JPH0715256A - Microwave amplifier - Google Patents

Microwave amplifier

Info

Publication number
JPH0715256A
JPH0715256A JP5158495A JP15849593A JPH0715256A JP H0715256 A JPH0715256 A JP H0715256A JP 5158495 A JP5158495 A JP 5158495A JP 15849593 A JP15849593 A JP 15849593A JP H0715256 A JPH0715256 A JP H0715256A
Authority
JP
Japan
Prior art keywords
cell
microwave
divided
cells
microwave amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5158495A
Other languages
Japanese (ja)
Inventor
Seiichi Tsuji
聖一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5158495A priority Critical patent/JPH0715256A/en
Publication of JPH0715256A publication Critical patent/JPH0715256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Landscapes

  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

PURPOSE:To keep matching over wide band by dividing a GaAsFET into plural independent cells and shifting matched band of each cell a little from each other. CONSTITUTION:Microwave power is passed through the impedance converting lines of the respective routes of input matching circuits 40 and 50, converted to the input impedance of an FET100 and inputted to this FET. The microwave power amplified by the FET100 is passed through the impedance converting lines of the respective routes of output matching circuits 80 and 90, converted into 50 ohms and outputted. In this case, the GaAsFET100 is divided into three cells 100A-100C, distributed, coupled to the three impedance converting lines and matched to the respective cells 100A-100C, and the lengths in terms of electricity of the impedance converting lines and impedance converting routes are set to respectively different lengths. Then, the cells 100A-100C have matched bands shifted from each other and when viewing the amplifier as a whole, the bands to be matched are enlarged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はマイクロ波帯で用いら
れる増幅器に関し、特に内部整合型GaAsFETに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amplifier used in a microwave band, and more particularly to an internal matching type GaAs FET.

【0002】[0002]

【従来の技術】図10は従来の内部整合型GaAsFE
Tを示す平面図であり、また、図11はその等価回路図
である。図において、1は図示しない基板上に配置され
たGaAsFET、2及び7は、誘電率ε=10の誘電
体基板、3及び6は、誘電率ε=38の誘電体基板であ
り、基板4,5、及び8,9は、これら誘電体基板2,
3、及び6,7上に形成された入出力整合回路である。
また10は整合回路間、または整合回路とFETの各電
極との間を接続するためのボンディング用の金ワイヤで
ある。
2. Description of the Related Art FIG. 10 shows a conventional internal matching type GaAsFE.
FIG. 12 is a plan view showing T, and FIG. 11 is an equivalent circuit diagram thereof. In the figure, 1 is a GaAs FET arranged on a substrate (not shown), 2 and 7 are dielectric substrates having a dielectric constant ε = 10, 3 and 6 are dielectric substrates having a dielectric constant ε = 38, and a substrate 4, 5 and 8 and 9 are dielectric substrates 2,
It is an input / output matching circuit formed on 3, and 6, 7.
Further, 10 is a gold wire for bonding for connecting between the matching circuits or between the matching circuit and each electrode of the FET.

【0003】次に動作について説明する。入力されたマ
イクロ波電力は、入力整合回路4,5を通り、ここでイ
ンピーダンス変換されてGaAsFET1に入力され
る。そしてGaAsFET1で増幅されたマイクロ波電
力は、出力整合回路8,9を通りインピーダンス変換さ
れて出力される。図10に示すように、入力整合回路
4,5、GaAsFET1のゲート,ドレイン電極、及
び出力整合回路8,9のそれぞれの間は、金ワイヤ10
で電気的に接続されており、また、GaAsFET1に
おいて、ゲート,ドレイン,ソース電極はそれぞれ複数
あるが、それぞれ1つに電気的に接続されている。
Next, the operation will be described. The input microwave power passes through the input matching circuits 4 and 5 and is impedance-converted here and input to the GaAs FET 1. The microwave power amplified by the GaAsFET 1 passes through the output matching circuits 8 and 9 and is impedance-converted and output. As shown in FIG. 10, gold wires 10 are provided between the input matching circuits 4 and 5, the gate and drain electrodes of the GaAsFET 1, and the output matching circuits 8 and 9.
In the GaAsFET 1, there are a plurality of gate electrodes, drain electrodes, and source electrodes, but they are electrically connected to one.

