JPH07154935A - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine

Info

Publication number
JPH07154935A
JPH07154935A JP5320913A JP32091393A JPH07154935A JP H07154935 A JPH07154935 A JP H07154935A JP 5320913 A JP5320913 A JP 5320913A JP 32091393 A JP32091393 A JP 32091393A JP H07154935 A JPH07154935 A JP H07154935A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
poles
shaped
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5320913A
Other languages
Japanese (ja)
Inventor
Masabumi Sakamoto
正文 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP5320913A priority Critical patent/JPH07154935A/en
Publication of JPH07154935A publication Critical patent/JPH07154935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a permanent magnet rotating electric machine suitable for drum driving of LBP or the like in which magnetic flux distribution is a sinusoidal, the torque is high and cogging torque can be reduced. CONSTITUTION:In a rotor R1 formed of a cylindrical magnetic body having a hole into which a rotating shaft is inserted in the center, a plurality of U-shaped slits 20 are provided in the periphery of this rotor at equal pitches with non-slit parts facing outward in a radial direction so that the widths (A part) of magnetic body parts between the adjacent U-shaped slits are equal to the widths (B part) of magnetic body parts which are the non-slit part in the U shape, and inside the U-shaped slits U-shaped permanent magnets or bond magnets 21 are provided, so as to magnetize the A parts and B parts of different polarity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,レ−ザ−ビ−ムプリン
タ−(以下LBPと略す)等に特に適した回転振動の少
ない永久磁石型ステッピングモ−タ等の永久磁石式回転
電機の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an improvement of a permanent magnet type rotating electric machine such as a permanent magnet type stepping motor having a small rotational vibration, which is particularly suitable for a laser beam printer (hereinafter abbreviated as LBP). Regarding

【0002】[0002]

【従来の技術】図12〜図15により従来技術の内容・
構成を説明する。 従来例1:図12は従来例1である2相式の永久磁石式
ステッピングモ−タ又はシンクロナスモ−タの構成を示
す斜視図である。同図において,固定子S′は2相を構
成する第1の固定子部分1と第2の固定子部分2より成
り,第1の固定子部分1はその内周側に相互に組み合わ
される櫛歯状の極歯1a,1bとこれらの極歯1a,1
b内に収納される環状コイル1cとより,また,第2の
固定子部分2は同様に極歯2a,2bとこれらの極歯2
a,2b内に収納される環状コイル2cとより構成され
る。ここで,極歯1aと2aは電気角で,例えば90゜
ずれて配置されている。R′は回転子で,この回転子
R′は外周側に円周方向にN,S極が交互に配置される
ように着磁された永久磁石3,中子4,回転子軸5より
構成され,回転子軸5は軸受(図示せず)を介して固定
子S′に支承される。この場合,固定子S′の各相のク
ロ−ポ−ルの分割角ピッチと回転子R′の着磁ピッチ角
は相互に一致するように構成されている。このように,
回転子が永久磁石よりなる多極のステッピングモ−タや
シンクロナスモ−タは,界磁が永久磁石で与えられるた
め,回転界磁型電動機として効率がよく,多極のため,
減速機を使用しないダイレクト負荷駆動等のため広く使
用されている。特に,この構造のステッピングモ−タは
オ−プンル−プ駆動ができ,速度発電機やエンコ−ダ等
が不用で安価なシステムが可能となるため,多く使用さ
れている。なお,このような永久磁石式の回転子磁極の
磁束密度は図15のAに示すように正弦波状となる。こ
の磁束密度の分布特性について,さらに詳述すると,次
の通りである。図12の2相の永久磁石型(以下PM型
という)の構造のものでは,ロ−タがリング状の永久磁
石の外周にN,S交互に磁化されているため,エアギャ
ップの磁束密度の最大値はハイブリッド型(以下HB型
という)より小さいが,エアギャップ内の磁束分布は図
15に示すようにHB型に比べ正弦波状に分布するた
め,鎖交磁束λは高調波成分をあまり含まず,このため
回転トルクに振動成分をあまり含まず,振動の少ない回
転となるもので,これをさらに,数式から解析すると次
のようになる。計算の簡略化のため,2相機でトルクの
式を誘導するが,次の(1)〜(4)式より(5)式
が,また(5)式でθ=ωtとして,(6)式が求めら
れる。なお,ここでλaはa相鎖交磁束,λbはb相鎖交
磁束,φmは鎖交磁束の最大値,k1,k2は夫々定数で
ある。また,iaはa相電流,ibはb相電流,imは電
流の最大値である。 λa=φm〔k1cosθ+k3cos3θ〕 ・・・・・(1) λb=φm〔k1cosθ+k3cos3θ〕 ・・・・・(2) ia=Imcos(ωt+α) ・・・・・(3) ib=Imsin(ωt+α) ・・・・・(4) T=(dλ/dθ)i =φmIm〔k1sin(ωt+α−θ)−3k3sin(ωt+α+3θ)〕 ・・・・・(5) θ=ωtとして T=φmIm〔k1sinα−3k3sin(4θ+α)〕 ・・・・・(6) (6)式の第2項が振動トルクを表わす。永久磁石型の
ものでは,k3=0となることを考えれば,(6)式は
振動成分が消えて,低振動回転モ−タとなるものであ
る。
2. Description of the Related Art The contents of the prior art will be described with reference to FIGS.
The configuration will be described. Conventional Example 1: FIG. 12 is a perspective view showing the structure of a two-phase permanent magnet type stepping motor or a synchronous motor of Conventional Example 1. In the figure, a stator S'comprises a first stator portion 1 and a second stator portion 2 which constitute two phases, and the first stator portion 1 is a comb which is assembled with each other on the inner peripheral side thereof. Tooth-shaped pole teeth 1a, 1b and these pole teeth 1a, 1
The annular coil 1c housed in b, and the second stator part 2 likewise has pole teeth 2a, 2b and these pole teeth 2
It is composed of an annular coil 2c housed in a and 2b. Here, the pole teeth 1a and 2a are arranged at an electrical angle offset by, for example, 90 °. R'is a rotor, and this rotor R'is composed of permanent magnets 3, a core 4, and a rotor shaft 5 which are magnetized so that N and S poles are alternately arranged on the outer peripheral side in the circumferential direction. The rotor shaft 5 is supported by the stator S'via a bearing (not shown). In this case, the split angle pitch of the crow poles of each phase of the stator S'and the magnetized pitch angle of the rotor R'are matched with each other. in this way,
A multi-pole stepping motor or synchronous motor whose rotor is a permanent magnet is efficient as a rotary field type motor because the field is given by a permanent magnet,
It is widely used for direct load drive without a reducer. In particular, stepping motors of this structure are widely used because they can be open-loop driven, do not require speed generators and encoders, etc. and enable inexpensive systems. The magnetic flux density of such a permanent magnet type rotor magnetic pole is sinusoidal as shown in FIG. The distribution characteristics of the magnetic flux density will be described in more detail below. In the two-phase permanent magnet type (hereinafter referred to as PM type) structure shown in FIG. 12, since the rotor is magnetized N and S alternately on the outer periphery of the ring-shaped permanent magnet, the magnetic flux density of the air gap is reduced. The maximum value is smaller than that of the hybrid type (hereinafter referred to as HB type), but the magnetic flux distribution in the air gap is more sinusoidal than that of the HB type as shown in Fig. 15, so the interlinkage magnetic flux λ contains much harmonic components. Therefore, the rotational torque does not include many vibration components, and the rotation is less vibrating. This is further analyzed from the mathematical formula as follows. In order to simplify the calculation, the torque equation is derived by a two-phase machine. From equations (1) to (4) below, equation (5) is obtained, and in equation (5), θ = ωt, and equation (6) is obtained. Is required. Here, λa is the a-phase interlinkage magnetic flux, λb is the b-phase interlinkage magnetic flux, φm is the maximum value of the interlinkage magnetic flux, and k 1 and k 2 are constants, respectively. Further, ia is the a-phase current, ib is the b-phase current, and im is the maximum value of the current. λa = φm [k 1 cos θ + k 3 cos 3θ] (1) λb = φm [k 1 cos θ + k 3 cos 3θ] (2) ia = Imcos (ωt + α) (3) ib = Imsin (ωt + α) (4) T = (dλ / dθ) i = φmIm [k 1 sin (ωt + α−θ) -3k 3 sin (ωt + α + 3θ)] (5) θ = Ωt T = φm Im [k 1 sin α-3k 3 sin (4θ + α)] (6) The second term of the equation (6) represents the vibration torque. Considering that k 3 = 0 in the permanent magnet type, the expression (6) is a low vibration rotation motor in which the vibration component disappears.

