JPH071531B2 - Thin film magnetic head slider and method of manufacturing the same - Google Patents

Thin film magnetic head slider and method of manufacturing the same

Info

Publication number
JPH071531B2
JPH071531B2 JP61076578A JP7657886A JPH071531B2 JP H071531 B2 JPH071531 B2 JP H071531B2 JP 61076578 A JP61076578 A JP 61076578A JP 7657886 A JP7657886 A JP 7657886A JP H071531 B2 JPH071531 B2 JP H071531B2
Authority
JP
Japan
Prior art keywords
slider
magnetic disk
zro
magnetic head
film magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61076578A
Other languages
Japanese (ja)
Other versions
JPS62234223A (en
Inventor
晋介 樋口
長四郎 北沢
忠彦 三吉
正樹 大浦
完訓 長池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61076578A priority Critical patent/JPH071531B2/en
Publication of JPS62234223A publication Critical patent/JPS62234223A/en
Publication of JPH071531B2 publication Critical patent/JPH071531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気デイスク装置用の薄膜磁気ヘツドスライダ
に係り、特に磁気デイスクの寿命を向上させるスライダ
とその製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head slider for a magnetic disk device, and more particularly to a slider for improving the life of the magnetic disk and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

磁気デイスク記憶装置の分野においては、増大する高記
録密度化の要請に応えるために磁気デイスクと磁気ヘツ
ドの浮上隙間の狭小化が進み、また磁気特性がよい薄膜
磁気ヘツドや薄膜デイスクの実用化が検討されている。
In the field of magnetic disk storage devices, the levitation gap between magnetic disks and magnetic heads is becoming narrower in order to meet the increasing demand for higher recording density, and the practical application of thin film magnetic heads and thin film disks with good magnetic characteristics is being promoted. Is being considered.

薄膜磁気ヘツド・スライダはその端面に薄膜素子が設け
られて磁気デイスク表面に接して保持され、高速回転す
る磁気デイスク表面に生じる空気流によつて磁気デイス
ク面上に浮上する機能を有する。したがつて、スライダ
は、磁気デイスク回転の起動・停止時には過渡的に磁気
デイスクと摺動する。さらに、浮上隙間の狭小化(0.1
〜0.3μm)によつてスライダと磁気デイスクの予期し
ない接触,摺動の機会がますます多くなる。このため、
スライダの接触,摺動によつて受ける磁気デイスクの損
傷が問題となつている。特に、薄膜デイスクの場合には
大きな問題となる。すなわち、薄膜デイスクの磁性材の
厚さは極めて小さい(0.05〜0.1μm)ので、許容され
る損傷の大きさは極めて小さくなる。このため、スライ
ダとしては、磁気デイスクに損傷を与えないものが強く
望まれている。
The thin film magnetic head slider is provided with a thin film element on its end face, is held in contact with the surface of the magnetic disk, and has a function of levitating on the surface of the magnetic disk by an air flow generated on the surface of the magnetic disk rotating at a high speed. Therefore, the slider slides transiently with the magnetic disk when the magnetic disk rotation is started and stopped. Furthermore, the levitation clearance is narrowed (0.1
~ 0.3 μm), the chances of unexpected contact and sliding between the slider and magnetic disk will increase. For this reason,
The damage of the magnetic disk caused by the contact and sliding of the slider is a problem. In particular, in the case of a thin film disk, it becomes a big problem. That is, since the thickness of the magnetic material of the thin film disk is extremely small (0.05 to 0.1 μm), the allowable damage size is extremely small. Therefore, a slider that does not damage the magnetic disk is strongly desired.

従来のスライダとしては、代表的には特公昭58−5470号
公報に開示されたAl2O3/TiC焼結体がある。Al2O3/TiC焼
結体は加工性がよく、薄膜磁気ヘツドを歩留りよく加工
製造するには好適であるが、前述の磁気デイスクに与え
る損傷に関しては必ずしも満足のいく材料ではなかつ
た。
As a conventional slider, there is typically an Al 2 O 3 / TiC sintered body disclosed in Japanese Patent Publication No. 58-5470. The Al 2 O 3 / TiC sintered body has good workability and is suitable for processing and manufacturing a thin film magnetic head with a good yield, but it is not always a satisfactory material for damage to the above-mentioned magnetic disk.