【0004】普通、50Ω線路を通ってきたマイクロ波
電力は、入力整合回路4,5のインピーダンス変換線路
Zi4,Zi3,Zi2,Zi1(図11参照)を通ってGaA
sFET1の入力インピーダンス近くのインピーダンス
に変換されてGaAsFET1に入力される。増幅され
たマイクロ波電力は入力側とは逆に、インピーダンス変
換線路Zo1,Zo2,Zo3,Zo4を通り、50Ω近くのイ
ンピーダンスに変換されて出力される。
Normally, the microwave power that has passed through the 50Ω line passes through the impedance conversion lines Zi4, Zi3, Zi2, and Zi1 (see FIG. 11) of the input matching circuits 4 and 5 to GaA.
It is converted into an impedance close to the input impedance of sFET1 and input to GaAsFET1. The amplified microwave power passes through the impedance conversion lines Zo1, Zo2, Zo3, and Zo4 opposite to the input side, and is converted into an impedance of about 50Ω and output.

【0005】[0005]

【発明が解決しようとする課題】従来の内部整合型マイ
クロ波増幅器は以上のように構成されているので、所定
の帯域において増幅器の利得,出力電力,効率等が最適
となるように整合回路が設計されているため、広帯域に
わたって整合を取ることが困難であり、広帯域の内部整
合型マイクロ波増幅器を得ることが困難であるという問
題点があった。
Since the conventional internally-matched microwave amplifier is constructed as described above, the matching circuit is designed so that the gain, output power, efficiency, etc. of the amplifier are optimized in a predetermined band. Since it is designed, it is difficult to obtain matching over a wide band, and it is difficult to obtain a wide band internally matched microwave amplifier.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、広帯域にわたって整合を取るこ
とができるマイクロ波増幅器を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a microwave amplifier capable of matching over a wide band.

【0007】[0007]

【課題を解決するための手段】この発明に係る内部整合
型マイクロ波増幅器は、GaAsFETを複数の独立し
たセルに分割し、そのセル毎の整合を少しずつずらして
行うようにしたものである。
An internal matching type microwave amplifier according to the present invention is one in which a GaAs FET is divided into a plurality of independent cells and the matching of each cell is slightly shifted.

【0008】[0008]

【作用】この発明においては、GaAsFETが複数の
セルに分割され、それぞれが電気的に独立しているの
で、整合のずれによる不均一動作を生じることなく、各
セルに対して整合を取ることができ、全体として広帯域
にわたって整合を実現することができる。
In the present invention, since the GaAs FET is divided into a plurality of cells and they are electrically independent from each other, it is possible to achieve matching with each cell without causing non-uniform operation due to misalignment. It is possible to achieve matching over a wide band as a whole.

【0009】[0009]

【実施例】実施例1.以下、この発明の第1の実施例に
よる内部整合型マイクロ波増幅器を図について説明す
る。図1において、図10と同一符号は同一または相当
部分を示し、100A,100B,100Cは分割され
たGaAsFET、40,50、及び80,90は、誘
電体基板2,3、及び6,7上に形成された入力整合回
路、及び出力整合回路を示す。図に示すように、入力整
合回路40,50はそれぞれ分岐パターン40a〜40
c,50a〜50cを有し、出力整合回路80,90は
それぞれ分岐パターン80a〜80c,90a〜90c
を有するものとなっている。またGaAsFET1は、
3つの独立したセル100A,100B,100Cに分
割されており、ゲート,ドレイン,ソース電極もそれぞ
れ分割されている。
EXAMPLES Example 1. An internal matching microwave amplifier according to the first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same reference numerals as those in FIG. 10 indicate the same or corresponding portions, 100A, 100B and 100C are divided GaAs FETs, and 40, 50 and 80, 90 are on the dielectric substrates 2, 3, 6 and 7. 3 shows an input matching circuit and an output matching circuit formed in FIG. As shown in the figure, the input matching circuits 40 and 50 have branch patterns 40a to 40, respectively.
c, 50a to 50c, the output matching circuits 80 and 90 have branch patterns 80a to 80c and 90a to 90c, respectively.
It has become. In addition, GaAsFET1
It is divided into three independent cells 100A, 100B and 100C, and the gate, drain and source electrodes are also divided respectively.

【0010】次に作用について図2を参照しつつ説明す
る。50Ω線路を通ってきたマイクロ波電力は、入力整
合回路40,50の各経路lA,lB,lCのインピーダンス変
換線路Zi4,Zi3(Zi3' ,Zi3" ),Zi2,Zi1を通
り、FET100の入力インピーダンスに変換されてこ
れに入力される。該FET100で増幅されたマイクロ
波電力は、出力整合回路80,90の各経路lA' ,lB'
,lC' のインピーダンス変換線路Zo1,Zo2,Zo3
(Zo3' ,Zo3"),Zo4を通り、50Ωに変換されて
出力される。
Next, the operation will be described with reference to FIG. The microwave power that has passed through the 50Ω line passes through the impedance conversion lines Zi4, Zi3 (Zi3 ', Zi3 "), Zi2, Zi1 of the paths lA, lB, lC of the input matching circuits 40, 50, and the input impedance of the FET 100. The microwave power amplified by the FET 100 is converted into the input signal and the microwave power amplified by the FET 100 is passed through the paths 1A 'and 1B' of the output matching circuits 80 and 90.
, LC 'impedance conversion lines Zo1, Zo2, Zo3
(Zo3 ', Zo3 "), Zo4, converted to 50Ω and output.

