used to implement the present invention.

【0027】ここで、電機子コイル群19は、同位相の
電流が供給される隣接する1対のコイルで構成されるU
相及びV相用のコイルと、1つのコイルで構成されるW
相用のコイルとから構成されている。電機子コイル群2
0は、同位相の電流が供給される隣接する1対のコイル
で構成されるV相及びW相用のコイルと、1つのコイル
で構成されるU相用のコイルとから構成されている。そ
して、電機子コイル群21は、同位相の電流が供給され
る隣接する1対のコイルで構成されるW相及びU相用の
コイルと、1つのコイルで構成されるV相用のコイルと
から構成されている。また、各電機子コイル群の間には
コイル3つ分の間隙がある。
Here, the armature coil group 19 is composed of a pair of adjacent coils to which currents of the same phase are supplied.
W for phase and V phase coils and one coil
It is composed of a phase coil. Armature coil group 2
0 is composed of a V-phase and W-phase coil composed of a pair of adjacent coils to which currents of the same phase are supplied, and a U-phase coil composed of one coil. The armature coil group 21 includes a W-phase and U-phase coil composed of a pair of adjacent coils to which currents of the same phase are supplied, and a V-phase coil composed of one coil. It consists of Further, there is a gap of three coils between each armature coil group.

【0028】この実施例では、電機子全体の全長を短く
することができる。 (c) 図13に示す3個のコイル群22,23,24
を用いて本発明を実施してもよい。 ここで、電機子コイル群22は、同位相の電流が供給さ
れる隣接する1対のコイルで構成されるV相用のコイル
と、個別のコイルで構成されるU相及びW相用のコイル
とから構成されている。電機子コイル群23は、同位相
の電流が供給される隣接する1対のコイルで構成される
W相用のコイルと、個別のコイルで構成されるV相及び
U相用のコイルとから構成されている。そして、電機子
コイル群24は、同位相の電流が供給される隣接する1
対のコイルで構成されるU相用のコイルと、個別のコイ
ルで構成されるW相及びV相用のコイルとから構成され
ている。また、各電機子コイル群の間にはコイル4つ分
の間隙がある。 (d) 図14に示す3個のコイル群25,26,27
を用いて本発明を実施してもよい。
In this embodiment, the total length of the armature can be shortened. (C) Three coil groups 22, 23, 24 shown in FIG.
May be used to implement the present invention. Here, the armature coil group 22 includes a V-phase coil composed of a pair of adjacent coils to which currents of the same phase are supplied, and U-phase and W-phase coils composed of individual coils. It consists of and. The armature coil group 23 is composed of a W-phase coil composed of a pair of adjacent coils to which currents of the same phase are supplied, and V-phase and U-phase coils composed of individual coils. Has been done. The armature coil groups 24 are adjacent to each other and are supplied with currents of the same phase.
It is composed of a U-phase coil composed of a pair of coils and W-phase and V-phase coils composed of individual coils. Further, there is a gap of four coils between each armature coil group. (D) Three coil groups 25, 26, 27 shown in FIG.
May be used to implement the present invention.

【0029】電機子コイル群25は、左からU相,W
相,V相で構成されており、W相が他相に対して逆相に
なっている。電機子コイル群26は、左からW相,V
相,U相で構成されており、W相及びU相が逆相になっ
ている。さらに、電機子コイル群27は、左からV相,
U相,W相で構成され、U相が逆相になっている。各電
機子コイル群25,26,27の間には、コイルの有効
導体部の幅に相当する間隙が設けられている。
The armature coil group 25 includes U-phase and W-phase from the left.
It is composed of a phase and a V phase, and the W phase is opposite to the other phases. The armature coil group 26 includes a W phase, V from the left.
It is composed of a phase and a U phase, and the W phase and the U phase are opposite phases. Further, the armature coil group 27 includes V phase from the left,
It is composed of U and W phases, and the U phase is the opposite phase. A gap corresponding to the width of the effective conductor portion of the coil is provided between each armature coil group 25, 26, 27.

