JPH07153435A - Bulb - Google Patents

Bulb

Info

Publication number
JPH07153435A
JPH07153435A JP29969693A JP29969693A JPH07153435A JP H07153435 A JPH07153435 A JP H07153435A JP 29969693 A JP29969693 A JP 29969693A JP 29969693 A JP29969693 A JP 29969693A JP H07153435 A JPH07153435 A JP H07153435A
Authority
JP
Japan
Prior art keywords
film
bulb
metal oxide
layers
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29969693A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP29969693A priority Critical patent/JPH07153435A/en
Publication of JPH07153435A publication Critical patent/JPH07153435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent peeling-off of a coating film so as to enhance efficiency irrespective of the shape of a bulb by specifying an optical film thickness of each metal oxide film in the bulb where the metal oxide films of high and low refraction factors are laminated alternately. CONSTITUTION:First metal oxide films 5H1-5H17 each exhibiting a high refraction factor and second metal oxide films 5L2-5L18 each exhibiting a low refraction factor are laminated alternately on the outer surface of a glass bulb 1 sealing a filament therein, thus forming a multilayer light interference film. In this bulb, each of the first metal oxide film 5H1-5H17 has an optical film lambda/2 thick while each of the second metal oxide films 5L2-5L18 is lambda/4 thick. Consequently, it is possible to prevent generation of a crack or peeling-off of a coating film in the case where a non-cylindrical bulb likely affected in a soaking method is coated with a film, to thus provide a bulb having enhanced light emitting efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハロゲン電球などのガラ
スバルブの表面に、可視光透過赤外線反射作用を有する
多層光干渉膜を形成した電球に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light bulb in which a multilayer optical interference film having a visible light transmitting and infrared reflecting function is formed on the surface of a glass bulb such as a halogen bulb.

【0002】[0002]

【従来の技術】省エネルギ化の一環として電球分野にお
いても種々の工夫がなされており、たとえばハロゲン電
球においてはバルブの表面に可視光透過赤外線反射作用
を有する多層光干渉膜を形成することによって、フィラ
メントから放射した可視光はバルブを透過させるととも
に、赤外線はこの光干渉膜で反射してフィラメントに帰
還させ、これによってフィラメントを加熱して発光効率
を高めるようにすることが知られている。
2. Description of the Related Art Various efforts have been made in the field of light bulbs as part of energy saving. For example, in a halogen light bulb, a multilayer light interference film having a visible light transmitting and infrared reflecting effect is formed on the surface of a bulb. It is known that visible light emitted from the filament is transmitted through the bulb, and infrared light is reflected by the light interference film and returned to the filament, thereby heating the filament and increasing luminous efficiency.

【0003】このような可視光透過赤外線反射作用を有
する光干渉膜としては、高屈折率を示すたとえば酸化チ
タン(TiO2 )膜と低屈折率を示すたとえば酸化けい
素(SiO2 )膜とを交互に積層して多層化し、層数や
層の厚さを適宜選ぶことにより光の干渉を利用して、所
望の波長域の光を選択的に透過および反射させるもので
ある。
As such a light interference film having a visible light transmitting / infrared reflecting function, a titanium oxide (TiO 2 ) film having a high refractive index and a silicon oxide (SiO 2 ) film having a low refractive index are used. By alternately stacking layers to form multiple layers and appropriately selecting the number of layers and the thickness of the layers, light interference is utilized to selectively transmit and reflect light in a desired wavelength range.

【0004】この電球においては、膜の層数が多いほど
赤外線の反射率を高くすることができ省電力の効果も大
きい。
In this light bulb, the larger the number of layers of the film, the higher the reflectance of infrared rays and the greater the effect of power saving.

【0005】一般的にはこの可視光透過赤外線反射作用
を有する光干渉膜は、いわゆるλ/4の光干渉膜でその
波長λを電球フィラメントの赤外線放射エネルギのピー
ク波長(1μ近傍)に合わせたものであり、同一膜厚の
ものを形成していく場合には成膜作業も容易で多く採用
されている。
Generally, this optical interference film having a visible light transmitting infrared reflecting action is a so-called λ / 4 optical interference film, and its wavelength λ is adjusted to the peak wavelength (in the vicinity of 1 μ) of infrared radiant energy of the bulb filament. However, when forming films having the same film thickness, the film forming operation is easy and is often adopted.

【0006】しかし、昨今のエネルギ事情に鑑み、さら
なる省エネルギ化とともに電球の高効率化が要望され、
光干渉膜の材質、膜層数、各層の膜厚や形成方法を選ぶ
ことによって、さらに高い品質の電球が得られるように
なってきた。また、この光干渉膜の形成方法としては、
コスト事情などから浸漬方式が多く採用されてきてい
る。
However, in view of the recent energy situation, there is a demand for further energy saving and high efficiency of the light bulb.
By selecting the material of the light interference film, the number of film layers, the film thickness of each layer, and the forming method, it has become possible to obtain a light bulb of higher quality. In addition, as a method of forming this optical interference film,
The immersion method has been widely adopted due to cost reasons.