【0003】従来例2:図13及び図14は夫々従来例
2に当たる3相3極のHB型のステッピングモ−タを示
すもので,図13は横断側面図及び図14は図13のY
−Y′線における断面図で,多種型の例を示すものであ
る。各図において,6〜8は固定子磁極,6a〜8aは
夫々内面側に設けられた極歯,6c〜8cは夫々励磁コ
イルである。9は永久磁石10を挟着して成る回転子,
11は回転子軸,12はケ−シング,13及び14は軸
受である。なお,このようなHB型の回転子磁極の磁束
密度は図15のBに示すように略矩形波状となる。ま
た,本構成のHB型の回転子では,N極とS極が軸方向
に分離し,凸極の磁歯となっているため,ステ−タとの
エアギャップの磁束分布も凸極磁歯の部分は磁束密度が
均等に強く,凹部は零に近い分布となる。このためロ−
タ磁束のステ−タコイルとの鎖交磁束λには空間高調波
を多く含有することになり,回転トルクに振動成分を含
有するものである。
Conventional Example 2: FIGS. 13 and 14 show a three-phase three-pole HB type stepping motor corresponding to Conventional Example 2. FIG. 13 is a cross-sectional side view and FIG. 14 is Y of FIG.
It is a sectional view taken along the line -Y ', showing various types of examples. In each drawing, 6 to 8 are stator magnetic poles, 6a to 8a are pole teeth respectively provided on the inner surface side, and 6c to 8c are exciting coils. 9 is a rotor formed by sandwiching a permanent magnet 10,
Reference numeral 11 is a rotor shaft, 12 is a casing, and 13 and 14 are bearings. The magnetic flux density of such an HB type rotor magnetic pole has a substantially rectangular wave shape as shown in FIG. 15B. Further, in the HB type rotor of this configuration, the N pole and the S pole are separated in the axial direction to form the magnetic teeth of the convex pole, and therefore the magnetic flux distribution in the air gap with the stator is also the magnetic pole of the convex pole. The magnetic flux density is evenly strong in the area of, and the distribution of recesses is close to zero. For this reason
The interlinkage magnetic flux λ of the rotor magnetic flux with the stator coil contains a large amount of spatial harmonics, and thus the rotational torque contains a vibration component.

【0004】[0004]

【発明が解決しようとする課題】ところで,上述の各従
来例のものでは,次のような問題点があった。従来例1
の場合: 回転子がリング状の永久磁石の外周にN,S交互に磁
化されているため,エアギャップの磁束密度の最大値は
従来例2のHB型より小さいが,エアギャップ内の磁束
分布は図15のようにHB型に比べ正弦波状に分布する
ため,鎖交磁束λは高調波成分及び回転トルクの振動成
分を夫々少ししか含まず,比較的振動の少ない回転とな
る。しかし,本発明が適用用途としているLBP用とし
ては,まだ振動特性の面で十分とはいえない。 HB型のものに比べてトルクは小となる。 2相式のため,ステップ角(分解能)が小さくできな
い。従来例2の場合: 従来例1の永久磁石式のものに比べ,図15に示すよ
うに磁束密度が大となり,トルクが大となる。 しかし,HB型の回転子はN極とS極が軸方向に分離
し,凸極の磁歯となっているため,ステ−タとのエアギ
ャップの磁束分布も凸極磁歯の部分は磁束密度が均等に
強く,凹部は零に近い分布となる。このため回転子磁束
のステ−タコイルとの鎖交磁束λには空間高調波を多く
含有することになる。したがって,回転トルクに振動成
分を含有する。本発明は,従来のものの上記課題(問題
点)を解決するようにした永久磁石式回転電機を提供す
ることを目的とする。
By the way, the above-mentioned conventional examples have the following problems. Conventional example 1
Case: Since the rotor is magnetized N and S alternately on the outer circumference of the ring-shaped permanent magnet, the maximum value of the magnetic flux density in the air gap is smaller than that of the HB type in Conventional Example 2, but the magnetic flux distribution in the air gap 15 has a sinusoidal distribution as compared with the HB type as shown in FIG. 15, the interlinkage magnetic flux λ contains a harmonic component and a rotational torque vibration component, respectively, so that the rotation is relatively small. However, it cannot be said that the vibration characteristics are still sufficient for the LBPs to which the present invention is applied. The torque is smaller than that of the HB type. Since it is a two-phase type, the step angle (resolution) cannot be reduced. In the case of Conventional Example 2: Compared with the permanent magnet type of Conventional Example 1, the magnetic flux density becomes large and the torque becomes large as shown in FIG. However, in the HB type rotor, the north pole and the south pole are separated in the axial direction and are magnetic poles of the convex pole. Therefore, the magnetic flux distribution in the air gap between the stator and the magnetic pole of the convex pole is also magnetic flux. The density is even and strong, and the recesses have a distribution close to zero. Therefore, the interlinkage magnetic flux λ of the rotor magnetic flux with the stator coil contains a large amount of spatial harmonics. Therefore, the rotational torque contains a vibration component. An object of the present invention is to provide a permanent magnet type rotating electric machine that solves the above-mentioned problems (problems) of conventional ones.

【0005】[0005]

