JP2682150B2 - Linear motor armature - Google Patents

Linear motor armature

Info

Publication number
JP2682150B2
JP2682150B2 JP1180980A JP18098089A JP2682150B2 JP 2682150 B2 JP2682150 B2 JP 2682150B2 JP 1180980 A JP1180980 A JP 1180980A JP 18098089 A JP18098089 A JP 18098089A JP 2682150 B2 JP2682150 B2 JP 2682150B2
Authority
JP
Japan
Prior art keywords
coil
armature core
armature
phase
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1180980A
Other languages
Japanese (ja)
Other versions
JPH0345157A (en
Inventor
恭祐 宮本
博文 猪ノ口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP1180980A priority Critical patent/JP2682150B2/en
Publication of JPH0345157A publication Critical patent/JPH0345157A/en
Application granted granted Critical
Publication of JP2682150B2 publication Critical patent/JP2682150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高精度位置決めを必要とする直線移動装置
の駆動用、とくに比較的ロングストロークを必要とする
半導体ウエハ工程の描画や検査などの装置にも有効に用
いられるリニアモータの電機子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is used for driving a linear movement device that requires high-accuracy positioning, and particularly for drawing and inspecting a semiconductor wafer process that requires a relatively long stroke. The present invention relates to an armature of a linear motor that is effectively used in a device.

[従来の技術] 一般的な精密位置決めや搬送に用いられるリニアモー
タは、磁気吸引力またはリップル等を小さくするため、
集中巻や重ね巻コイルを鉄心のギャップ面に配置したギ
ャップワインディング方式のリニアモータが用いられて
いる。
[Prior Art] A linear motor used for general precision positioning and conveyance is designed to reduce magnetic attraction force or ripple.
A gap winding type linear motor in which concentrated winding coils or lap winding coils are arranged on the gap surface of the iron core is used.

また、ブラシレスモータの円筒状電機子巻線におい
て、細い絶縁導線を長いコイル辺をもったコイルに成形
し、このコイル辺を所定の傾斜角で螺旋状に折り曲げ、
平板状にしたものを鉄心表面に巻き付けるようにしたも
のが、特開昭60−216746、特開昭62−244251あるいは特
開昭62−285645に示されている。
Further, in a cylindrical armature winding of a brushless motor, a thin insulated wire is formed into a coil having a long coil side, and the coil side is spirally bent at a predetermined inclination angle,
A plate-shaped product wound around the surface of an iron core is disclosed in JP-A-60-216746, JP-A-62-244251 or JP-A-62-285645.

[本発明が解決しようとする課題] しかるに、ギャップワインディング方式の場合はスロ
ットがないために磁気的ギャップが大きくなり、ギャッ
プ部の磁束密度が小さくなる。
[Problems to be Solved by the Present Invention] However, in the case of the gap winding method, since there is no slot, the magnetic gap becomes large and the magnetic flux density in the gap portion becomes small.

このため、リニアモータのモータ定数が減少し、所要
の推力を発生させる場合に発生損失が大きくなり、この
熱損失によるモータの温度上昇で構成部品の熱膨張を生
じ、その影響が位置精度を低下させる原因になってい
る。
For this reason, the motor constant of the linear motor decreases, and the generated loss increases when the required thrust is generated, and the temperature rise of the motor due to this heat loss causes thermal expansion of the component parts, and the effect reduces the position accuracy. Is causing it.

また、ロングストロークが要求される場合に一般的な
集中巻や重ね巻などのコイルを用いたギャップワインデ
ィング方式を用いると、コイル個数が多く電機子鉄心へ
の取り付けも面倒で製造コストが高くなる欠点があり、
また、螺旋状に折り曲げた巻線を用いれば巻線のコスト
を下げることができるが、磁気的ギャップが小さくなら
ないため推力低下による熱膨張の問題を解決できず、高
精度の位置決めをすることができなかった。
In addition, when a long stroke is required, if the gap winding method that uses a coil such as concentrated winding or lap winding is used, the number of coils is large and it is troublesome to attach to the armature core, resulting in high manufacturing cost. There is
Further, although the cost of the winding can be reduced by using a spirally wound winding, the problem of thermal expansion due to thrust reduction cannot be solved because the magnetic gap does not become small, and highly accurate positioning is possible. could not.