【0007】この浸漬方式では、たとえばテトライソプ
ロピルチタネートなどの有機チタン化合物をアセチルア
セトン、ポリエチレングリコールに反応させエタノール
系の溶剤に溶かしたチタン溶液と、エチルシリケート重
合体などの有機けい素化合物を同様にしてけい素溶液と
したものを使用して多層膜を形成していた。
In this dipping system, for example, a titanium solution obtained by reacting an organic titanium compound such as tetraisopropyl titanate with acetylacetone or polyethylene glycol and dissolving it in an ethanol-based solvent and an organic silicon compound such as an ethyl silicate polymer are similarly prepared. A multi-layer film was formed using a silicon solution.

【0008】しかし、このような多層膜は層数が増える
と互いの材料の熱膨脹率差による歪みにより被膜にクラ
ックや層間に剥離などを生じ、上記溶液をハロゲン電球
に塗布してたとえば図5に示す多層の被膜を形成する場
合14層程度が限度であった。
However, in such a multilayer film, when the number of layers is increased, the film is cracked or peeled between layers due to the strain due to the difference in the coefficient of thermal expansion between the materials. In the case of forming the multilayer coating shown, the limit was about 14 layers.

【0009】すなわち、図6は従来の可視光透過赤外線
反射膜を模型的に示し、バルブ1(ガラス)の表面側か
ら高屈折率を示す酸化チタン(TiO2 )膜と低屈折率
を示す酸化けい素(SiO2 )膜とを交互に浸漬方式に
より重層したものである。これら各膜は、バルブ1の表
面に形成した後述する緩衝膜6の上の第1層目ないし第
13層目には高屈折率層をなす酸化チタン(TiO2
膜5H1〜5H13が光学膜厚λ/4で、また、第2層
目および第4層目には低屈折率層をなす酸化けい素(S
iO2 )膜5L2および5L4が光学膜厚λ/2、第6
層目ないし第12層目には低屈折率層をなす酸化けい素
(SiO2 )膜5L6〜5L12が光学膜厚λ/4、第
14層目の最外層には低屈折率層をなす酸化けい素(S
iO2 )膜5L14が光学膜厚λ/8で形成してある。
That is, FIG. 6 schematically shows a conventional visible-light-transmitting infrared-reflecting film, and a titanium oxide (TiO 2 ) film showing a high refractive index and an oxidizing film showing a low refractive index from the surface side of the bulb 1 (glass). It is a layer in which silicon (SiO 2 ) films are alternately laminated by a dipping method. Each of these films is made of titanium oxide (TiO 2 ) forming a high refractive index layer on the first to thirteenth layers on the buffer film 6 which will be described later formed on the surface of the bulb 1.
The films 5H1 to 5H13 have an optical film thickness of λ / 4, and the second and fourth layers are made of silicon oxide (S
iO 2 ) films 5L2 and 5L4 have an optical film thickness of λ / 2,
The silicon oxide (SiO 2 ) films 5L6 to 5L12 forming a low refractive index layer have an optical film thickness λ / 4 in the first to twelfth layers, and the oxidation forming a low refractive index layer in the outermost layer of the fourteenth layer. Silicon (S
The iO 2 ) film 5L14 is formed with an optical film thickness of λ / 8.

【0010】なお、上記の緩衝膜6はバルブ1を形成す
る石英ガラスと高屈折率層をなす酸化チタン(Ti
2 )との中間の熱膨張率を有する光学膜厚がλ/8の
酸化けい素(SiO2 )膜で、屈折率がバルブ1のガラ
スと近似し、光学膜厚が対象光の波長の1/4より小さ
くて、光干渉膜の光学特性を変化することなく熱膨張率
差による歪みを緩和させるものである。
The buffer film 6 is made of quartz glass forming the bulb 1 and titanium oxide (Ti) forming a high refractive index layer.
It is a silicon oxide (SiO 2 ) film having an optical film thickness of λ / 8, which has an intermediate coefficient of thermal expansion with that of O 2 ), and has a refractive index close to that of the glass of the bulb 1 and an optical film thickness of the wavelength of the target light. It is smaller than 1/4 and relaxes the strain due to the difference in coefficient of thermal expansion without changing the optical characteristics of the optical interference film.

【0011】上記浸漬による被膜形成で低屈折率層を構
成する酸化けい素(SiO2 )膜5L…は、一回の浸漬
によって形成できる膜厚には限界があり、上記第2層目
の被膜5L2および第4層目の被膜5L4のλ/2膜を
作るには、λ/4膜を2回重層して形成することを要す
る。
The silicon oxide (SiO 2 ) film 5L, which constitutes the low refractive index layer by the above-mentioned film formation by dipping, has a limit in the film thickness that can be formed by one dipping, and the second layer film is formed. In order to form the λ / 2 film of the 5L2 and the fourth-layer coating 5L4, it is necessary to form the λ / 4 film by stacking it twice.