【0030】この実施例では、各電機子コイル群25,
26,27の両端に位置する有効導体部が各電流相に関
し同数であり、前述した実施例同様、相互干渉特性が改
善される。 (e) 上述の電機子コイル群を3ユニット以上用い
て、本発明を実施してもよい。例えば、3相の場合には
6個,9個、12個…の電機子コイル群を用いてもよ
い。 (f) 4相以上の多相多極型リニアモータであって
も、本発明を同様に実施できる。この場合には、当該相
数の整数倍の電機子コイル群を用いればよい。 (g) 4相以上の偶数相の多極型リニアモータに関し
ては、当該相数の1/2の整数倍の電機子コイル群を用
いることで、電機子コイル群の端部に位置する有効導体
部が電流相に関して同数となるように設定できる。従っ
て、この構成によっても本発明を実施できる。
In this embodiment, each armature coil group 25,
The number of effective conductor portions located at both ends of 26 and 27 is the same for each current phase, and mutual interference characteristics are improved as in the above-described embodiments. (E) The present invention may be implemented using three or more units of the armature coil group described above. For example, in the case of three phases, 6, 9, 12 ... Armature coil groups may be used. (F) The present invention can be similarly applied to a multi-phase multi-pole linear motor having four or more phases. In this case, an armature coil group having an integral multiple of the number of phases may be used. (G) For an even-phase multi-pole linear motor having four or more phases, an effective conductor located at the end of the armature coil group is used by using an armature coil group that is an integral multiple of 1/2 of the number of phases. The parts can be set to have the same number with respect to the current phase. Therefore, the present invention can also be implemented with this configuration.

【0031】図15に、この場合の一実施例として、2
個の電機子コイル群28,29を有する4相多極リニア
モータを示す。
In FIG. 15, as one embodiment of this case, 2
4 shows a four-phase multi-pole linear motor having individual armature coil groups 28, 29.

【0032】[0032]

【発明の効果】本発明に係る多相多極型リニアモータで
は、電機子コイル群の端部に位置する有効導体部が電流
相に関して同数となるように設定されているので、全て
の電流相の相互干渉特性を等しくできるようになり、各
電流相間での相互干渉特性差を低減できる。この結果、
簡素な構成で、推力リップルを充分に低減することが可
能となる。
In the multi-phase multi-pole type linear motor according to the present invention, the effective conductor portions located at the ends of the armature coil group are set to have the same number with respect to the current phase, so that all current phases are The mutual interference characteristics can be made equal, and the difference in mutual interference characteristics between the current phases can be reduced. As a result,
With a simple structure, it is possible to sufficiently reduce the thrust ripple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例が採用されたリニアモータの
概略斜視部分図。
FIG. 1 is a schematic perspective partial view of a linear motor according to an embodiment of the present invention.

【図2】図1のII−II断面図。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1のIII −III 断面部分図。FIG. 3 is a partial sectional view taken along the line III-III in FIG.

【図4】電機子コイルの平面図。FIG. 4 is a plan view of an armature coil.

【図5】その側面図。FIG. 5 is a side view thereof.

【図6】その底面図。FIG. 6 is a bottom view thereof.

【図7】図4のVII −VII 断面図。7 is a sectional view taken along line VII-VII of FIG.

【図8】図4〜図7のコイルを用いて構成した電機子コ
イル群の平面図。
FIG. 8 is a plan view of an armature coil group configured by using the coils of FIGS. 4 to 7.

【図9】図8のIX−IX断面図。9 is a sectional view taken along line IX-IX in FIG.

【図10】界磁マグネットとコイルの有効導体部との関
係及び推力変化を示す説明図。
FIG. 10 is an explanatory diagram showing a relationship between a field magnet and an effective conductor portion of a coil and a thrust change.

【図11】他の実施例の図3に相当する図。FIG. 11 is a view corresponding to FIG. 3 of another embodiment.

【図12】さらに他の実施例の図3に相当する図。FIG. 12 is a view corresponding to FIG. 3 of still another embodiment.

【図13】さらに他の実施例の図3に相当する図。FIG. 13 is a diagram corresponding to FIG. 3 of still another embodiment.

【図14】さらに他の実施例の図3に相当する図。FIG. 14 is a view corresponding to FIG. 3 of still another embodiment.

【図15】さらに他の実施例の図3に相当する図。FIG. 15 is a view corresponding to FIG. 3 of still another embodiment.

【符号の説明】[Explanation of symbols]

1 多相多極型リニア直流モータ 2 固定子 5,6 界磁マグネット 7 移動子 9 コイル 11,12 有効導体部 15,16,17 電機子コイル群 1 multi-phase multi-pole type linear direct current motor 2 stator 5,6 field magnet 7 mover 9 coil 11,12 effective conductor part 15,16,17 armature coil group