[課題を解決するための手段] 本発明は、この問題を解決するため電機子鉄心に1個
分のコイル辺だけを収納するスロットを所定のスキュー
角で設け、このスロット長さの極数倍のコイル辺を有す
る各相の成形コイルを相数だけ並べて同時に螺旋状に折
り返し、一体に形成された各極コイルを有する平板状の
多相ヘリカル巻線を長さを区間切替長さと一致させて複
数個設けて端部を順次に重ね、連続して電機子鉄心上に
配置させ、この多相ヘリカル巻線の下層のコイル辺を前
記スロットに収納し、上層のコイル辺を電機子鉄心上に
平坦に並べて固着させるようにしてロングストロークの
リニアモータを構成するようにしている。
[Means for Solving the Problem] In order to solve this problem, the present invention provides a slot for accommodating only one coil side in an armature iron core with a predetermined skew angle, and the number of poles times the slot length. Forming coils of each phase having coil sides of 1 are arranged in a spiral shape at the same time and folded back in a spiral shape, and the length of the plate-shaped multi-phase helical winding having each pole coil integrally formed is adjusted to match the section switching length. A plurality of them are provided and the ends are sequentially stacked and continuously arranged on the armature core, the coil side of the lower layer of this polyphase helical winding is housed in the slot, and the coil side of the upper layer is placed on the armature core. A long stroke linear motor is constructed by arranging them flatly and fixing them.

[作用] このため、コイルの製作が簡単になり、電機装荷を変
えることなくギャップを小さくし、空隙磁束密度が大き
くなってモータ定数を増大させる。また、所定の推力を
保持しながら熱損失を低下させることができ、各相コイ
ルのわたり線などがなく接続個所も少なくなり、ロング
ストロークの電機子を容易に製作できる。
[Operation] Therefore, the manufacture of the coil is simplified, the gap is reduced without changing the loading of the electric machine, the air gap magnetic flux density is increased, and the motor constant is increased. Further, the heat loss can be reduced while maintaining a predetermined thrust, there is no crossover wire of each phase coil, the number of connection points is reduced, and a long stroke armature can be easily manufactured.

[実施例] これを図に示す実施例について説明する。[Embodiment] An embodiment shown in this figure will be described.

第1図は本発明の実施例を示す平面図で、1は電機子
鉄心で磁性板を積層形成し、所定角度θでスキューさせ
1個のコイル辺だけを挿入できる大きさのスロット2を
設けており、この電機子鉄心1上に各相の電機子コイル
3(U・V・W)を多相ヘリカル巻線に形成して載置
し、下層のコイル辺をスロット2に収納し、上層のコイ
ル辺を電機子鉄心1上面に平坦に配置して固着してあ
る。
FIG. 1 is a plan view showing an embodiment of the present invention, in which 1 is a magnetic plate laminated with an armature core, and a slot 2 having a size capable of being skewed at a predetermined angle θ and inserting only one coil side is provided. On the armature core 1, the armature coils 3 (U, V, W) of each phase are formed in a multi-phase helical winding and placed, and the coil side of the lower layer is housed in the slot 2 to form the upper layer. The coil sides of are arranged flat on the upper surface of the armature core 1 and fixed.

この電機子鉄心1は第2図に示すように電機子支持板
4に固着されており、ベース5にヨーク板6を介して取
り付けられた界磁永久磁石7に対向させてある。この界
磁永久磁石は、所定の間隔でコイルの軸方向に複数個設
け順次に反対極性に着磁されている。8はベース5上に
電機子支持板4を支持させる静圧気体ガイドである。
The armature core 1 is fixed to the armature support plate 4 as shown in FIG. 2, and is opposed to the field permanent magnet 7 attached to the base 5 via the yoke plate 6. A plurality of the field permanent magnets are provided at predetermined intervals in the axial direction of the coil and are sequentially magnetized with opposite polarities. Reference numeral 8 is a static pressure gas guide for supporting the armature support plate 4 on the base 5.