【0012】しかし、この酸化けい素(SiO2 )膜は
圧縮性の真性応力(膜の形成方法に依存した膜の微細構
造による応力)が強く(文献によれば40〜60メガパ
スカル)、層数が多くになるにつれてその歪みが積み重
ねられ、膜強度(膜内界面)を越えると膜中の欠陥部を
起点にクラックが発生し、さらにクラックが浮き上がる
ようになって剥離が発生する。酸化けい素(SiO2
膜5L…の真性応力は、浸漬塗布回数に依存するため、
重層する被膜は14層程度が限界である。
However, this silicon oxide (SiO 2 ) film has a strong compressive intrinsic stress (stress due to the fine structure of the film depending on the method of forming the film) (40-60 megapascals according to the literature), and the layer The strain increases as the number increases, and when the film strength (intra-film interface) is exceeded, cracks start from the defective portion in the film, and the cracks rise to cause peeling. Silicon oxide (SiO 2 )
Since the intrinsic stress of the film 5L depends on the number of times of dip coating,
The maximum number of layers that can be stacked is about 14 layers.

【0013】特に、回転楕円体状などの複雑曲面形のバ
ルブや、曲率が小さく異方性の大きい非円筒状のバルブ
では、センター中心から多少ずれた部分を中心として被
膜にクラックや剥離が発生し始め、円筒状のバルブより
影響がで易い。
Particularly, in the case of a valve having a complicated curved surface such as a spheroidal shape or a non-cylindrical valve having a small curvature and a large anisotropy, cracks or peeling occur in the film around a portion slightly deviated from the center of the center. It starts to work and is more affected than a cylindrical valve.

【0014】[0014]

【発明が解決しようとする課題】本発明は浸漬方式の膜
厚限界などを考慮し、円筒状のバルブはもとより浸漬方
法で影響ので易い非円筒状のバルブに被膜した場合で
も、被膜の剥離がなく効率の向上をすることのできるハ
ロゲン電球を提供することを目的とする。
SUMMARY OF THE INVENTION In consideration of the film thickness limit of the immersion method, the present invention can remove the coating film not only on a cylindrical valve but also on a non-cylindrical valve which is easily affected by the immersion method. It is an object of the present invention to provide a halogen light bulb that can improve efficiency without the need.

【0015】[0015]

【課題を解決するための手段】本発明の請求項1に記載
の電球は、フィラメントを封装したガラスバルブの外面
に高屈折率を示す第一の金属酸化物膜と低屈折率を示す
第二の金属酸化物膜とを交互に積層して多層光干渉膜を
形成した電球において、上記第一の金属酸化物膜の1つ
は光学膜厚がλ/2、第二の金属酸化物膜の光学膜厚が
λ/4てあることを特徴としている。
According to a first aspect of the present invention, there is provided a light bulb having a first metal oxide film having a high refractive index and a second metal oxide film having a low refractive index on an outer surface of a glass bulb in which a filament is sealed. In the electric bulb in which the multilayer optical interference film is formed by alternately laminating the metal oxide films of the above, one of the first metal oxide films has an optical film thickness of λ / 2 and a second metal oxide film of It is characterized in that the optical film thickness is λ / 4.

【0016】本発明の請求項2に記載の電球は、多層光
干渉膜の最外層の光学膜厚がλ/8であることを特徴と
している。
The light bulb according to claim 2 of the present invention is characterized in that the optical film thickness of the outermost layer of the multilayer optical interference film is λ / 8.

【0017】本発明の請求項3に記載の電球は、バルブ
が円筒状であることを特徴としている。
According to a third aspect of the present invention, the bulb has a cylindrical shape.

【0018】本発明の請求項4に記載の電球は、バルブ
が非円筒状であることを特徴としている。
A light bulb according to a fourth aspect of the present invention is characterized in that the bulb has a non-cylindrical shape.

【0019】本発明の請求項5に記載の電球は、ハロゲ
ンが封入されていることを特徴としている。
A light bulb according to a fifth aspect of the present invention is characterized in that a halogen is enclosed.

【0020】[0020]