【課題を解決するための手段】本発明の永久磁石式回転
電機は,上記課題を解決するために中心に回転軸が貫通
する穴を有する円筒形状の磁性体より成る回転子におい
て,その外周に近接してU字形のスリットを複数個,等
ピッチで非スリット部が半径方向に外向きで,隣接する
U字形スリット間の磁性体部の幅(A部)とU字内の非
スリット部である磁性体部の幅(B部)を略等しく配置
し,上記のU字形スリット内にはU字形永久磁石又はボ
ンド磁石を充填して,A部とB部を異極性となるように
磁化した回転子を備えた構成とした。この場合,複数個
のU字形スリットに,永久磁石を内蔵した円筒形状磁性
体2個を互いに180゜/Zずらした位置で,その厚み
方向に2極磁化したプレ−ト状永久磁石を挟持して,上
述のU字形スリット部の永久磁石によるA部とB部の極
性と挟持された上記プレ−ト状永久磁石によるA部,B
部の各々の磁極性が一致するように,スリット部永久磁
石を磁化してなる回転子を備えた構成とするのが望まし
い。但し,Zは極歯の数である。また,U字形スリット
部に永久磁石を備えない構成としても良い。また,外周
側又は内周側の少なくとも一方が細幅部で連結した2Z
個のスリットを放射状に等ピッチで設けた外径2rの略
円筒状の磁性体より成り,2Z個のスリットのスリット
部にはボンド磁石又は永久磁石を充填し,2Z個のスリ
ットにより形成される2Z個の磁性体で成るポ−ル部の
半径方向長をaとし,nを1以上の正の整数,m=1又
は2又は3,k=1又は2とし,a≧πr/2Zであ
り,Z=m(3n±1)又はZ=k(4n±1)又はZ
=k(5n±2)を満たし,かつ,2Z個の上記ポ−ル
部が交互にその外周で異極性に磁化されるように構成す
ることもできる。この場合,上記円筒状磁性体におい
て,その中心部の穴部にその回転軸方向長が円筒形状磁
性体と略等しい永久磁石を装入し,2Z個のスリット部
にも永久磁石が充填され,円筒形状磁性体の両端に中心
穴部に装入した永久磁石と共に密着させるように,その
半径方向に放射状で各々の形状が円筒形状磁性体の2Z
個のポ−ル形状に略同形状としたZ個のポ−ルを等ピッ
チで設けた磁性体を2個互いにそのZ個のポ−ルピッチ
の1/2ずらして配置し,それらの各々のZ個のポ−ル
が上記円筒形状磁性体の2Z個のポ−ル部と1個おきに
重なるようにし,回転軸方向に2極磁化した構成とする
ことが望ましい。また,図4に示すように,外周が細部
で連結した2Z個のポ−ルの円筒状磁性体に永久磁石を
その中空部に設け,前項で述べた半径方向にZ個のポ−
ルを持った磁性体を互いにZ個のポ−ルの1/2ピッチ
(180゜/Z)ずらして,そのポ−ルが円筒状磁性体
の2Z個のポ−ルと1個おきに重なるように密着させ,
そのZ個のポ−ルを持つ磁性体の各々に略円板状永久磁
石を同心的に固着させ,更に該永久磁石の各々に円板状
磁性体ヨ−クを固着させ該ヨ−ク同士を磁性体より成る
回転軸で連結し,少なくとも回転軸方向に磁化すること
が望ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a permanent magnet type rotating electric machine according to the present invention is a rotor made of a cylindrical magnetic body having a hole through which a rotating shaft passes, and the rotor has an outer periphery. A plurality of U-shaped slits adjacent to each other, the non-slit portion is radially outward at an equal pitch, and the width of the magnetic body portion (A portion) between adjacent U-shaped slits and the non-slit portion in the U-shape The width of a certain magnetic material portion (B portion) is arranged substantially equal, and a U-shaped permanent magnet or a bonded magnet is filled in the U-shaped slit to magnetize the A portion and the B portion so as to have different polarities. It is configured to include a rotor. In this case, two U-shaped slits sandwich two plate-shaped permanent magnets, which are magnetized in the thickness direction, at the positions where two cylindrical magnetic bodies with built-in permanent magnets are offset from each other by 180 ° / Z. And the polarities of the portions A and B formed by the permanent magnets in the U-shaped slit portion and the portions A and B formed by the plate-shaped permanent magnets sandwiched therebetween.
It is desirable to have a rotor provided by magnetizing the slit permanent magnets so that the magnetic polarities of the respective parts match. However, Z is the number of pole teeth. Further, the U-shaped slit portion may not have a permanent magnet. In addition, 2Z in which at least one of the outer peripheral side and the inner peripheral side is connected by a narrow portion
It is composed of a substantially cylindrical magnetic body having an outer diameter 2r in which the slits are radially provided at equal pitches, and the slit portions of the 2Z slits are filled with bond magnets or permanent magnets and are formed by the 2Z slits. Let a be the radial length of the pole portion composed of 2Z magnetic materials, n be a positive integer of 1 or more, m = 1 or 2 or 3, k = 1 or 2, and a ≧ πr / 2Z , Z = m (3n ± 1) or Z = k (4n ± 1) or Z
= K (5n ± 2) is satisfied, and the 2Z pieces of the pole portions may be alternately magnetized to have different polarities on the outer circumference thereof. In this case, in the cylindrical magnetic body, a permanent magnet whose length in the rotation axis direction is substantially equal to that of the cylindrical magnetic body is inserted in the hole at the center of the cylindrical magnetic body, and 2Z slits are also filled with the permanent magnet. The 2Z shape of the cylindrical magnetic body is radial in the radial direction so that both ends of the cylindrical magnetic body are closely attached together with the permanent magnets inserted in the central holes.
Two magnetic bodies having Z poles of substantially the same shape as the poles of the same shape and arranged at an equal pitch are arranged so as to be offset from each other by ½ of the pitch of the Z poles. It is desirable that the Z poles are arranged so as to overlap with the 2Z pole portions of the cylindrical magnetic body every other pole, and the poles are magnetized in the rotation axis direction. Further, as shown in FIG. 4, a permanent magnet is provided in the hollow portion of a cylindrical magnetic body of 2Z poles whose outer periphery is connected in detail, and Z poles in the radial direction described in the previous section are provided.
The magnetic body with the poles is displaced from each other by ½ pitch (180 ° / Z) of Z poles, and the poles are overlapped with the 2Z poles of the cylindrical magnetic body every other one. So that
A substantially disk-shaped permanent magnet is concentrically fixed to each of the magnetic bodies having the Z poles, and a disk-shaped magnetic yoke is further fixed to each of the permanent magnets. It is desirable that they are connected by a rotating shaft made of a magnetic material and magnetized at least in the rotating shaft direction.

【0006】[0006]

【作用】上述のような構成においては,外周上の磁極幅
よりもU字状スリットの半径方向の2個のスリット部の
長さの和を大きくとると,その半径方向のスリット部に
充填された永久磁石(ボンド磁石)から発生する磁束が
外周上の磁極に集まるため,そのスリットの半径方向の
長さの和を十分大きくとれば,磁極の磁束密度を従来の
HB型のように大きくできる。しかも,N極とS極が交
互に配置されるため,N極とS極の近接部では磁束密度
が零となって反転していくため,HB型に比べて正弦波
に近い形の分布となり,モ−タ回転時,低振動化に有利
となる。又,HB型のものは,回転子軸方向に固定子鉄
心内を磁束が通過するいわゆる3次元磁路となるから,
磁気抵抗が大きくなるのに対し,本発明による永久磁石
式回転電機は,回転子のN極から出た磁束は回転子軸に
垂直な平面内で固定子コイルと鎖交した後,回転子のS
極へ戻れる。従って,HB型のものに比べ,磁路長も短
くなり,積層鉄板を回転軸方向に磁束が通らなくて良い
ため,磁気抵抗も小さくなる。又,回転子から見た固定
子磁歯との対向面積もN極及びS極が固定子の全長に亙
って対向できるため,トルクも増大する。なお,HB型
のものでは約1/2の長さで回転子磁歯の半ピッチずれ
ている。
In the above structure, when the sum of the lengths of two U-shaped slits in the radial direction is larger than the magnetic pole width on the outer circumference, the radial slits are filled. Since the magnetic flux generated from the permanent magnet (bonded magnet) collects on the magnetic poles on the outer circumference, the magnetic flux density of the magnetic poles can be increased as in the conventional HB type by making the sum of the radial lengths of the slits sufficiently large. . Moreover, since the N poles and the S poles are alternately arranged, the magnetic flux density becomes zero in the vicinity of the N poles and the S poles, and the magnetic poles are inverted, so that the distribution is closer to a sine wave than the HB type. , It is advantageous in reducing vibration when the motor is rotating. The HB type is a so-called three-dimensional magnetic path in which magnetic flux passes through the stator core in the axial direction of the rotor.
While the magnetic resistance increases, in the permanent magnet type rotating electric machine according to the present invention, the magnetic flux emitted from the N pole of the rotor is linked to the stator coil in a plane perpendicular to the rotor axis, and then the rotor is rotated. S
You can return to the pole. Therefore, the magnetic path length is shorter than that of the HB type, and the magnetic flux does not have to pass through the laminated iron plate in the rotation axis direction, so the magnetic resistance is also small. Further, the facing area of the rotor magnetic teeth as viewed from the rotor is also increased because the N pole and the S pole can face each other over the entire length of the stator. In the HB type, the rotor magnetic teeth are displaced by a half pitch by about ½ length.