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】n(nは3以上の整数)相の電流により制
御されて駆動される多相多極型リニアモータであって、 移動方向に沿って異なる磁極を交互に配列した第1磁性
体配列と、 前記移動方向に交差する方向に延びる有効導体部を有し
かつ前記移動方向に沿って配列された複数の電機子コイ
ルからなるnの整数倍の電機子コイル群を有し、前記電
機子コイル群の端部に位置する有効導体部が電流相に関
して同数となるように設定されている第2磁性体配列
と、 を備えた多相多極型リニアモータ。
1. A multi-phase multi-pole type linear motor driven by being controlled by an n-phase (n is an integer of 3 or more) phase current, wherein different magnetic poles are alternately arranged along a moving direction. A body array, and an armature coil group having an integral multiple of n, which has an effective conductor portion extending in a direction intersecting with the moving direction and is composed of a plurality of armature coils arranged along the moving direction, A multi-phase multi-pole type linear motor comprising: a second magnetic body array in which the effective conductor portions located at the ends of the armature coil group are set to have the same number with respect to the current phase.
【請求項2】n(nは4以上の偶数)相の電流により制
御されて駆動される多相多極型リニアモータであって、 移動方向に沿って異なる磁極を交互に配列した第1磁性
体配列と、 前記移動方向に交差する方向に延びる有効導体部を有し
かつ前記移動方向に沿って配列された複数の電機子コイ
ルからなるn/2の整数倍の電機子コイル群を有し、前
記電機子コイル群の端部に位置する有効導体部が電流相
に関して同数となるように設定されている第2磁性体配
列と、 を備えて多相多極型リニアモータ。
2. A multi-phase multi-pole type linear motor driven by being controlled by an n-phase (n is an even number of 4 or more) phase current, wherein different magnetic poles are alternately arranged along a moving direction. A body array, and an armature coil group having an effective multiple of n / 2 and having an effective conductor portion extending in a direction intersecting the moving direction and including a plurality of armature coils arranged in the moving direction. A second magnetic body array in which the effective conductor portions located at the end portions of the armature coil group are set to have the same number with respect to the current phase, and a multi-phase multi-pole type linear motor.
JP29924193A 1993-11-30 1993-11-30 Polyphase and multipolar linear motor Pending JPH07154956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29924193A JPH07154956A (en) 1993-11-30 1993-11-30 Polyphase and multipolar linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29924193A JPH07154956A (en) 1993-11-30 1993-11-30 Polyphase and multipolar linear motor

Publications (1)

Publication Number Publication Date
JPH07154956A true JPH07154956A (en) 1995-06-16

Family

ID=17869982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29924193A Pending JPH07154956A (en) 1993-11-30 1993-11-30 Polyphase and multipolar linear motor

Country Status (1)

Country Link
JP (1) JPH07154956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198290A (en) * 2000-12-26 2002-07-12 Canon Inc Projection aligner and its maintenance method, device manufacturing method, and semiconductor manufacturing plant
KR100356703B1 (en) * 2000-05-20 2002-10-18 미래산업 주식회사 Apparatus for Assembling Permanent Magnet of Linear Motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356703B1 (en) * 2000-05-20 2002-10-18 미래산업 주식회사 Apparatus for Assembling Permanent Magnet of Linear Motor
JP2002198290A (en) * 2000-12-26 2002-07-12 Canon Inc Projection aligner and its maintenance method, device manufacturing method, and semiconductor manufacturing plant

Similar Documents

Publication Publication Date Title
JP4198787B2 (en) Slotless linear motor and design method thereof
Inoue et al. An approach to a suitable stator length for minimizing the detent force of permanent magnet linear synchronous motors
EP0334645B1 (en) Linear motor and linear driving device employing said linear motor
US6664664B2 (en) Printed circuit linear motor
KR101652842B1 (en) Moving member and linear motor
JP3344645B2 (en) Motor using permanent magnet
US5214323A (en) Linear motor with reduced cogging
US5087844A (en) Linear motor
US6800968B1 (en) Linear motor
JP3944799B2 (en) Linear motor
JP2004297977A (en) Linear motor
JPH07154956A (en) Polyphase and multipolar linear motor
JP3484152B2 (en) Two-phase excitation type linear motor
JPH07143729A (en) Linear motor
JP2002101636A (en) Linear motor
JP3817967B2 (en) Linear motor
JP2682150B2 (en) Linear motor armature
JP2781912B2 (en) Linear motor
JP2003134791A (en) Permanent magnet synchronous linear motor
JP2782830B2 (en) Linear servo motor
JP2677475B2 (en) Linear motor
JP4175076B2 (en) Coreless linear motor
US6646536B2 (en) Single coil of coil unit for linear motor and winding former thereof
JP2923573B2 (en) Linear DC brushless motor
JPS62203549A (en) Linear motion motor