【作用】可視光透過赤外線反射膜を形成する酸化けい素
(SiO2 )膜は圧縮応力が強いことから各層の膜厚を
同じにし、引張応力の強い酸化チタン(TiO2 )膜側
の膜厚を厚膜とすることによって両膜の応力を緩和し、
引張応力が低減されて被膜層数を増加しても被膜にクラ
ックが入りにくくクラックや剥離の発生がなく、かつ、
可視光の透過率が高いとともに赤外線の反射率も高く発
光効率が向上できる。
[Function] Since the silicon oxide (SiO 2 ) film forming the visible light transmitting infrared reflecting film has a high compressive stress, the film thickness of each layer is made the same, and the film thickness on the titanium oxide (TiO 2 ) film side having a strong tensile stress is used. By relieving the stress of both films,
Even if the tensile stress is reduced and the number of coating layers is increased, cracks are unlikely to occur in the coating and cracks and peeling do not occur, and
The transmittance of visible light is high and the reflectance of infrared light is also high, so that the luminous efficiency can be improved.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1はハロゲン電球Lを示し図中1は石英ガラス
からなる円筒状をしたバルブで、このバルブ1の内部に
はフィラメント2とハロゲン化合物およびアルゴンなど
の不活性ガスが封入してある。このフィラメント2は内
部導線3a,3bおよびアンカ4に支持され、バルブ1
の中心軸に沿って配設されている。なお、7はバルブ1
の端部に接合された口金である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a halogen light bulb L. In FIG. 1, reference numeral 1 denotes a cylindrical bulb made of quartz glass, in which a filament 2, a halogen compound and an inert gas such as argon are enclosed. The filament 2 is supported by the inner conductors 3a and 3b and the anchor 4, and
Are arranged along the central axis of the. In addition, 7 is a valve 1
It is a base joined to the end of.

【0022】また、5はフィラメント2が配設されてい
る部分と対応するバルブ1外表面の緩衝膜6上に形成さ
れた多層光干渉膜からなる可視光透過赤外線反射膜であ
る。この可視光透過赤外線反射膜5(以下、赤反膜と称
する。)は図2に模型的に示すように、バルブ1(ガラ
ス)の外表面の緩衝膜6上から高屈折率を示すたとえば
酸化チタン(TiO2 )からなる第一の金属酸化物膜5
H…と低屈折率を示すたとえば酸化けい素(SiO2
からなる第二の金属酸化物膜5L…とが交互に重層して
全部でたとえば18層形成したものである。
Reference numeral 5 is a visible light transmitting infrared reflecting film composed of a multilayer optical interference film formed on the buffer film 6 on the outer surface of the bulb 1 corresponding to the portion where the filament 2 is disposed. The visible light transmitting / infrared reflecting film 5 (hereinafter referred to as "red film") is, for example, an oxide showing a high refractive index from the buffer film 6 on the outer surface of the bulb 1 (glass) as shown in FIG. First metal oxide film 5 made of titanium (TiO 2 )
H ... and low refractive index such as silicon oxide (SiO 2 )
The second metal oxide film 5L ... Is alternately laminated to form a total of, for example, 18 layers.

【0023】これら各層の光学膜厚は緩衝膜6の表面に
形成した高屈折率層をなす酸化チタン(TiO2 )膜
(5H1〜5H17の奇数番)を第1層目5H1として
たとえば第9層目5H9までをλ/2、第11層目5H
11から第17層目5H17までをλ/4で、また、低
屈折率層をなす酸化けい素(SiO2 )膜(5L2〜5
L18偶数番)を第2層目5L2から第16層目までを
λ/4、最外層の第18層目をλ/8としてある。
The optical film thickness of each of these layers is, for example, a titanium oxide (TiO 2 ) film (an odd number of 5H1 to 5H17) forming a high refractive index layer formed on the surface of the buffer film 6 as the first layer 5H1, for example, the 9th layer. Λ / 2 up to 5H9, 11th layer 5H
Λ / 4 from the 11th to the 17th layer 5H17, and a silicon oxide (SiO 2 ) film (5L2 to 5L5) forming a low refractive index layer.
L18 even number) is λ / 4 from the second layer 5L2 to the 16th layer, and λ / 8 is the outermost 18th layer.

【0024】そして、上記のような赤反膜5および緩衝
膜6を形成するには、まず、バルブ1内にフィラメント
2を封装して排気し、ハロゲンおよび不活性ガスなどを
封入した電球を用意する。また別途に、たとえばテトラ
イソプロピルチタネートなどの有機チタン化合物をアセ
チルアセトン、ポリエチレングリコールに反応させエタ
ノール系の溶剤に溶かしたチタン含有量が2〜10重量
%、粘度約2.0cpsに調整したチタン溶液と、エチ
ルシリケート重合体などの有機けい素化合物を有機溶剤
に溶かし、けい素含有量が2〜10重量%、粘度約1.
0cpsに調整したけい素溶液とを用意する。
In order to form the red film 5 and the buffer film 6 as described above, first, the bulb 2 is sealed in the bulb 1, exhausted, and a light bulb in which halogen and an inert gas are sealed is prepared. To do. Separately, a titanium solution prepared by reacting an organic titanium compound such as tetraisopropyl titanate with acetylacetone or polyethylene glycol to dissolve it in an ethanol-based solvent to a titanium content of 2 to 10% by weight and a viscosity of about 2.0 cps, An organic silicon compound such as an ethyl silicate polymer is dissolved in an organic solvent to have a silicon content of 2 to 10% by weight and a viscosity of about 1.
Prepare a silicon solution adjusted to 0 cps.