【0007】[0007]

【実施例】以下図1〜図11に示す各実施例により本発
明を具体的に説明する。 実施例1:図1乃至図2により本発明の実施例1の構成
について説明する。図1は実施例1の回転子をとり出し
て示した横断面図で,同図に示すように,回転子R1は
磁性体より成る薄い電磁鉄板をプレスで打ち抜き回転子
とするか,鉄粉を焼結等で一体成形で作れるが,中心に
回転軸が貫通できる穴を有した円筒形状の磁性体より成
る回転子であって,その外周に近接して放射状に2Z
個,等ピッチでスリット19a1〜19anを設け,1個
おきに適当な長さ(深さ)でこれらのスリットを連結し
てZ個のU字状のスリット20を形成し,これらのZ個
のU字状スリット20にボンド磁石21を充填して,U
字状の内側と外周で囲まれる磁性体部AとU字スリット
20が隣接する時のU字間同士の幅部の磁性体Bを各々
その外周部において異極性になるように磁化すること
で,N極とS極がその外周で交互にZ対数を有する永久
磁石式回転電機とするものである。本発明の構造によれ
ば,その外周長を2Zで割った長さ,すなわち磁極幅よ
りもU字スリットの半径方向の2個のスリット部長さの
和を大きく取ることで磁極の磁束密度を永久磁石そのも
のの磁束密度以上にすることができる。なお,U字状ス
リット20には,U字状のボンド磁石に代えて永久磁石
を装着するようにしても良い。図2は固定子Sに対して
エアギャップを隔てて,図1に示した回転子R1を組み
込んで構成した実施例1の永久磁石型回転電機を示すも
ので,固定子Sは従来のHB型ステッピングモ−タで回
転子の歯数がZ個と組み合わされるものなら同じものが
使用できる。したがって,ケ−シング12,軸受13,
14は図14のものと同一の符号を付して示した。
EXAMPLES The present invention will be described in detail with reference to the examples shown in FIGS. Example 1 The configuration of Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing the rotor of Example 1 taken out. As shown in FIG. 1, the rotor R1 is a thin electromagnetic iron plate made of a magnetic material, which is punched out by a press or is made of iron powder. It is a rotor made of a cylindrical magnetic body with a hole through which the rotating shaft can penetrate, which can be made by integral molding such as sintering.
The slits 19a 1 to 19an are provided at equal pitches, and every other slit is connected with an appropriate length (depth) to form Z U-shaped slits 20. The U-shaped slit 20 is filled with the bond magnet 21,
By magnetizing the magnetic material portion A surrounded by the inside and the outer periphery of the character shape and the magnetic material B in the width portion between the U-shaped portions when the U-shaped slit 20 is adjacent so as to have different polarities at the outer peripheral portions thereof. , N poles and S poles have Z logarithms alternately on their outer circumferences to form a permanent magnet type rotary electric machine. According to the structure of the present invention, the magnetic flux density of the magnetic pole is made permanent by taking the length obtained by dividing the outer peripheral length by 2Z, that is, the sum of the two slit lengths in the radial direction of the U-shaped slit is larger than the magnetic pole width. It can be made higher than the magnetic flux density of the magnet itself. A permanent magnet may be attached to the U-shaped slit 20 instead of the U-shaped bond magnet. FIG. 2 shows a permanent magnet type rotary electric machine according to a first embodiment, which is configured by incorporating the rotor R1 shown in FIG. 1 into the stator S with an air gap therebetween. The stator S is a conventional HB type. The same stepping motor can be used as long as the number of teeth of the rotor is combined with Z. Therefore, the casing 12, the bearing 13,
14 is designated by the same reference numeral as that of FIG.

【0008】実施例2:本実施例のものは,図3に示す
ように構成される。即ち,図1に示した回転子R1と同
一構造の2個の回転子素子15a,15bを,互いに1
80゜/Z度ずらして配置し,その中間に2極磁化した
円板状永久磁石16をサンドイッチ状に挟んで,回転軸
で連結した回転子R2を図2と同じ固定子Sと組み合わ
せて構成したものである。本実施例のものは,実施例1
の構成による効果と従来のHB型のものによる更なる磁
力の補強とが期待できる。即ち,本実施例のものでは,
2極磁化した円板状永久磁石16の外周にその内容が嵌
合し,その外径は回転子外径以下で,その厚みは上述の
2極磁石の厚みと同じ磁性体で,ラジアル方向に等ピッ
チの2Z個のスリットを持ち,その外径又は内径で細部
で連結している磁性体にてスリット位置を合わせて図3
に示す2つの回転子素子15a,15bを磁気的に連結
すると,HB型のものの2極磁化の永久磁石16の磁束
が回転子R2の全体にとどくことになり,しかもU字型
に永久磁石が入っているので,N極とS極間の漏洩磁束
も少ない強力なN,S交互磁化回転子となるものであ
る。
Second Embodiment: The second embodiment is constructed as shown in FIG. That is, two rotor elements 15a and 15b having the same structure as the rotor R1 shown in FIG.
The rotor R2, which is arranged with a shift of 80 ° / Z degrees, sandwiches a disk-shaped permanent magnet 16 magnetized with two poles in the middle, and is connected by a rotary shaft, is combined with the same stator S as in FIG. It was done. In this embodiment, the first embodiment
It can be expected that the effect of the above configuration and the further reinforcement of the magnetic force by the conventional HB type are achieved. That is, in the present embodiment,
The content is fitted to the outer circumference of the two-pole magnetized disk-shaped permanent magnet 16, the outer diameter of which is equal to or smaller than the outer diameter of the rotor, and the thickness of which is the same magnetic body as the thickness of the two-pole magnet described above in the radial direction. It has 2Z slits of equal pitch, and the slits are aligned with the magnetic material that is connected in detail by its outer diameter or inner diameter.
When the two rotor elements 15a and 15b shown in FIG. 2 are magnetically connected, the magnetic flux of the HB type permanent magnet 16 of the two-pole magnetization reaches the entire rotor R2, and the U-shaped permanent magnet 16 Since it is included, it becomes a strong N, S alternating magnetization rotor with little leakage flux between the N and S poles.