電機子コイル3は第3図に示すように、絶縁導線11を
両側のコイル辺31・32がほぼ前記電機子鉄心のスロット
2の長さLと所要の極数Pとの積に応じた長さを有する
ように成形し、この長い成形コイルを電機子鉄心1の幅
に合わせて螺旋状に折り返し形成しており、このため第
4図に示す巻型9を用いている。
As shown in FIG. 3, the armature coil 3 has insulated wires 11 whose coil sides 31 and 32 on both sides have a length substantially corresponding to the product of the length L of the slot 2 of the armature core and the required number P of poles. The long forming coil is folded back in a spiral shape in accordance with the width of the armature core 1, and therefore the winding form 9 shown in FIG. 4 is used.

巻型9は、電機子鉄心1のスロット2と同じ角度で傾
斜させた多数の溝21を並行に設けた側板91と、前記スロ
ットと対称的に傾斜させた巻線ガイド22をそなえた側板
92と、この側板91と92間に挟まれ溝21または巻線ガイド
22の深さより大きい厚さをもった中間板93をそなえてお
り、この巻型9に各相U・W・Vの電機子コイル3を並
べ、それぞれの一方のコイル辺31を溝21a・21b・21c
に、他方のコイル辺32を溝21d・21e・21fに挿入し、巻
型側縁で側板92へ折り返して側板92の巻線ガイド22に沿
って他方の側縁に導き、側板91へ折り返してU相コイル
のコイル辺31を溝21gに挿入させ、他の各コイル辺も順
次つぎの溝21に挿入させる。これを繰り返して所定極数
のコイルを形成させ、中間板93を引き抜いて側板91・92
間に隙間をつくり、それぞれの側板を前記隙間によりコ
イル辺から外して引き出し、多相ヘリカル巻線を形成さ
せる。
The winding form 9 includes a side plate 91 having a plurality of grooves 21 parallel to each other and inclined at the same angle as the slot 2 of the armature core 1, and a side plate having a winding guide 22 symmetrically inclined to the slot.
92 and the groove 21 or winding guide sandwiched between the side plates 91 and 92
An intermediate plate 93 having a thickness larger than the depth of 22 is provided, and the winding form 9 is provided with the armature coils 3 of each phase U, W, and V, and one coil side 31 of each one is provided with a groove 21a, 21b.・ 21c
, The other coil side 32 is inserted into the grooves 21d, 21e, 21f, folded back to the side plate 92 at the winding side edge, guided to the other side edge along the winding guide 22 of the side plate 92, and folded back to the side plate 91. The coil side 31 of the U-phase coil is inserted into the groove 21g, and the other coil sides are also sequentially inserted into the next groove 21. By repeating this, a coil with a predetermined number of poles is formed, the intermediate plate 93 is pulled out, and the side plates 91 and 92 are
A gap is created between the side plates, and the side plates are removed from the coil sides by the gap and pulled out to form a polyphase helical winding.

このように形成された多相ヘリカル巻線を電機子鉄心
1上に載置して鉄心側の下層コイル辺をスロット2に挿
入し、上層のコイル辺を電機子鉄心面に押し付けて平坦
にし樹脂含浸などにより固定させる。
The multi-phase helical winding thus formed is placed on the armature core 1, the lower coil side of the iron core is inserted into the slot 2, and the upper coil side is pressed against the armature core surface to flatten the resin. Fix by impregnation.