【0025】まず、上記電球のバルブ1を、恒温恒湿の
雰囲気中で上記のけい素溶液中に浸漬して所定速度で引
き上げ、乾燥後空気中約700℃で10分間焼成して酸
化けい素(SiO2 )膜からなる光学膜厚がλ/8の緩
衝膜6を形成する。
First, the bulb 1 of the electric bulb is immersed in the silicon solution described above in a constant temperature and constant humidity atmosphere, pulled up at a predetermined speed, dried and then baked in air at about 700 ° C. for 10 minutes to obtain silicon oxide. A buffer film 6 made of a (SiO 2 ) film and having an optical film thickness of λ / 8 is formed.

【0026】つぎに、この緩衝膜6を形成したバルブ1
を恒温恒湿の雰囲気中で上記のチタン溶液中に浸漬して
所定速度で引き上げ、乾燥後空気中約700℃で10分
間焼成して第1層目の酸化チタン(TiO2 )膜5H1
からなる高屈折率層を形成する。
Next, the valve 1 in which the buffer film 6 is formed
Is immersed in the above titanium solution in a constant temperature and constant humidity atmosphere, pulled up at a predetermined speed, dried, and then baked in air at about 700 ° C. for 10 minutes to form a first layer of titanium oxide (TiO 2 ) film 5H1.
To form a high refractive index layer.

【0027】つぎに、この第1層目の酸化チタン(Ti
2 )膜5H1を形成したバルブ1を恒温恒湿の雰囲気
中で上記のけい素溶液中に浸漬して所定速度で引き上
げ、乾燥後空気中約700℃で10分間焼成して第2層
目の酸化けい素(SiO2 )膜からなる低屈折率層5L
2を形成する。
Next, the titanium oxide (Ti
O 2 ) The valve 1 having the film 5H1 formed thereon is dipped in the above silicon solution in a constant temperature and constant humidity atmosphere, pulled up at a predetermined speed, dried and then baked in air at about 700 ° C. for 10 minutes to form a second layer. Low-refractive-index layer 5L made of a silicon oxide (SiO 2 ) film
Form 2.

【0028】このようにして、酸化チタン(TiO2
膜5H…からなる高屈折率層と酸化けい素(SiO2
膜5L…からなる低屈折率層とを交互に形成して18層
(5H1,5L2,〜5H17,5L18)を積層す
る。
In this way, titanium oxide (TiO 2 )
High refractive index layer made of film 5H ... and silicon oxide (SiO 2 )
18 layers (5H1, 5L2 to 5H17, 5L18) are laminated by alternately forming low refractive index layers made of films 5L.

【0029】上記浸漬による被膜形成では一回の浸漬に
よって形成できる膜厚には限界があり、λ/2膜を作る
にはλ/4膜を2回重層形成することを要する。
In the film formation by the above-mentioned dipping, there is a limit to the film thickness that can be formed by one dipping, and it is necessary to form the λ / 2 film twice as a double layer to form the λ / 2 film.

【0030】前述したように低屈折率層を構成する酸化
けい素(SiO2 )膜5L…は、強い圧縮性の真性応力
を有し、λ/2膜を作るに際しλ/4膜を2回重層形成
すると被膜にクラックや剥離が発生し易かった。
As described above, the silicon oxide (SiO 2 ) films 5L ... Which constitute the low refractive index layer have a strong compressive intrinsic stress, and the λ / 4 film is formed twice when forming the λ / 2 film. When forming multiple layers, cracks and peeling were likely to occur in the coating.

【0031】これに対し本発明では、酸化けい素(Si
2 )膜5L…の塗布回数を少なくして、かつ、浸漬方
式による酸化チタン(TiO2 )膜5H…の被膜形成は
弱いながら(酸化けい素(SiO2 )膜の1/10以
下)酸化けい素(SiO2 )膜5L…の逆の引張応力を
有しているため、酸化チタン(TiO2 )の塗布回数が
多いほど膜全体の応力が緩和され均衡してクラックや剥
離の発生がなく、層数を増加することができる。上記と
同じ溶液を使用して酸化チタン(TiO2 )膜のλ/2
を5回以上形成して18層の塗布も可能であった。
On the other hand, in the present invention, silicon oxide (Si
O 2 ) film 5L ... is applied less frequently, and the titanium oxide (TiO 2 ) film 5H ... by dipping is weakly formed (1/10 or less of the silicon oxide (SiO 2 ) film). Since it has a tensile stress opposite to that of the silicon (SiO 2 ) film 5L, the stress of the entire film is relaxed as the number of times of coating of titanium oxide (TiO 2 ) is increased, and there is no occurrence of cracks or peeling in a balanced manner. , The number of layers can be increased. Λ / 2 of titanium oxide (TiO 2 ) film using the same solution as above
It was also possible to form 18 times or more and coat 18 layers.