この問題を解決するために、例えば特開昭58−150122号
公報に開示された方法が提案されている。これは、スラ
イダの磁気デイスクとの摺動面に、MoS2,C等の潤滑性物
質をコートする方法である。潤滑性物質のコーテイング
によつて確かに磁気デイスクの寿命は向上させる。しか
し薄くコートしたのでは効果が長続きせず、逆に厚くコ
ートしたのでは実質的な浮上空隙が大きくなるので、記
録密度を向上する上で不利である。
In order to solve this problem, for example, the method disclosed in JP-A-58-150122 has been proposed. This is a method in which the sliding surface of the slider with respect to the magnetic disk is coated with a lubricating substance such as MoS 2 or C. The coating of the lubricating material certainly improves the life of the magnetic disk. However, a thin coating does not last long, whereas a thick coating substantially increases the floating gap, which is disadvantageous in improving the recording density.

一方、それ自体が磁気デイスクに与える損傷が少ないス
ライダとしては、例えば特開昭58−121179号公報に開示
されたZrO2焼結体が提案されている。この材料は確かに
接触,摺動によつて磁気デイスクの与える損傷が小さく
なつている。しかしながら、スライダの微小な浮上隙間
を保つた長期の連続運転においては、磁気デイスクの寿
命は必らずしも十分なものではなかった。
On the other hand, a ZrO 2 sintered body disclosed in, for example, Japanese Patent Application Laid-Open No. 58-121179 has been proposed as a slider that causes less damage to the magnetic disk itself. This material is certainly less damaged by the magnetic disk due to contact and sliding. However, the life of the magnetic disk is not always sufficient in a long-term continuous operation in which a minute floating clearance of the slider is maintained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上述べたように、従来のスライダでは磁気デイスクの
寿命に問題があつた。すなわち、スライダの磁気デイス
ク摺動面に潤滑膜をコートする方法は、磁気デイスクの
長寿命化と高記録密度化の両立が困難である。一方、摺
動性に改善が見られるZrO2焼結体を用いた場合でも、実
用においては必ずしも十分な磁気デイスクの寿命が得ら
れない。これは、ZrO2焼結体が電気絶縁体であるため
に、静電引力によつて大気中塵埃が付着し、これが浮上
中のスライダと磁気デイスクの予期しない接触を引き起
し、スライダと磁気デイスクの接触頻度が大きくなるた
めである。
As described above, the conventional slider has a problem in the life of the magnetic disk. That is, it is difficult for the method of coating the sliding surface of the magnetic disk of the slider with a lubricating film to achieve both long life of the magnetic disk and high recording density. On the other hand, even when a ZrO 2 sintered body, which shows improved slidability, is used, a sufficient magnetic disk life cannot always be obtained in practical use. This is because the ZrO 2 sintered body is an electrical insulator, so dust in the atmosphere adheres due to electrostatic attraction, causing unexpected contact between the flying slider and the magnetic disk, which causes This is because the frequency of contact of the disks becomes large.

本発明の目的は、浮上空隙の狭小化ができ、かつ長期に
わたつて磁気デイスクに損傷を与えない薄膜磁気ヘツド
用スライダを提供することにある。
An object of the present invention is to provide a slider for a thin film magnetic head capable of narrowing the flying gap and not damaging the magnetic disk for a long period of time.

〔問題点を解決するための手段〕 上記目的を達成するために、本発明者らは、ZrO2焼結体
に導電性を付与する努力を重ね、本発明をなすに至つ
た。すなわち、スライダ材料の内部に少なくともCを含
む結晶粒界相を内在させることにより上記目的を達成で
きることを見出した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have made efforts to impart conductivity to the ZrO 2 sintered body, and have completed the present invention. That is, it has been found that the above object can be achieved by incorporating a crystal grain boundary phase containing at least C inside the slider material.

〔作用〕[Action]

以下に本発明を詳細に述べる。 The present invention will be described in detail below.