【0009】実施例3:本実施例のものは図4に示すよ
うに,回転子を磁性鉄板に菊花状に2Z個(この場合,
Z=4)のスリット17a1〜17a8が設けられ,その
外周が細部で連結したもので,スリットにはプラスチッ
クマグネット等の永久磁石18a1〜18a8が充填され
て回転子R3が構成される。この時,外径を2r,回転
子軸方向の長さをLとし,2Z個のスリットでできる2
Z個(この場合,n=4で8個)の半径方向の長さをa
とすると,a≧πr/2Zの関係を満たし,上記の2Z
個のポ−ルの外周部をN極,S極交互に磁化する。回転
子外周のポ−ルである磁極幅は2πrL/2Zであり,
スリット部磁石の法線と直角方向の面積はaLであり,
両サイドの磁石から磁束が発生して2πrL/2Zに磁
束を充分集中させるためには2aL≧2πrL/2Zで
あれば良く,a≧πr/2Zとなる。図5に示す回転子
R3′は,図4に示す回転子R3においてポ−ルは略同
形状であるが,その内周が細幅部19で連結するように
変形したもので,このように構成しても,N,S交互磁
石となり得る。実施例の回転子はクロ−ポ−ル型固定子
のいわゆる永久磁石型ステッピングモ−タ(図8)には
有効な回転子であるが,従来のHB型ステッピングモ−
タの固定子と組み合せて使用することもできる。この場
合,2相ステッピングモ−タの場合には,次の(数1)
で示される(7)式の関係が成立する。
Embodiment 3: In this embodiment, as shown in FIG. 4, 2Z rotors are arranged on a magnetic iron plate in a chrysanthemum pattern (in this case,
Z = 4) slits 17a 1 ~17a 8 is provided for, in which the outer periphery is connected by detail, the rotor R3 is constituted permanent magnets 18a 1 ~18a 8 such as a plastic magnet is filled in the slit . At this time, the outer diameter is 2r, the length in the axial direction of the rotor is L, and 2Z slits are formed.
Let Z (in this case, 8 with n = 4) radial length be a
Then, the relation of a ≧ πr / 2Z is satisfied, and the above 2Z
The outer circumferences of the individual poles are magnetized in alternating N and S poles. The pole width on the outer circumference of the rotor is 2πrL / 2Z,
The area perpendicular to the normal of the slit magnet is aL,
In order to generate magnetic flux from the magnets on both sides and concentrate the magnetic flux in 2πrL / 2Z sufficiently, it is sufficient that 2aL ≧ 2πrL / 2Z, and a ≧ πr / 2Z. The rotor R3 'shown in FIG. 5 has the same shape as that of the rotor R3 shown in FIG. 4, but its inner circumference is modified so as to be connected by the narrow portion 19. Even if configured, it can be an N, S alternating magnet. The rotor of the embodiment is an effective rotor for a so-called permanent magnet type stepping motor (FIG. 8) of a cropole type stator, but it is a conventional HB type stepping motor.
It can also be used in combination with the stator of the rotor. In this case, in the case of a two-phase stepping motor,
The relationship of the equation (7) shown by is established.

【数1】 また,3相ステッピングモ−タの場合には,次の(数
2)で示される(8)式の関係が成立する。
[Equation 1] Further, in the case of a three-phase stepping motor, the relationship of the equation (8) shown in the following (Equation 2) is established.

【数2】 さらに,5相ステッピングモ−タの場合には,次の(数
3)で示される(9)式の関係が成立する。
[Equation 2] Furthermore, in the case of a 5-phase stepping motor, the relationship of the equation (9) shown in the following (Equation 3) is established.

【数3】 上記(7)〜(9)式にはその2Zとの関係式を示した
が,いずれも左辺がステップ角を右辺の第1項は固定子
の主極の成す角,第2項はその主極に最も近い回転子磁
歯の位置であり,右辺もステップ角を表わす。この
(7)〜(9)式を整理すると,Z=m(3n±1) 又はZ=k(4n±1)又はZ=k(5n±2)とな
り,このZの関係式を満たすことが必要となる。4相ス
テッピングモ−タは2相機でのZの式に一部含まれる。
ここで,nは1以上の正の整数,mは1又は2又は3,
kは1又は2とする。
[Equation 3] In the above equations (7) to (9), the relational expression with 2Z is shown. In all of them, the left side is the step angle, the first term on the right side is the angle formed by the main pole of the stator, and the second term is the main It is the position of the rotor magnetic tooth closest to the pole, and the right side also represents the step angle. When these equations (7) to (9) are arranged, Z = m (3n ± 1) or Z = k (4n ± 1) or Z = k (5n ± 2), and this relational expression of Z can be satisfied. Will be needed. The 4-phase stepping motor is partly included in the equation of Z in the 2-phase machine.
Here, n is a positive integer of 1 or more, m is 1 or 2 or 3,
k is 1 or 2.

【0010】次に,図1又は図4なる回転子を固定子と
組み合わせた時の磁路について説明する。本発明による
図1又は図4に示す回転子は,図12に示す従来技術で
あるPM型ステッピングモ−タの回転子の代わりにPM
型の固定子と組み合わせることで従来のPM型ステッピ
ングモ−タより大きなトルクが期待できる構成としたも
のである。それは前述したように,磁極に永久磁石の磁
束を集中させることで磁束密度を永久磁石そのものの磁
束密度より高くできるためである。PM型の固定子はク
ロ−ポ−ル型であるため,例えば図4に示す回転子と組
み合わせてもそのN極から出た磁束はクロ−ポ−ルの固
定子磁路を通ってすぐ隣接のS極にもどれるので極めて
有効である。しかし,従来のHB型ステッピングモ−タ
の固定子と組み合わせる場合は,N極から出た磁束は,
例えば図7に示すように固定子磁路を通った後,必ずし
も隣接のS極へもどれるとは限らないため,図4の構造
の場合は磁路が開く場合があり,その場合効率は低下す
る。図1の構造のものではPM型は当然有効であるが,
HB型固定子でも図6に示すように磁路は必ず一点鎖線
で示したように閉磁路となるため,極めて利用範囲の広
い発明といえる。なお,図1,図6,図7に示す各回転
子はZ=16とした場合の例である。
Next, a magnetic path when the rotor shown in FIG. 1 or 4 is combined with a stator will be described. The rotor shown in FIG. 1 or FIG. 4 according to the present invention is a conventional PM type stepping motor shown in FIG.
By combining it with a die type stator, a larger torque than that of the conventional PM type stepping motor can be expected. This is because, as described above, the magnetic flux density can be made higher than that of the permanent magnet itself by concentrating the magnetic flux of the permanent magnet on the magnetic poles. Since the PM type stator is a cropole type, even if it is combined with the rotor shown in FIG. 4, for example, the magnetic flux generated from the N pole of the PM type stator immediately passes through the stator magnetic path of the cropole. It is extremely effective because it can be returned to the S pole. However, when combined with the stator of the conventional HB type stepping motor, the magnetic flux from the N pole is
For example, as shown in FIG. 7, after passing through the stator magnetic path, the magnetic pole does not always reach the adjacent S pole. Therefore, in the case of the structure of FIG. 4, the magnetic path may open, in which case the efficiency decreases. . The PM type is naturally effective in the structure of FIG. 1, but
Even in the HB type stator, the magnetic path is always a closed magnetic path as shown by the alternate long and short dash line as shown in FIG. The rotors shown in FIGS. 1, 6 and 7 are examples when Z = 16.