【0032】このような構成の電球Lを点灯すると、バ
ルブ1の中心軸上に配設したフィラメント2は発熱して
可視光とともに大量の赤外線を放射し、フィラメント2
から放射した光のうち可視光はバルブ1および赤反膜5
を透過してバルブ1外方へと放射される。また、フィラ
メント2から放射した赤外線は赤反膜5で反射されてフ
ィラメント2に戻り、フィラメント2を加熱して発光を
より高くし、この結果フィラメント2からの可視光放射
が増して、発光効率が向上できた。
When the light bulb L having such a configuration is turned on, the filament 2 arranged on the central axis of the bulb 1 generates heat and emits a large amount of infrared rays together with visible light, and the filament 2
Visible light among the light emitted from the bulb 1 and the red anti-membrane 5
Is emitted to the outside of the bulb 1. Further, the infrared rays emitted from the filament 2 are reflected by the red anti-reflection film 5 and return to the filament 2 to heat the filament 2 to further increase the light emission. As a result, the visible light emission from the filament 2 is increased and the luminous efficiency is increased. I was able to improve.

【0033】なお、上記本発明品で重層する被膜の層数
を上述の従来と同じ14層とした場合は、従来品の電球
より約10%ほど発光効率は低下したが、被膜層数を1
8層としても剥離することなく強固な被膜で、かつ、発
光効率を赤反膜5を形成しない電球に比べ従来被膜品が
約25%の向上に対し、本発明被膜品は従来被膜品を上
回る約34%の向上をみることができた。
When the number of layers of the coating layer of the present invention is the same as the above-mentioned conventional 14 layers, the luminous efficiency is reduced by about 10% as compared with the conventional bulb, but the number of coating layers is 1.
Even with 8 layers, it is a strong coating that does not peel off, and the luminous efficiency of the conventional coated product is improved by about 25% compared to the light bulb in which the red coating 5 is not formed, whereas the coated product of the present invention exceeds the conventional coated product. We were able to see an improvement of about 34%.

【0034】つぎに、本発明品と従来品との光学特性を
図3のグラフに示す。図3において横軸は波長(n
m)、縦軸は光透過率(%)で、曲線Aは本発明品、曲
線Bは従来品の光透過率・スペクトル特性をそれぞれ示
す。
Next, the optical characteristics of the product of the present invention and the conventional product are shown in the graph of FIG. In FIG. 3, the horizontal axis indicates the wavelength (n
m), the vertical axis is the light transmittance (%), and the curve A shows the light transmittance / spectral characteristics of the product of the present invention, and the curve B shows the light transmittance / spectral characteristics of the conventional product.

【0035】この図3から明らかなように、本発明の電
球に適用した赤反膜は可視光域では従来品とほぼ同じで
あるが、赤外線域(1000nm以上)では透過率が低
下し赤外線反射率が高くなって、フィラメントが加熱さ
れるので発光効率が向上できたものである。
As is clear from FIG. 3, the red film applied to the light bulb of the present invention is almost the same as the conventional product in the visible light range, but the transmittance is lowered in the infrared range (1000 nm or more) and the infrared reflection is caused. The luminous efficiency was improved because the filament efficiency was increased and the filament was heated.

【0036】また、赤反膜5を上記全18層で構成する
場合、上記高屈折率を示す酸化チタン(TiO2 )5H
…膜のうち光学膜厚をλ/2とする層数を種々変えて効
率の変化を調べたところ図4に示すような結果を得た。
図4において横軸はλ/2の層数を、縦軸は発光効率
(Lm/W)の向上率(赤反膜を形成しない電球の効率
を0%として)をとった。図から明らかなようにλ/2
層を形成することによって発光効率(Lm/W)は向上
し、全18層では5層の場合が最もよかったが、発明者
の実験では全体の層数を増やしていくにしたがい、λ/
2の層数を増加する必要があり、増加した方が効率の向
上ができることを確認した。また、このλ/2層を最外
層側に形成するとそれまでの応力が蓄積され、膜の乱れ
が多くなっていてその上に厚目の被膜を形成すると剥離
が発生するので、λ/2層はバルブに近い側にすなわち
第1層側に形成した方がよい。
When the red anti-reflection film 5 is composed of all 18 layers, titanium oxide (TiO 2 ) 5H having the above high refractive index is formed.
When the number of layers of the film having an optical film thickness of λ / 2 was variously changed and the change in efficiency was examined, the results shown in FIG. 4 were obtained.
In FIG. 4, the horizontal axis represents the number of layers of λ / 2, and the vertical axis represents the improvement rate of the luminous efficiency (Lm / W) (assuming that the efficiency of a light bulb that does not form a red anti-reflection film is 0%). As is clear from the figure, λ / 2
The luminous efficiency (Lm / W) was improved by forming the layers, and the case of 5 layers among the 18 layers was the best, but in the experiment of the inventor, it was found that λ /
It was confirmed that it is necessary to increase the number of layers of 2, and the more the number of layers, the more the efficiency can be improved. Further, when the λ / 2 layer is formed on the outermost layer side, the stress up to that time is accumulated, and the disorder of the film increases, and when a thick film is formed on the film, peeling occurs. Is preferably formed on the side closer to the valve, that is, on the first layer side.