本発明の目的を達成するために、スライダ材料の母材と
してはZrO2を用いる。本発明者らは、Cを添加したZrO2
の焼成において、適度な焼成温度とC含有量、及び焼成
雰囲気を選ぶことによりCを含む相が結晶粒界に生成さ
れ、しかも内部に気孔を含まない焼結体が得られること
を見出し本発明に至つた。すなわち焼成温度が1650℃未
満では、いかなるC含有量に対しても前記結晶粒界相は
生じないので、焼成温度は1650℃以上であることが必要
である。逆に焼成温度が2000℃を越えては、焼結体の結
晶粒が極めて大きくなるため、加工によつて生じるチツ
ピングが大きくなり好ましくなく、焼成コストの上から
も問題がある。なお、チツピングの問題を防ぐために
は、結晶粒径は5μm以下であることが必要である。し
たがつて焼成温度は1650℃〜2000℃がよい。
In order to achieve the object of the present invention, ZrO 2 is used as the base material of the slider material. The present inventors have found that C-added ZrO 2
In the present invention, it was found that by selecting an appropriate firing temperature, C content, and firing atmosphere, a phase containing C is generated at grain boundaries and a sintered body having no pores inside is obtained. Was reached. That is, if the firing temperature is less than 1650 ° C, the grain boundary phase does not occur for any C content, so the firing temperature must be 1650 ° C or higher. On the other hand, when the firing temperature exceeds 2000 ° C., the crystal grains of the sintered body become extremely large, and chipping caused by processing becomes large, which is not preferable, and there is a problem in terms of firing cost. In order to prevent the problem of chipping, the crystal grain size needs to be 5 μm or less. Therefore, the firing temperature is preferably 1650 ° C to 2000 ° C.

一方、C含有量が0.2重量%未満ではCの一部または大
半はZrO2と反応してZrC結晶粒を生じてしまうので効果
はなく、前記結晶粒界相を生じるためには0.2重量%以
上のC含有量が必要である。逆にC含有量が2重量%を
越えると、CはZrO2の焼結を著しく妨げるため、焼結体
内部に気孔が残つてしまい、スライダの如き精密加工が
必要な材料として好ましくない。したがつて、C含有量
は0.2〜2重量%がよい。また、焼成雰囲気が酸化性の
場合には、添加したCはCOないしCO2ガスとなつて離散
するため、焼成雰囲気は非酸化性であることが必要であ
る。
On the other hand, if the C content is less than 0.2% by weight, some or most of C reacts with ZrO 2 to produce ZrC crystal grains, which is not effective, and 0.2% by weight or more is required to produce the grain boundary phase. C content of is required. On the other hand, when the C content exceeds 2% by weight, C remarkably hinders the sintering of ZrO 2 , and pores remain inside the sintered body, which is not preferable as a material such as a slider that requires precision processing. Therefore, the C content is preferably 0.2 to 2% by weight. Further, when the firing atmosphere is oxidizing, the added C is dispersed as CO or CO 2 gas, and therefore the firing atmosphere needs to be non-oxidizing.

スライダ材の微視的な均一性を得るためにはCを含む相
を結晶粒界に均一に生成せしめるのがよい。このために
は焼成前に、CとZrO2粉末を極めて均一に混合しなけれ
ばならない。このためには熱分解してCを生じる有機物
を適当な溶媒に溶かして、ZrO2粉末と混合するのが望ま
しい。
In order to obtain microscopic uniformity of the slider material, it is preferable that the phase containing C be uniformly generated at the grain boundaries. For this purpose, C and ZrO 2 powder must be mixed very uniformly before firing. For this purpose, it is desirable to dissolve the organic substance that thermally decomposes to produce C in a suitable solvent and mix it with the ZrO 2 powder.

生成したCを含有相は、導電性を有するために、この相
が結晶粒界に存在することによつて、焼結体全体が導電
性を有するようになる。この結果、スライダの帯電が防
止されるので、静電引力によるスライダへの大気中の塵
埃付着が減少する。スライダへの塵埃付着は、浮上中の
スライダの浮上安定性を乱し、スライダとデイスクの予
期しない接触を引き起す最も大きな原因の一つである。
したがつて、スライダの導電性によつて磁気デイスクの
運転寿命を長くすることができる。
Since the generated C-containing phase has conductivity, the existence of this phase at the grain boundaries makes the entire sintered body conductive. As a result, the slider is prevented from being charged, and the adhesion of dust in the atmosphere to the slider due to electrostatic attraction is reduced. Dust adhesion to the slider is one of the major causes of disturbing the flying stability of the flying slider and causing unexpected contact between the slider and the disk.
Therefore, the operating life of the magnetic disk can be extended by the conductivity of the slider.