【0011】実施例4:図8は本発明の実施例4の構成
を示す縦断正面図,図9は図8の各構成要素の分解斜視
図である。本実施例のものは図1に示す実施例1のロ−
タ21の両サイドに,外周方向にZ個のポ−ルを持った
磁束分配板22又は23を,そのポ−ル形状が図4の2
Z個のポ−ル形状にほぼ同寸としたものを設け,図9に
示すように2個の磁束分配板22又は23をそのZ個の
ポ−ルピッチの1/2ずらして,図1のロ−タの2Z個
のポ−ルに密着させ,非磁性体より成るロ−タ軸24等
で固定し,軸方向に2極磁化してロ−タとするものであ
る。なお,磁束分配板23は1枚の鉄板を部分的に半抜
して形成したものである。図9ではロ−タ21を構造の
相違する磁束分配板22と磁束分配板23で挟むように
構成した場合を図示したが,ロ−タ21を同一の2個の
磁束分配板22又は磁束分配板23で挟むように構成し
ても良い。その働きは,永久磁石が回転軸方向に2極磁
化され,上記の磁束分配板22又は23で永久磁石の磁
束を受けたものを,Z個のポ−ルで2Z個のポ−ルの1
個おきに,N極とS極となるように磁束を2Z個の磁性
体ロ−タヨ−クの両側より分配供給するものである。こ
の時,2Z個のスロット間の永久磁石は回転軸方向に磁
化されているため,2Z個のポ−ル間での漏洩はある程
度防ぐことができる。図8の本発明品ロ−タを軸方向に
磁化した後,2Z個間のスロット部の永久磁石(マグネ
ット)のみラジアル磁化される程度の着磁電流にてラジ
アル磁化を追加すると,2Z個のスロット間磁石はラジ
アル方向に,又ロ−タ中心部の磁石はアキシャル方向に
磁化されたままなので,2Z個の磁性体の漏洩も防ぐこ
とができ,強力なロ−タの磁極が形成される。なお,実
開平3−124772号公報に示す先行技術では,2枚
の櫛歯ロ−タヨ−クを組み合わせプラスチックマグネッ
トを充填する案が示されているが,櫛歯ヨ−クはその構
造よりその軸方向に曲げられてロ−タ外周で磁歯となる
部分の厚みは板厚で決まり,その櫛歯幅は極数が増えた
場合細くなり,全体にポ−ルは針金状となり,先端まで
永久磁石の磁束を送るには磁気抵抗が高くなり,高トル
クは期待できない。本発明のものでは,図4で示したa
を適切に選べばこの問題は解決できる。又櫛歯では多極
となった時,ポ−ルが針金状のためその位置精度が曲が
りのため良く出ないという問題もある。本発明は鉄板を
プレスで抜くので精度は良い。
Embodiment 4 FIG. 8 is a vertical cross-sectional front view showing the construction of Embodiment 4 of the present invention, and FIG. 9 is an exploded perspective view of the respective components of FIG. This embodiment is the same as the embodiment 1 shown in FIG.
A magnetic flux distribution plate 22 or 23 having Z poles in the outer peripheral direction is provided on both sides of the rotor 21, and the pole shape is 2 in FIG.
By providing Z poles of approximately the same size, as shown in FIG. 9, the two magnetic flux distribution plates 22 or 23 are shifted by ½ of the Z pole pitches, and The rotor is brought into close contact with 2Z poles of the rotor, fixed with a rotor shaft 24 made of a non-magnetic material, and magnetized in the axial direction to form a rotor. The magnetic flux distribution plate 23 is formed by partially cutting out one iron plate. FIG. 9 shows a case where the rotor 21 is sandwiched between the magnetic flux distribution plate 22 and the magnetic flux distribution plate 23 having different structures, but the rotor 21 is composed of two identical magnetic flux distribution plates 22 or magnetic flux distribution plates. It may be configured to be sandwiched between the plates 23. The function is that the permanent magnet is magnetized in two poles in the direction of the rotation axis and the magnetic flux distribution plate 22 or 23 receives the magnetic flux of the permanent magnet.
The magnetic flux is distributed and supplied from both sides of the 2Z magnetic material rotor yokes so that the magnetic flux becomes N-pole and S-pole every other piece. At this time, since the permanent magnets between the 2Z slots are magnetized in the rotation axis direction, leakage between the 2Z polls can be prevented to some extent. After axially magnetizing the rotor of the present invention shown in FIG. 8, if radial magnetization is added by a magnetizing current such that only permanent magnets (magnets) in the slot portion between 2Z pieces are radially magnetized, 2Z pieces are obtained. Since the magnets between slots are magnetized in the radial direction and the magnet in the center of the rotor is magnetized in the axial direction, leakage of 2Z magnetic materials can be prevented and a strong magnetic pole of the rotor is formed. . The prior art disclosed in Japanese Utility Model Laid-Open No. 3-124772 proposes a combination of two comb-tooth rotor yokes and filling a plastic magnet. The thickness of the part that becomes the magnetic teeth on the outer circumference of the rotor after being bent in the axial direction is determined by the plate thickness, and the width of the comb teeth becomes thinner when the number of poles increases, and the pole becomes wire-like overall and extends to the tip. The magnetic resistance increases to send the magnetic flux of the permanent magnet, and high torque cannot be expected. In the present invention, a shown in FIG.
If you choose properly, this problem can be solved. Further, there is a problem in that when the comb teeth have multiple poles, the position accuracy is not good because the pole is wire-shaped and the position accuracy is curved. In the present invention, the iron plate is punched out by a press, so the accuracy is good.

【0012】実施例5:図10,図11は夫々本発明の
実施例5の構成を示す縦断正面図及び分解斜視図であ
る。図1の2Z個の磁性体で挟持されたスロット部は,
プラスチックマグネット等の永久磁石を充填してなる回
転体25の両サイドに図10及び図11に示すように,
磁束分配板26a,26bを図9と同じ位置関係で1/
2ピッチずらして密着させ,その外側両サイドに薄厚の
ネオジウム等の永久磁石27a,27bを配置し,更に
その外側両サイドに磁性体28a,28bを密着させ,
この磁性体を磁性体回転軸29で上記の2Z個のポ−ル
の内径空洞部で連結してから,2極に磁化することによ
り2枚の永久磁石の磁束が各々N極,S極となるように
2n個のポ−ルを1個おきに磁化して,図8と同じ効果
が得られる。2個の永久磁石27a,27bは磁性体回
転軸29によって固定子を含む磁路を形成し,強力な磁
界が作れる。図10,図11の構成において,磁束分配
板26a(26b)と永久磁石27a(27b)の間に
磁性体28a(28b)のような磁性板を入れると,更
に強力な磁界が作れる。
Embodiment 5: FIG. 10 and FIG. 11 are a longitudinal sectional front view and an exploded perspective view showing the construction of Embodiment 5 of the present invention, respectively. The slot part sandwiched by 2Z magnetic bodies in FIG.
As shown in FIG. 10 and FIG. 11, on both sides of the rotating body 25 filled with a permanent magnet such as a plastic magnet,
The magnetic flux distribution plates 26a and 26b are 1 /
Two pitches are closely contacted to each other, thin permanent magnets 27a and 27b of neodymium or the like are arranged on both outer sides thereof, and magnetic bodies 28a and 28b are further closely contacted to both outer sides thereof,
This magnetic material is connected by the magnetic material rotation shaft 29 at the inner diameter hollow portions of the above 2Z poles, and then magnetized into two poles so that the magnetic fluxes of the two permanent magnets become the north pole and the south pole, respectively. By magnetizing every other 2n poles, the same effect as in FIG. 8 can be obtained. The two permanent magnets 27a and 27b form a magnetic path including the stator by the magnetic body rotation shaft 29, and a strong magnetic field can be created. In the configuration of FIGS. 10 and 11, if a magnetic plate such as the magnetic body 28a (28b) is inserted between the magnetic flux distribution plate 26a (26b) and the permanent magnet 27a (27b), a stronger magnetic field can be created.

【0013】本発明の上述した各実施例を示した図1〜
図11のロ−タは,従来のPM型2相機であるクロ−ポ
−ルステ−タをボビン巻きし,フェライト等の円筒リン
グコイルの外周をN,S極交互にZ対数に着磁したロ−
タの代わりとして使用すれば,従来のPM型モ−タより
高トルクとなり得るが,上述したこのPM型2相機のク
ロ−ポ−ルは櫛歯状ポ−ルを曲げてステ−タ内径とする
ため,曲げたポ−ルのスプリングバックの影響でエアギ
ャップの均一性は良くなく,そのため振動等で不利であ
る。これに対し,ステ−タを図6に示すように従来のH
B型ステ−タとし,本発明ロ−タと組み合わせるとエア
ギャップも均一になり本発明の真価が更に発揮される。
1 to 3 showing the above-mentioned embodiments of the present invention.
The rotor shown in FIG. 11 is a rotor in which a conventional PM type two-phase machine, a cropole stator, is wound around a bobbin, and the outer circumference of a cylindrical ring coil made of ferrite or the like is magnetized into Z logarithms alternately with N and S poles. −
If it is used as a substitute for the motor, the torque can be higher than that of the conventional PM type motor. However, in the above-mentioned PM type two-phase machine, the claw pole is formed by bending the comb tooth-shaped pole and the inner diameter of the stator. Therefore, the uniformity of the air gap is not good due to the effect of the spring back of the bent pole, which is disadvantageous for vibrations and the like. On the other hand, as shown in FIG.
When the B-type stator is combined with the rotor of the present invention, the air gap becomes uniform, and the true value of the present invention is further exhibited.