さらに、第5図に示すように電機子鉄心1を長くし、
前記のように形成した複数個(図では2個)の多相ヘリ
カル巻線3A・3Bを設け、相互にコイル端部33を重ねて順
次に連続させ下層コイル辺をスロットに挿入し、上層コ
イル辺を鉄心面に載置することにより、ロングストロー
クの電機子を構成している。12は各多相ヘリカル巻線の
コントローラで、前記コイル端33に設けられるととも
に、区間切替装置13と接続され、この区間切替装置13に
より一方または両方を制御させるようにしてある。多相
ヘリカル巻線3A・3Bの長さは、区間切替長さと一致する
ため、巻線の結線は容易に行える。
Further, as shown in FIG. 5, the armature core 1 is lengthened,
A plurality of (two in the figure) multi-phase helical windings 3A and 3B formed as described above are provided, the coil ends 33 are overlapped with each other and successively connected, and the lower coil side is inserted into the slot to form the upper coil. A long stroke armature is constructed by placing the sides on the iron core surface. Reference numeral 12 denotes a controller for each multiphase helical winding, which is provided at the coil end 33 and is connected to the section switching device 13 so that one or both of them can be controlled by the section switching device 13. Since the lengths of the multiphase helical windings 3A and 3B match the section switching length, the windings can be easily connected.

[本発明の効果] このように本発明によれば、リニアモータにおけるコ
イルの各相をまとめてスキユー角に応じて螺旋状に折り
返した多相ヘリカル巻線として構成し、電機子鉄心のス
ロットに下層のコイル辺だけを挿入してあるので、コイ
ルの製作工数を減じるとともに、ギャップが小さくなり
磁束密度が増大するので、所要の推力を発生させるため
の電流値を小さくでき、発生損失が少なくなり温度上昇
を押さえて構成部品の熱膨張による誤差を極めて小さく
し、ロングストロークの電機子を簡単に構成することが
でき、高精度の位置決めが可能なリニアモータを得られ
る効果がある。
[Effects of the Present Invention] As described above, according to the present invention, each phase of the coil in the linear motor is collectively configured as a multi-phase helical winding that is folded back in a spiral shape according to the skew angle, and is provided in the slot of the armature core. Since only the coil side of the lower layer is inserted, the number of manufacturing steps of the coil is reduced, the gap is reduced and the magnetic flux density is increased, so the current value for generating the required thrust can be reduced and the generated loss is reduced. There is an effect that the error due to the thermal expansion of the constituent parts can be suppressed by suppressing the temperature rise, a long-stroke armature can be easily configured, and a linear motor capable of highly accurate positioning can be obtained.

さらに、区間切替装置13を、前記コイル端33に設けら
れたコントローラ12に接続しているので、多相ヘリカル
巻線の結線が容易になる効果がある。
Furthermore, since the section switching device 13 is connected to the controller 12 provided at the coil end 33, there is an effect that the connection of the multiphase helical winding is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す平面図、第2図はリニア
モータの断面図、第3図は1相の成形コイル、第4図は
多相ヘリカル巻線の巻型を示す一部斜視図、第5図はロ
ングストロークの構成を示す平面図である。 1は電機子鉄心、2はスロット、3は電機子コイル、31
・32はコイル辺、 9は巻型、61・62は側板、93は中間板、3A・3Bは多相ヘ
リカル巻線、 12はコントローラ、13は区間切換装置である。
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view of a linear motor, FIG. 3 is a one-phase forming coil, and FIG. 4 is a part showing a winding form of a multiphase helical winding. FIG. 5 is a perspective view showing the structure of a long stroke. 1 is an armature core, 2 is a slot, 3 is an armature coil, 31
・ 32 is a coil side, 9 is a winding type, 61 and 62 are side plates, 93 is an intermediate plate, 3A and 3B are multiphase helical windings, 12 is a controller, and 13 is a section switching device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電機子コイルを固定した電機子鉄心と、こ
の電機子鉄心に対向してコイルに接触しないようにギャ
ップを介して設けた界磁永久磁石とをそなえたリニアモ
ータにおいて、 前記電機子鉄心に1個分のコイル辺を収納するスロット
を所定のスキュー角で必要数そなえ、 前記スロット長さの極数倍に相当する長さのコイル辺を
有する各相コイルを、コイル辺相互を並べた状態で各相
コイルを同時にスロット長さに応じてスキユー角で螺旋
状に折り返し、極数に相当する数の極コイルを一体に形
成しかつ長さを区間切替長さと一致させて平板状にした
多相ヘリカル巻線を、複数個設けるとともに、相互のコ
イル端部を重ね、順次に連続して電機子鉄心上に配置
し、前記多相ヘリカル巻線の下層のコイル辺を電機子鉄
心のスロットに収納し、上層のコイル辺を電機子鉄心上
に平坦に配置して固着し、 かつ、前記コイル端部にコントローラを接続するととも
に、前記コントローラに区間切替装置を接続したことを
特徴とするリニアモータの電機子。
1. A linear motor comprising an armature core having an armature coil fixed thereto, and a field permanent magnet provided facing the armature core via a gap so as not to come into contact with the coil. The child iron core is provided with a required number of slots for accommodating one coil side at a predetermined skew angle, and each phase coil having a coil side having a length corresponding to the number of poles of the slot length is connected to each other. In the aligned state, the coils of each phase are folded back at a skew angle according to the slot length at the same time, and the number of pole coils corresponding to the number of poles are integrally formed, and the length is matched with the section switching length to form a flat plate. A plurality of multi-phase helical windings, the coil ends of the coils are overlapped with each other, and are sequentially and continuously arranged on the armature core, and the coil side of the lower layer of the multi-phase helical winding is arranged on the armature core. Stored in the slot An electric motor of a linear motor, in which the coil side of the upper layer is flatly arranged and fixed on the armature core, and a controller is connected to the coil end and a section switching device is connected to the controller. Child.
JP1180980A 1989-07-12 1989-07-12 Linear motor armature Expired - Lifetime JP2682150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180980A JP2682150B2 (en) 1989-07-12 1989-07-12 Linear motor armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180980A JP2682150B2 (en) 1989-07-12 1989-07-12 Linear motor armature