本発明においては、Cを含む相の少なくとも一部は非晶
質にすることができる。このことは、次の利点を有す
る。すなわち、Cを含む非晶質相は、母材のZrO2結晶と
比べて機械的強度が弱いため、摺動によつて優先的に摩
耗する。この結果、磁気デイスクとの摺動によつてスラ
イダの摺動面に極めて微細なCの摩耗粉が介在するよう
になり、これが潤滑材となつて摺動特性を一層向上する
のである。また、非晶質相の存在は、スライダの硬度を
軟かくするために、接触による磁気デイスクの損傷がよ
り小さくなる。
In the present invention, at least a part of the phase containing C can be made amorphous. This has the following advantages. That is, since the amorphous phase containing C has weaker mechanical strength than the ZrO 2 crystal of the base material, it preferentially wears due to sliding. As a result, due to sliding with the magnetic disk, extremely fine C wear powder is present on the sliding surface of the slider, and this serves as a lubricant to further improve the sliding characteristics. Further, the presence of the amorphous phase softens the hardness of the slider, so that the magnetic disk is less damaged by the contact.

〔実施例〕〔Example〕

以下に本発明を実施例によりさらに詳細に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 粉粒径が0.1μmのZrO2粉末(但し、8mol%のY2O3が固
溶したもの)に対し、0,0.2,0,4,2.0,4.0,5.0重量%の
ノボラツク・フエノール樹脂をアセトンに溶かして添加
し、ボールミルによつて48時間混練した。ノボラツク・
フエノール樹脂は熱分解によつて添加量の約50重量%の
Cを生じる。得た混合物は乾燥後、金型で圧粉成形し、
ホツトプレス焼成に供した。ホツトプレス焼成は、試料
を黒鉛型に装填し、10-4Torrの真空雰囲気中で黒鉛型を
高周波誘導加熱しつつ、黒鉛型に油圧プレスで荷重をか
け試料を500kgf/cm2の圧力で圧縮して行つた。焼成は18
00℃で1時間行つた。
Example 1 ZrO 2 powder having a particle diameter of 0.1 μm (however, 8 mol% of Y 2 O 3 was solid-dissolved) was added to 0, 0.2, 0, 4, 2.0, 4.0, 5.0% by weight of novolak. The phenol resin was dissolved in acetone and added, and the mixture was kneaded with a ball mill for 48 hours. Novorask
The phenolic resin produces about 50% by weight of added C by thermal decomposition. After the obtained mixture is dried, it is pressed into a mold,
It was subjected to hot press firing. In hot press firing, a sample is loaded into a graphite mold, the graphite mold is subjected to high-frequency induction heating in a vacuum atmosphere of 10 -4 Torr, and a load is applied to the graphite mold with a hydraulic press to compress the sample at a pressure of 500 kgf / cm 2. I went. Firing is 18
I went to 00 ℃ for 1 hour.

こうして得た焼結体は、まず、Cの含有量を分析した。
次に電子顕微鏡を用いて焼結体の微構造を観察した。さ
らに焼結体はラツプ盤で表面を研磨して顕微鏡で観察
し、気孔の有無を調べた。また電気抵抗率を測定した。
第1表はこれらの結果を示したものである。電子顕微鏡
による観察においては、結晶粒界相でのCの有無はエネ
ルギ・ロス測定法で調べ、結晶粒界相の結晶性は、回折
パターン観察におけるハロー現象の有無によつて調べ
た。
The sintered body thus obtained was first analyzed for the C content.
Next, the microstructure of the sintered body was observed using an electron microscope. Further, the surface of the sintered body was polished with a lapping machine and observed with a microscope to check the presence or absence of pores. Moreover, the electrical resistivity was measured.
Table 1 shows these results. In the observation with an electron microscope, the presence or absence of C in the grain boundary phase was examined by the energy loss measuring method, and the crystallinity of the grain boundary phase was examined by the presence or absence of the halo phenomenon in the diffraction pattern observation.