【0037】なお,本発明は上記実施例に限定されな
い。たとえば、上記の可視光透過赤外線反射膜を構成す
る高屈折率層と低屈折率層およびλ/2層の層数は上記
実施例の全層数が18層およびλ/2層が5層に限定さ
れるものではない。
The present invention is not limited to the above embodiment. For example, the number of layers of the high refractive index layer, the low refractive index layer and the λ / 2 layer constituting the visible light transmitting infrared reflecting film is 18 in the total number of layers in the above embodiment and 5 in the λ / 2 layer. It is not limited.

【0038】また、高屈折率を示す第一金属酸化物膜の
材料としては酸化チタン(TiO2)に限らず、酸化タ
ンタル(Ta2 5 )、酸化ジルコニエム(Zr
2 )、酸化亜鉛(ZnS)などでも、また、低屈折率
を示す第二金属酸化物膜の材料としては酸化けい素(S
iO2 )に限らず、ふっ化マグネシウム(MgF)など
でもよい。
The material of the first metal oxide film having a high refractive index is not limited to titanium oxide (TiO 2 ) but tantalum oxide (Ta 2 O 5 ) and zirconium oxide (Zr).
O 2 ), zinc oxide (ZnS), etc., and silicon oxide (S) as a material for the second metal oxide film exhibiting a low refractive index.
It is not limited to iO 2 ) and may be magnesium fluoride (MgF) or the like.

【0039】また、上記実施例では予めバルブの外表面
に緩衝膜を形成したものについて説明したが、緩衝膜は
必須のものではなく、互いの材質に熱膨張率差が小さい
ものでは必要ない。
In the above-mentioned embodiment, the buffer film is previously formed on the outer surface of the valve. However, the buffer film is not essential and it is not necessary that the materials have a small difference in coefficient of thermal expansion.

【0040】また、電球はバルブの一端に封止部を形成
した投光用ハロゲン電球に限らず、他の用途やハロゲン
を封入していない種類の電球でもよく、このような電球
は光・熱反射膜やダイクロイック膜などの可視光反射赤
外線透過膜が形成された反射鏡内や各種の照明器具内に
装着され使用される。また、封止部がバルブの両端部に
設けてある両口金形の電球であってもよい。
Further, the light bulb is not limited to a light-emitting halogen light bulb in which a sealing portion is formed at one end of a bulb, but may be a light bulb of other type or a type in which halogen is not enclosed. It is used by being installed in a reflecting mirror or a variety of lighting fixtures on which a visible light reflecting infrared ray transmitting film such as a reflecting film or a dichroic film is formed. Alternatively, the bulb may be a double-ended bulb in which the sealing portions are provided at both ends of the bulb.

【0041】さらに、バルブのガラス材質は石英ガラス
に限らず、所要の透光性と光屈折率と耐熱性を併有する
ものであれば他の硬質や軟質のガラス材質であってもよ
い。さらにまた、本発明は上記円筒形状のバルブ1を用
いた電球Lに限らず、図5に示すような回転楕円形状や
球形状などをなす非円筒形状のバルブ1を用いた電球で
あってもよく、このような曲面を有するバルブ1への被
膜の形成は溶液に浸漬したバルブ1の引上げ速度を曲面
の状態に応じて変化させ膜厚を調整するようにしても差
支えない。
Further, the glass material of the bulb is not limited to quartz glass, and any other hard or soft glass material may be used as long as it has the required translucency, optical refractive index and heat resistance. Furthermore, the present invention is not limited to the light bulb L using the above-mentioned cylindrical bulb 1, and may be a light bulb using a non-cylindrical bulb 1 having a spheroidal shape or a spherical shape as shown in FIG. Of course, the formation of the coating film on the valve 1 having such a curved surface may be adjusted by changing the pulling rate of the valve 1 immersed in the solution according to the state of the curved surface to adjust the film thickness.

【0042】[0042]

【発明の効果】以上詳述したように本発明によれば、多
重光干渉膜(可視光透過赤外線反射膜)を円筒状のバル
ブはもとより浸漬方法で影響の生じ易い非円筒状のバル
ブに被膜した場合でも応力が緩和され、被膜にクラック
や剥離の発生がなく、かつ、発光効率の向上した電球を
提供できる。
As described above in detail, according to the present invention, a multiple light interference film (visible light transmitting infrared reflecting film) is coated on a cylindrical valve as well as a non-cylindrical valve which is easily affected by the dipping method. Even in such a case, it is possible to provide a light bulb in which the stress is relieved, the coating film is not cracked or separated, and the luminous efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す投光用ハロゲン電球の正
面図である。
FIG. 1 is a front view of a halogen bulb for floodlight showing an embodiment of the present invention.

【図2】図1の可視光透過赤外線反射膜部分を示す拡大
断面図である。
FIG. 2 is an enlarged sectional view showing a visible light transmitting infrared reflecting film portion of FIG.

【図3】波長と光透過率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between wavelength and light transmittance.