Publications (2)

Publication Number Publication Date
JPH0345157A JPH0345157A (en) 1991-02-26
JP2682150B2 true JP2682150B2 (en) 1997-11-26

Family

ID=16092643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180980A Expired - Lifetime JP2682150B2 (en) 1989-07-12 1989-07-12 Linear motor armature

Country Status (1)

Country Link
JP (1) JP2682150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797988B2 (en) 2004-10-01 2011-10-19 株式会社安川電機 Linear motor system
CN109462320A (en) * 2018-11-02 2019-03-12 安徽大学 Double-layer reverse inclined winding coreless permanent magnet synchronous linear motor
CN112234797A (en) * 2020-09-04 2021-01-15 瑞声新能源发展(常州)有限公司科教城分公司 Linear motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767263B2 (en) * 1986-12-16 1995-07-19 株式会社安川電機 Permanent magnet type synchronous motor

Also Published As

Publication number Publication date
JPH0345157A (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JP3745884B2 (en) Motor structure and manufacturing method thereof
US6919653B2 (en) High performance linear motor and magnet assembly therefor
US8294326B2 (en) Stator for an electric motor
JP4198787B2 (en) Slotless linear motor and design method thereof
WO2007037298A1 (en) Linear motor and method of manufacturing the same
JP2009545940A (en) Force ripple compensation linear motor
JP2009189078A (en) Stator of rotary electric machine, and rotary electric machine
TWI405389B (en) Linear motor with reduced cogging
JPH11299216A (en) Linear motor without slot and its manufacture
JP3360606B2 (en) Linear motor
CN110476340B (en) Linear motor
US6800968B1 (en) Linear motor
JP2682150B2 (en) Linear motor armature
JPWO2002023702A1 (en) Linear motor
JP3944799B2 (en) Linear motor
JP2003009491A (en) Permanent magnet type brushless dc motor
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP2003070226A (en) Linear synchronous motor
JPH11308850A (en) Linear motor
JPH08168229A (en) Linear motor
JP2002034229A (en) Coreless linear motor
JP2002101636A (en) Linear motor
JP3824060B2 (en) Linear motor
JP3819350B2 (en) Electric motor and manufacturing method thereof
JPH10174420A (en) Smooth coil-winding type linear motor