第1表より、0.2重量%以上のCを含む本発明品(試料
番号2,3,4)ではCを含む粒界相が存在することがわか
る。また、この粒界相の生成によつて焼結体の電気抵抗
率が著しく低下することがわかる。一方、2重量%以下
のCを含む本発明品では気孔が見られないのに対し、2.
5重量%のCを含む焼結体(試料番号6)では、気孔が
存在している。気孔が存在することの焼結体は一定の加
工条件でスライダ形状に加工を試みたところ、欠けや穴
が多数発生し、スライダとして不適当であつた。
From Table 1, it can be seen that the grain boundary phase containing C is present in the products of the present invention containing 0.2% by weight or more of C (Sample Nos. 2, 3, 4). Further, it is understood that the electrical resistivity of the sintered body is remarkably lowered due to the generation of the grain boundary phase. On the other hand, in the product of the present invention containing 2% by weight or less of C, no porosity is observed, while 2.
The sintered body containing 5% by weight of C (Sample No. 6) has pores. When a sintered body having pores was processed into a slider shape under constant processing conditions, many cracks and holes were generated, and it was unsuitable as a slider.

生成した粒界相には、電子顕微鏡による観察の結果、C
を含む非晶質相が認められた。
As a result of observation with an electron microscope, the generated grain boundary phase was C
An amorphous phase containing was found.

第1図は、本発明によるZrO2焼結体の典型的な破面の走
査型電子顕微鏡写真である。ZrO2結晶粒の間にCを含む
粒界相が認められる。
FIG. 1 is a scanning electron micrograph of a typical fracture surface of a ZrO 2 sintered body according to the present invention. A grain boundary phase containing C is recognized between ZrO 2 crystal grains.

実施例2 実施例1に記載と同様のZrO2粉末に対し、2.0重量%の
ノボラツク・フエノール樹脂をアセトンに溶かして添加
し、ボールミルによつて48時間混練した。得た混合物
は、乾燥後、金型で圧粉成形し、実施例1に記載と同様
の方法でホツトプレス焼成した。ただし、焼成温度は16
00℃,1650℃,1800℃,2000℃,2050℃と5通りで行なつ
た。
Example 2 To the same ZrO 2 powder as described in Example 1, 2.0 wt% of Novolac phenol resin was dissolved in acetone and added, and the mixture was kneaded by a ball mill for 48 hours. The resulting mixture was dried, pressed into a mold, and hot pressed by the same method as described in Example 1. However, the firing temperature is 16
The test was performed in 5 ways, 00 ℃, 1650 ℃, 1800 ℃, 2000 ℃, and 2050 ℃.

得た焼結体は、実施例1に記載と同様の方法で、C含有
量,微構造,電気抵抗率を調べた。さらに結晶粒径の大
きさを調べた。第2表はこれらの結果である。
The obtained sintered body was examined for C content, microstructure, and electric resistivity in the same manner as in Example 1. Furthermore, the size of the crystal grain size was examined. Table 2 shows these results.

第2表より、焼成温度が1650℃以上の本発明品(試料番
号8,4,9)では、Cを含む粒界相が存在することがわか
る。また、この相の生成によつて、焼結体の電気抵抗率
が著しく低下することがわかる。一方、焼成温度が2000
℃を越える2050℃(試料番号10)では、結晶粒径が9.1
μmと大きくなつている。この焼結体は、スライダ形状
に加工を試みたところ、粒径に匹敵する大きなチツピン
グが発生しスライダとして不適当であつた。
It can be seen from Table 2 that the grain boundary phase containing C is present in the product of the present invention (Sample Nos. 8, 4, 9) having a firing temperature of 1650 ° C. or higher. It is also found that the electrical resistivity of the sintered body is remarkably reduced due to the formation of this phase. On the other hand, the firing temperature is 2000
At 2050 ° C (Sample No. 10), which exceeds ℃, the crystal grain size is 9.1.
It is as large as μm. When an attempt was made to process this sintered body into a slider shape, large chipping comparable to the grain size occurred and it was unsuitable as a slider.

電子顕微鏡による観察の結果、生成した粒界相にはCを
含む非晶質が観察された。
As a result of observation with an electron microscope, an amorphous material containing C was observed in the produced grain boundary phase.