【図4】高屈折率層をなす光学膜厚がλ/2層の層数と
効率との関係を対比して示すグラフである。
FIG. 4 is a graph showing the relationship between the number of λ / 2 layers having an optical film thickness of a high refractive index layer and efficiency.

【図5】本発明の他の実施例を示すハロゲン電球の正面
図である。
FIG. 5 is a front view of a halogen light bulb according to another embodiment of the present invention.

【図6】従来品の可視光透過赤外線反射膜部分を示す拡
大断面図である。
FIG. 6 is an enlarged cross-sectional view showing a visible light transmitting infrared reflecting film portion of a conventional product.

【符号の説明】 L:電球 1:ガラスバルブ 2:フィラメント 5:多層光干渉膜(可視光透過赤外線反射膜) 5H1〜5H17:第一の金属酸化物膜(高屈折率層) 5L2〜5L18:第二の金属酸化物膜(低屈折率層) 6:緩衝膜[Explanation of Codes] L: Light Bulb 1: Glass Bulb 2: Filament 5: Multilayer Optical Interference Film (Visible Light Transmitting Infrared Reflecting Film) 5H1 to 5H17: First Metal Oxide Film (High Refractive Index Layer) 5L2 to 5L18: Second metal oxide film (low refractive index layer) 6: Buffer film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フィラメントを封装したガラスバルブの
外面に高屈折率を示す第一の金属酸化物膜と低屈折率を
示す第二の金属酸化物膜とを交互に積層して多層光干渉
膜を形成した電球において、上記第一の金属酸化物膜の
1つは光学膜厚がλ/2、第二の金属酸化物膜の光学膜
厚がλ/4てあることを特徴とする電球。
1. A multilayer optical interference film in which a first metal oxide film having a high refractive index and a second metal oxide film having a low refractive index are alternately laminated on the outer surface of a glass bulb in which a filament is sealed. In the light bulb having the above-mentioned structure, one of the first metal oxide films has an optical film thickness of λ / 2, and the second metal oxide film has an optical film thickness of λ / 4.
【請求項2】 上記多層光干渉膜の最外層の光学膜厚が
λ/8であることを特徴とする請求項1に記載の電球。
2. The light bulb according to claim 1, wherein the outermost layer of the multilayer optical interference film has an optical film thickness of λ / 8.
【請求項3】 上記バルブが円筒状であることを特徴と
する請求項1に記載の電球。
3. The light bulb according to claim 1, wherein the bulb has a cylindrical shape.
【請求項4】 上記バルブが非円筒状であることを特徴
とする請求項1に記載の電球。
4. The light bulb according to claim 1, wherein the bulb has a non-cylindrical shape.
【請求項5】 上記電球はハロゲンが封入されているこ
とを特徴とする請求項1ないし請求項4に記載の電球。
5. A light bulb according to claim 1, wherein the light bulb is filled with halogen.
JP29969693A 1993-11-30 1993-11-30 Bulb Pending JPH07153435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29969693A JPH07153435A (en) 1993-11-30 1993-11-30 Bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29969693A JPH07153435A (en) 1993-11-30 1993-11-30 Bulb

Publications (1)

Publication Number Publication Date
JPH07153435A true JPH07153435A (en) 1995-06-16

Family

ID=17875865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29969693A Pending JPH07153435A (en) 1993-11-30 1993-11-30 Bulb

Country Status (1)

Country Link
JP (1) JPH07153435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356020B1 (en) * 1998-07-06 2002-03-12 U.S. Philips Corporation Electric lamp with optical interference coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356020B1 (en) * 1998-07-06 2002-03-12 U.S. Philips Corporation Electric lamp with optical interference coating

Similar Documents

Publication Publication Date Title
US6534903B1 (en) Broad spectrum reflective coating for an electric lamp
JPS60258846A (en) Incandescent bulb
JPH07109758B2 (en) Bulb
JPH0320960A (en) Incandescent lamp
JPH07153435A (en) Bulb
JP3438289B2 (en) Light bulbs and lighting equipment
JPH085833A (en) Optical interference body, tubular lamp, halogen lamp and illuminator
JP3153050B2 (en) Incandescent light bulb
JP2928784B2 (en) Multilayer reflector
JPH10134767A (en) Metal halide lamp with transparent insulation coating film
JP3110131B2 (en) High durability thin film
JP2585986B2 (en) Tube ball
JP2687243B2 (en) Multilayer optical interference film
JPH0320961A (en) Incandescent lamp
JP3496498B2 (en) Incandescent light bulb
JP2971773B2 (en) Multilayer film
JP3054663B2 (en) Multilayer reflector
JPH06111792A (en) Bulb
JPH07240190A (en) Light bulb, halogen lamp, and lighting system
JP2874069B2 (en) Halogen bulb
JPH1073704A (en) Reflection mirror for high energy ray
JPH06203812A (en) Tubular bulb
JP2001256929A (en) Rare gas incandescent lamp
JPH06102404A (en) High durability thin film
JP2000260398A (en) Incandescent lamp with infrared ray reflecting film