【0014】図15は従来のHB型と本発明の例えば図
1の1磁極の永久磁石からの磁束密度を比較した概略図
であり,HB型のものは磁束密度が図15のBに示すよ
うに矩形波となるのに対し,本発明のN極,S極交互型
のものでは,同図Aに示すように正弦波状となることが
示されている。
FIG. 15 is a schematic diagram comparing the magnetic flux densities of the conventional HB type and the one-pole permanent magnet of the present invention of FIG. 1, for example. The HB type has a magnetic flux density as shown in B of FIG. In contrast to the rectangular wave, the N-pole and S-pole alternating type of the present invention has a sine wave shape as shown in FIG.

【0015】[0015]

【発明の効果】本発明の永久磁石式回転電機は上記のよ
うに構成されるから,次のような優れた効果を有する。 HB型ステッピングモ−タと同等の高トルクと従来の
PM型以上の低振動,低騒音特性が安価な方法で実現で
き,又多極化も可能である。 固定子と回転子の対向面積が従来のHB型の2倍とな
るため,その分,鎖交磁束を増加できる。 HB型回転子のように凸極の磁歯でなくN極,S極が
隣接するため,磁束密度が正弦波状に分布され,固定子
無励磁のコギングトルクが減少でき,マイクロステップ
駆動時のステップ角精度も向上する。
Since the permanent magnet type rotating electric machine of the present invention is constructed as described above, it has the following excellent effects. High torque equivalent to that of HB type stepping motor and low vibration and noise characteristics of conventional PM type can be realized by an inexpensive method, and multipolarization is possible. Since the facing area of the stator and the rotor is twice as large as that of the conventional HB type, the flux linkage can be increased accordingly. Since the N pole and S pole are adjacent instead of the magnetic teeth of the convex pole like in the HB type rotor, the magnetic flux density is distributed in a sinusoidal shape and the cogging torque of the stator non-excitation can be reduced, and the step during microstep drive can be reduced. The angular accuracy is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1である回転電機の回転子の横
断面図である。
FIG. 1 is a cross-sectional view of a rotor of a rotary electric machine that is Embodiment 1 of the present invention.

【図2】図1の回転子軸を含む縦断正面図である。2 is a vertical sectional front view including the rotor shaft of FIG. 1. FIG.

【図3】本発明の実施例2の構成を示す縦断正面図であ
る。
FIG. 3 is a vertical sectional front view showing a configuration of a second embodiment of the present invention.

【図4】本発明の実施例3である回転電機の回転子の横
断面図である。
FIG. 4 is a cross-sectional view of a rotor of a rotating electric machine that is Embodiment 3 of the present invention.

【図5】本発明の実施例3の図4のものを変形して構成
した回転子の横断面図である。
FIG. 5 is a transverse cross-sectional view of a rotor configured by modifying the one shown in FIG. 4 of the third embodiment of the present invention.

【図6】実施例1の回転子と固定子の磁束の状況を示す
説明図である。
FIG. 6 is an explanatory diagram showing a state of magnetic flux of the rotor and the stator of the first embodiment.

【図7】実施例1の回転子と固定子の磁束の状況を示す
説明図である。
FIG. 7 is an explanatory diagram showing a state of magnetic flux of the rotor and the stator of the first embodiment.

【図8】本発明の実施例4である回転電機の回転子の横
断面図である。
FIG. 8 is a transverse sectional view of a rotor of a rotating electric machine that is Embodiment 4 of the present invention.

【図9】図8の分解斜視図である。FIG. 9 is an exploded perspective view of FIG.

【図10】本発明の実施例5である回転電機の回転子の
横断面図である。
FIG. 10 is a cross-sectional view of a rotor of a rotating electric machine that is Embodiment 5 of the present invention.

【図11】図10の分解斜視図である。11 is an exploded perspective view of FIG.

【図12】従来技術のPM型ステッピングモ−タの一部
を切り欠いて示す斜視図である。
FIG. 12 is a perspective view showing a PM type stepping motor according to the prior art with a part thereof cut away.

【図13】従来技術のハイブリッド型ステッピングモ−
タの横断面図である。
FIG. 13 is a conventional hybrid type stepping motor.
FIG.

【図14】従来技術のハイブリッド型ステッピングモ−
タの縦断面図である。
FIG. 14 is a conventional hybrid type stepping motor.
FIG.

【図15】本発明のものと従来例のものとを比較するた
めに,HB型とPM型の回転子磁極の磁束密度の分布図
を示す特性図である。
FIG. 15 is a characteristic diagram showing a distribution diagram of magnetic flux densities of HB type and PM type rotor magnetic poles in order to compare the present invention and the conventional example.