実施例3 実施例1で得た試料番号1〜5,7〜9の焼結体を用い
て、第2図に示すようにスライダに加工した。第2図は
薄膜磁気ヘツド・スライダの一例を示す斜視図であり、
スライダは薄膜素子形成面3と磁気デイスク摺動面4を
有している。
Example 3 Using the sintered bodies of sample numbers 1 to 5 and 7 to 9 obtained in Example 1, a slider was processed as shown in FIG. FIG. 2 is a perspective view showing an example of a thin film magnetic head slider,
The slider has a thin film element forming surface 3 and a magnetic disk sliding surface 4.

加工して得たスライダの磁気デイスクの寿命に対する特
性は次の方法で調べた。まずスライダは磁気デイスク摺
動面を磁気デイスクにのせてジンバルバネによつて磁気
デイスク面上に保持した。次いで、磁気デイスクをスラ
イダ位置での周速が40m/secとなる回転数で回転させ、
スライダを0.3μm浮上させ、30秒後に磁気デイスクは
回転停止した。以上の磁気デイスクの回転の起動,停止
を反復し磁気デイスクの損傷によつてジンバルバネに急
激な負荷がかかるまでの時間を測定した。磁気デイスク
は、Fe2O3磁性粉とAl2O3フイラー粉が混練された有機物
樹脂が磁性層としてAl製円板の表面に塗布された塗布型
デイスクを用いた。
The characteristics of the slider obtained by the processing with respect to the life of the magnetic disk were examined by the following method. First, in the slider, the sliding surface of the magnetic disk was placed on the magnetic disk and held by the gimbal spring on the magnetic disk surface. Next, rotate the magnetic disk at a rotational speed such that the peripheral speed at the slider position is 40 m / sec,
The slider was floated by 0.3 μm, and after 30 seconds, the magnetic disk stopped rotating. By repeating the above starting and stopping of the rotation of the magnetic disk, the time until the gimbal spring was suddenly loaded due to damage to the magnetic disk was measured. As the magnetic disk, a coating type disk was used in which an organic resin obtained by kneading Fe 2 O 3 magnetic powder and Al 2 O 3 filler powder was coated as a magnetic layer on the surface of an Al disc.

第3表は、測定結果を示す。第3表より、Cを含有する
粒界相を含み、電気抵抗率が108Ωcm以下のZrO2焼結体
(試料番号3,4,5,8,9)は、そうでない従来のZrO2焼結
体(試料番号1,2,7)と較べ、磁気デイスクの寿命を少
なくとも約2倍以上長くすることがわかる。
Table 3 shows the measurement results. As shown in Table 3, a ZrO 2 sintered body (sample number 3,4,5,8,9) containing a grain boundary phase containing C and having an electrical resistivity of 10 8 Ωcm or less was not used in the conventional ZrO 2 It can be seen that the life of the magnetic disk is at least about twice as long as that of the sintered body (Sample Nos. 1, 2, 7).

なお、本発明のZrO2としては部分安定化ZrO2を用いるこ
ともできる。
In addition, partially stabilized ZrO 2 may be used as ZrO 2 of the present invention.

部分安定化ZrO2(以下PSZ)は優れた耐摩耗性,靱性等
を有するセラミツクスとして注目を集めている。しかし
ながら、その実用化に対しては次の点が大きな問題点と
なつている。すなわちPSZは加工性が極めて悪い。PSZは
耐摩耗性,靱性がよいという機械的特性を有するため、
逆に加工する場合には、極めて加工が困難であり、コス
ト高となるのである。この点を解決するため焼成後に加
工部分を残さないようにしようとしても、成形体は焼成
前後で数10%の寸法変化(収縮)をするため、高精度の
寸法制御は困難である。このためPSZは優れた機械的特
性を有しながらも、高精度品,複雑形状品等への実用化
が難しかつた。
Partially stabilized ZrO 2 (PSZ) has attracted attention as a ceramic with excellent wear resistance and toughness. However, the following points are serious problems for its practical use. That is, PSZ has extremely poor workability. Since PSZ has mechanical properties of good wear resistance and toughness,
On the contrary, in the case of processing, the processing is extremely difficult and the cost becomes high. Even if an attempt is made not to leave a processed portion after firing in order to solve this point, the molded body undergoes a dimensional change (shrinkage) of several tens of percent before and after firing, so that it is difficult to control the dimension with high accuracy. For this reason, PSZ has excellent mechanical properties, but it is difficult to put it into practical use in high-precision products and complex-shaped products.

本発明によれば、Cの添加によりPSZに導電性をもたせ
ることができる。この結果、PSZの放電加工が可能とな
り、高精度品、複雑形状品の加工が可能となるのであ
る。しかも、Cの添加量はせいぜい2%以下であるため
に、PSZの優れた機械的特性を全く損うことがない。さ
らにPSZの耐摩耗性に加えて、Cによる潤滑性も加えら
れるという特長を有する。
According to the present invention, PSZ can be made conductive by adding C. As a result, PSZ electrical discharge machining becomes possible, and high precision products and complex shaped products become possible. Moreover, since the amount of C added is at most 2%, the excellent mechanical properties of PSZ are not impaired at all. Furthermore, in addition to the wear resistance of PSZ, it has the advantage of being lubricated by C.

このPSZは摺動部材として好適であり、例えば車輪の軸
受けやベアリング部材またはノズル部材等として好適で
あるが、とくに導電性を有し帯電をを防止することがで
きるため、磁気テープのガイドローラ等の磁気機器の摺
動部材として好適である。
This PSZ is suitable as a sliding member, for example, as a wheel bearing, a bearing member, a nozzle member, or the like, but since it is particularly conductive and can prevent charging, it can be used as a guide roller for a magnetic tape. It is suitable as a sliding member for magnetic equipment.

〔発明の効果〕〔The invention's effect〕

本発明によれば、長期にわたって磁気デイスクに損傷を
与えないスライダ材を得ることができるので、薄膜磁気
ヘツドの浮上隙間を小さくして、磁気デイスク記憶装置
の記録密度を向上し、かつ磁気デイスクの寿命を長くす
るのに効果がある。
According to the present invention, it is possible to obtain a slider material that does not damage the magnetic disk for a long period of time, so that the floating gap of the thin film magnetic head can be reduced, the recording density of the magnetic disk storage device can be improved, and the magnetic disk Effective in extending the life.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるZrO2焼結体の結晶の粒子構造を示
す走査型電子顕微鏡写真である。 第2図は、薄膜磁気ヘツド・スライダの一例を示す斜視
図である。 1…Cを含む粒界相、2…ZrO2の結晶粒、3…薄膜素子
形成面、4…磁気デイスク摺動面。
FIG. 1 is a scanning electron micrograph showing the grain structure of crystals of the ZrO 2 sintered body according to the present invention. FIG. 2 is a perspective view showing an example of the thin film magnetic head slider. 1 ... Grain boundary phase containing C, 2 ... ZrO 2 crystal grains, 3 ... Thin film element forming surface, 4 ... Magnetic disk sliding surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大浦 正樹 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (72)発明者 長池 完訓 神奈川県小田原市国府津2880番地 株式会 社日立製作所小田原工場内 (56)参考文献 特開 昭60−66361(JP,A) 実開 昭60−51666(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Oura 2880, Kozu, Odawara, Kanagawa Stock company Hitachi Ltd. Odawara factory (72) Inventor Kanen Nagaike 2880, Kozu, Odawara, Kanagawa Hitachi Odawara In the factory (56) References JP-A-60-66361 (JP, A) Actually developed Shou 60-51666 (JP, U)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】0.2〜2.0重量%のCを含む相がZrO2結晶粒
界に存在するZrO2焼結体から成ることを特徴とする薄膜
磁気ヘツドスライダ。
1. A 0.2 to 2.0% by weight of the thin-film magnetic head slider phase containing C is characterized in that it consists of ZrO 2 sintered body present in ZrO 2 grain boundaries.
【請求項2】前記Cを含む相の少なくとも一部は非晶質
であることを特徴とする特許請求の範囲第1項に記載の
薄膜磁気ヘツドスライダ。
2. The thin-film magnetic head slider according to claim 1, wherein at least a part of the phase containing C is amorphous.
【請求項3】Cまたは熱分解してCを生じる有機物とZr
O2粉末との混合を、1650〜2000℃の温度で、非酸化性の
雰囲気中で焼成することを特徴とする薄膜磁気ヘツドス
ライダの製造方法。
3. C or an organic substance which produces C upon thermal decomposition and Zr
A method of manufacturing a thin-film magnetic head slider, which comprises firing the mixture with O 2 powder at a temperature of 1650 to 2000 ° C. in a non-oxidizing atmosphere.
【請求項4】前記有機物とZrO2粉末との混合は、前記有
機物を溶媒に溶かして行うことを特徴とする特許請求の
範囲第3項に記載の薄膜磁気ヘツドスライダの製造方
法。
4. The method of manufacturing a thin film magnetic head slider according to claim 3, wherein the organic substance and the ZrO 2 powder are mixed by dissolving the organic substance in a solvent.
【請求項5】前記有機物としてフエノール樹脂を用いる
ことを特徴とする特許請求の範囲第3項または第4項に
記載の薄膜磁気ヘツドスライダの製造方法。
5. A method of manufacturing a thin film magnetic head slider according to claim 3, wherein a phenol resin is used as the organic substance.
JP61076578A 1986-04-04 1986-04-04 Thin film magnetic head slider and method of manufacturing the same Expired - Lifetime JPH071531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61076578A JPH071531B2 (en) 1986-04-04 1986-04-04 Thin film magnetic head slider and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61076578A JPH071531B2 (en) 1986-04-04 1986-04-04 Thin film magnetic head slider and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2321876A Division JPH0752484B2 (en) 1990-11-26 1990-11-26 Magnetic disk unit