【符号の説明】 20:U字形スリット 21:永久磁石又はボンド磁石 R1:回転子[Explanation of symbols] 20: U-shaped slit 21: Permanent magnet or bonded magnet R1: Rotor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中心に回転軸が貫通する穴を有する円筒
形状の磁性体より成る回転子において,その外周に近接
してU字形のスリットを複数個,等ピッチで非スリット
部が半径方向に外向きで,隣接するU字形スリット間の
磁性体部の幅(A部)とU字内の非スリット部である磁
性体部の幅(B部)を略等しく配置し,上記のU字形ス
リット内にはU字形永久磁石又はボンド磁石を充填し
て,A部とB部を異極性となるように磁化した回転子を
備えたことを特徴とする永久磁石式回転電機。
1. A rotor made of a cylindrical magnetic body having a hole through which a rotating shaft penetrates in the center, and a plurality of U-shaped slits are provided in the vicinity of the outer periphery of the rotor. The width of the magnetic body portion (A portion) between the adjacent U-shaped slits facing outward and the width of the magnetic body portion (B portion) which is a non-slit portion in the U-shape are arranged substantially equal to each other, and the U-shaped slits described above are provided. A permanent magnet type rotating electric machine characterized in that a U-shaped permanent magnet or a bond magnet is filled in the inside of the rotor, and the rotor is magnetized so that the parts A and B have different polarities.
【請求項2】 請求項1で述べた複数個のU字形スリッ
トに,永久磁石を内蔵した円筒形状磁性体2個を互いに
180゜/Zずらした位置で,その厚み方向に2極磁化
したプレ−ト状永久磁石を挟持して,上述のU字形スリ
ット部の永久磁石によるA部とB部の極性と挟持された
上記プレ−ト状永久磁石によるA部,B部の各々の磁極
性が一致するように,スリット部永久磁石を磁化してな
る回転子を備えた永久磁石式回転電機。但し,Zは極歯
の数である。
2. A plurality of U-shaped slits according to claim 1, wherein two cylindrical magnetic bodies containing a permanent magnet are offset by 180 ° / Z from each other, and are pre-polarized in the thickness direction. The polarities of the portions A and B formed by the permanent magnets of the U-shaped slit portion sandwiching the plate-shaped permanent magnet, and the magnetic polarities of the portions A and B formed by the plate-shaped permanent magnets sandwiched therebetween. Permanent magnet type rotating electric machine equipped with a rotor formed by magnetizing slit permanent magnets so that they coincide with each other. However, Z is the number of pole teeth.
【請求項3】 請求項2記載の永久磁石式回転電機にお
いて,U字形スリット部に永久磁石を備えない構成とし
た永久磁石式回転電機。
3. The permanent magnet type rotating electric machine according to claim 2, wherein the U-shaped slit portion is not provided with a permanent magnet.
【請求項4】 外周側又は内周側の少なくとも一方が細
幅部で連結した2Z個のスリットを放射状に等ピッチで
設けた外径2rの略円筒状の磁性体よりなり,2Z個の
スリットのスリット部にはボンド磁石等の永久磁石を充
填し,2Z個のスリットにより形成される2Z個の磁性
体で成るポ−ル部の半径方向長をaとし,nを1以上の
正の整数,m=1又は2又は3,k=1又は2とし,a
≧πr/2Zであり,Z=m(3n±1)又はZ=k
(4n±1)又はZ=k(5n±2)を満たし,かつ,
2Z個の上記ポ−ル部が交互にその外周で異極性に磁化
されたことを特徴とする回転子を有する永久磁石式回転
電機。
4. A 2Z number of slits are formed of a substantially cylindrical magnetic body having an outer diameter 2r in which at least one of the outer diameter side and the inner diameter side is connected to each other with a narrow width portion and 2Z number of slits are provided radially at equal pitches. The slit part is filled with a permanent magnet such as a bond magnet, and the radial length of the pole part composed of 2Z magnetic bodies formed by 2Z slits is a, and n is a positive integer of 1 or more. , M = 1 or 2 or 3, k = 1 or 2, and a
≧ πr / 2Z, Z = m (3n ± 1) or Z = k
(4n ± 1) or Z = k (5n ± 2) is satisfied, and
A permanent magnet type rotating electric machine having a rotor, wherein 2Z pieces of the pole portions are alternately magnetized to have different polarities on the outer periphery thereof.
【請求項5】 請求項4記載の円筒形状磁性体におい
て,その中心部の穴部にその回転軸方向長が円筒形状磁
性体と略等しい永久磁石を装入し,2Z個のスリット部
にも永久磁石が充填され,円筒形状磁性体の両端に中心
穴部に装入した永久磁石と共に密着させるように,その
半径方向に放射状で各々の形状が円筒形状磁性体の2Z
個のポ−ル形状に略同形状としたZ個のポ−ルを等ピッ
チで設けた磁性体を2個互いにそのZ個のポ−ルピッチ
の1/2ずらして配置し,それらの各々のZ個のポ−ル
が上記円筒形状磁性体の2Z個のポ−ル部と1個おきに
重なるようにし,回転軸方向に2極磁化したことを特徴
とする回転子を有する永久磁石式回転電機。
5. The cylindrical magnetic body according to claim 4, wherein a permanent magnet having a length in the rotational axis direction substantially equal to that of the cylindrical magnetic body is inserted into the hole at the center of the cylindrical magnetic body, and 2Z slit portions are also provided. The 2Z shape of the cylindrical magnetic body is filled with permanent magnets, and each shape is radial in the radial direction so that both ends of the cylindrical magnetic body are closely attached together with the permanent magnets inserted in the center holes.
Two magnetic bodies having Z poles of substantially the same shape as the poles of the same shape and arranged at an equal pitch are arranged so as to be offset from each other by ½ of the pitch of the Z poles. Permanent magnet type rotation having a rotor characterized in that Z poles are made to overlap every other 2Z pole portions of the cylindrical magnetic body and are magnetized in two poles in the rotation axis direction. Electric machinery.
【請求項6】 外周が細幅部で連結した2Z個のポ−ル
の円筒形状磁性体に永久磁石をその中空部に設け,請求
項5に記載の半径方向にZ個のポ−ルを持った磁性体を
互いにZ個のポ−ルの1/2ピッチ(180゜/Z)ず
らせて,そのポ−ルが円筒形状磁性体の2Z個のポ−ル
と1個おきに重なるように密着させ,そのZ個のポ−ル
を持つ磁性体の各々に略円板状永久磁石を同心的に固着
させ,更に該永久磁石の各々に円板状磁性体ヨ−クを固
着させ,該ヨ−ク同士を磁性体より成る回転軸で連結
し,少なくとも回転軸方向に磁化したことを特徴とする
回転子を有する永久磁石式回転電機。
6. A permanent magnet is provided in a hollow portion of a cylindrical magnetic body of 2Z poles whose outer periphery is connected by a narrow portion, and Z poles in the radial direction according to claim 5. The magnets that are held are displaced from each other by ½ pitch (180 ° / Z) of Z poles, and the poles are overlapped with every other 2Z poles of the cylindrical magnet. The disk-shaped permanent magnets are closely attached to each of the magnetic bodies having Z poles, and the disk-shaped magnetic yoke is fixed to each of the permanent magnets. A permanent magnet type rotating electric machine having a rotor, characterized in that the yokes are connected by a rotating shaft made of a magnetic material and magnetized at least in the rotating shaft direction.
JP5320913A 1993-11-29 1993-11-29 Permanent magnet rotating electric machine Pending JPH07154935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5320913A JPH07154935A (en) 1993-11-29 1993-11-29 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5320913A JPH07154935A (en) 1993-11-29 1993-11-29 Permanent magnet rotating electric machine

Publications (1)

Publication Number Publication Date
JPH07154935A true JPH07154935A (en) 1995-06-16

Family

ID=18126672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5320913A Pending JPH07154935A (en) 1993-11-29 1993-11-29 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JPH07154935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059233A1 (en) * 1998-05-08 1999-11-18 Pyrhoenen Juha Synchronous magneto
US7148598B2 (en) * 2003-10-23 2006-12-12 A.O. Smith Corporation Spoke permanent magnet rotors for electrical machines and methods of manufacturing same
KR20160108589A (en) 2014-03-18 2016-09-19 미쓰비시덴키 가부시키가이샤 Rotor of permanent magnet motor
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059233A1 (en) * 1998-05-08 1999-11-18 Pyrhoenen Juha Synchronous magneto
US7148598B2 (en) * 2003-10-23 2006-12-12 A.O. Smith Corporation Spoke permanent magnet rotors for electrical machines and methods of manufacturing same
KR20160108589A (en) 2014-03-18 2016-09-19 미쓰비시덴키 가부시키가이샤 Rotor of permanent magnet motor
US9812912B2 (en) 2014-03-18 2017-11-07 Mitsubishi Electric Corporation Rotor for permanent magnet motor having a magnetic pole portion and a field portion
DE112014006360B4 (en) * 2014-03-18 2018-01-11 Mitsubishi Electric Corporation Rotor for a permanent magnet motor
CN106936234A (en) * 2015-12-29 2017-07-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor and magneto

Similar Documents

Publication Publication Date Title
US4983867A (en) Hybrid-type stepping motor
US6172438B1 (en) Two-phase permanent-magnet electric rotating machine
JP3071064B2 (en) Permanent magnet type stepping motor
JP4207386B2 (en) Inductor-type electric machine with magnet-equipped armature
JP2740893B2 (en) Permanent magnet type stepping motor
JP4150069B2 (en) Two-phase motor
US5374865A (en) Multi-phase hybrid stepper motor
US4758756A (en) Vernier-type electrodynamic machine
JPH10285899A (en) Stepping motor
EP0163747A1 (en) Rotor for synchronous electric motor
EP0544310A2 (en) Permanent magnet type dynamoelectric machine rotor
JPH0686527A (en) Hybrid stepping motor
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
US20010002095A1 (en) Multi-phase electric rotating machine having toroidal coils and using method thereof
JPH09163710A (en) Motor structure
WO2020194390A1 (en) Rotating electric machine
JPH07154935A (en) Permanent magnet rotating electric machine
JP3410519B2 (en) Three-phase claw-pole type permanent magnet type rotating electric machine
JP5578979B2 (en) Axial gap motor
JP3797488B2 (en) Multi-pole rotating electric machine
JP2000125533A (en) Motor
JP3591660B2 (en) Three-phase claw pole type permanent magnet type rotating electric machine
JP4396960B2 (en) Permanent magnet abduction type rotating electrical machine
JPH027270B2 (en)
WO2023171488A1 (en) Rotor and rotating electric machine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050330

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819