Publications (2)

Publication Number Publication Date
JPS62234223A JPS62234223A (en) 1987-10-14
JPH071531B2 true JPH071531B2 (en) 1995-01-11

Family

ID=13609144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61076578A Expired - Lifetime JPH071531B2 (en) 1986-04-04 1986-04-04 Thin film magnetic head slider and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH071531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759456B2 (en) * 1987-03-30 1998-05-28 花王株式会社 Magnetic media recording device
JP3106210B2 (en) * 1991-03-29 2000-11-06 ミネベア株式会社 Floating magnetic head slider

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051666U (en) * 1983-09-14 1985-04-11 株式会社三協精機製作所 Magnetic head for recording and reproduction
JPS6066361A (en) * 1984-04-12 1985-04-16 Hitachi Metals Ltd Magnetic head

Also Published As

Publication number Publication date
JPS62234223A (en) 1987-10-14

Similar Documents

Publication Publication Date Title
EP0807189B1 (en) Hard disk drive components and methods of making same
JPH05296248A (en) Slider member
JPS6139918A (en) Slider for thin magnetic head
EP0076431B1 (en) Ceramic guides for tape-like materials and process for the production thereof
JPH071531B2 (en) Thin film magnetic head slider and method of manufacturing the same
US6508591B2 (en) Conductive ceramic bearing ball, ball bearing, motor having bearing, hard disk drive, and polygon scanner
EP0825355A2 (en) Air lubricated hydrodynamic ceramic bearings
JPH0752484B2 (en) Magnetic disk unit
US5914285A (en) Substrate material for a magnetic head
JP3611535B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
JP2525161B2 (en) Glass-like carbon composite material and method for producing the same
JP4567853B2 (en) Sintered silicon nitride
US5648303A (en) Non-magnetic ceramics for recording/reproducing heads and method of producing the same
JP2001354481A (en) Silicon nitride sintered compact and wear-resistant member obtained by using the same
JP2002081449A (en) Rolling bearing
JP2002029822A (en) Hollow ceramics sintered compact, sliding member using the same and ceramics bearing ball
JP3640910B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
JPH07287815A (en) Nonmagnetic ceramics for recording and reproducing head and its production
JPH05246763A (en) Ceramic sintered compact
JP4828685B2 (en) Silicon nitride sintered body, sliding member using the same, and bearing ball
JPH07118073B2 (en) Magnetic disk drive with thin-film magnetic head
JPH05254938A (en) Ceramic sintered compact
KR100533861B1 (en) Static elimination member consisting of semiconducting zirconia sinter and semiconducting zirconia sinter
JP2598960B2 (en) Glassy carbon composite material, method for producing the same, and sliding contact part
JPH0723260B2 (en) Method for producing glassy carbon material