【0011】この際、GaAsFET100は3つのセ
ル100A,100B,100Cに分割されており、イ
ンピーダンス変換線路も3つ(lA,lB,lC、lA' ,lB'
,lC' )に分配,結合されており、それぞれのセル1
00A,100B,100Cに対して整合を取った形と
なっている。この時、インピーダンス変換線路Zi3,Z
i3' ,Zi3" の電気長、及びインピーダンス変換経路Z
o3,Zo3' ,Zo3" の電気長はそれぞれ異なった長さに
設定されており、その結果、セル100A,100B,
100Cは整合される帯域がずれることとなる。
At this time, the GaAsFET 100 is divided into three cells 100A, 100B and 100C, and three impedance conversion lines (1A, 1B, 1C, 1A ', 1B').
, LC ′), and each cell 1
It has a form matched with 00A, 100B, and 100C. At this time, the impedance conversion lines Zi3, Z
i3 ', Zi3 "electrical length and impedance conversion path Z
The electrical lengths of o3, Zo3 ', and Zo3 "are set to different lengths, respectively, and as a result, the cells 100A, 100B,
For 100C, the band to be matched is shifted.

【0012】このように本実施例によれば、マイクロ波
FET100を3つのセル100A,100B,100
Cに分割する一方、入力及び出力側整合回路40,90
は、それぞれの長さが異なる分岐パターン40a〜40
c,90a〜90bを有するものとし、かつ分割された
各セル100A,100B,100Cに、それぞれ長さ
の異なるインピーダンス変換線路を接続するようにした
から、各セルにおける整合が少しずつずれて、増幅器全
体として見た場合、整合のとれる帯域が大きくなること
となる。
As described above, according to this embodiment, the microwave FET 100 is composed of three cells 100A, 100B, 100.
While divided into C, input and output side matching circuits 40, 90
Are branch patterns 40a to 40 having different lengths.
Since the impedance conversion lines having different lengths are connected to the divided cells 100A, 100B and 100C, the matching in each cell is slightly shifted, and When viewed as a whole, the band in which matching can be achieved becomes large.

【0013】実施例2.次に本発明の第2の実施例によ
るマイクロ波増幅器を図について説明する。上記実施例
1では、整合回路を構成するインピーダンス変換線路の
電気長を異なるものとするために、分岐パターンの長さ
を変化させるようにしたが、本実施例2では、GaAs
FETの内部の構造を変更することにより、インピーダ
ンス変換線路の電気長を変化させるようにしたものであ
る。すなわち図3において、101はマイクロ波FE
T、11,12はそのボンディング用ゲート、及びドレ
インパッド、13a〜13cはゲート電極からの引き出
し線路である。セル101A,101B,101Cに対
するゲート電極引き出し線路13a〜13cの長さはそ
れぞれ異なるように設定されており、そのインダクタン
スLA ,LB ,LC (図4参照)も異なっている。
Example 2. Next, a microwave amplifier according to a second embodiment of the present invention will be described with reference to the drawings. In the first embodiment, the length of the branch pattern is changed in order to make the electric lengths of the impedance conversion lines forming the matching circuit different, but in the second embodiment, the GaAs is changed.
By changing the internal structure of the FET, the electrical length of the impedance conversion line is changed. That is, in FIG. 3, 101 is a microwave FE.
Reference numerals T, 11 and 12 denote bonding gates and drain pads thereof, and 13a to 13c are lead lines extending from the gate electrodes. The lengths of the gate electrode lead lines 13a to 13c for the cells 101A, 101B and 101C are set to be different from each other, and the inductances LA, LB and LC (see FIG. 4) are also different.

【0014】また図5は上記図3で示したGaAsFE
T101を組み込んだマイクロ波増幅器の平面図を示
し、図に示すように、入力及び出力側整合回路を構成す
る分岐パターン41a〜41c、91a〜91cの長さ
は、それぞれにおいて同一となるように設計されてい
る。また、図6はその等価回路図を示す。
FIG. 5 shows the GaAsFE shown in FIG.
The top view of the microwave amplifier incorporating T101 is shown, and as shown in the figure, the branch patterns 41a to 41c and 91a to 91c constituting the input and output side matching circuits are designed to have the same length. Has been done. Further, FIG. 6 shows an equivalent circuit diagram thereof.

【0015】次に動作について説明する。50Ω線路を
通ってきたマイクロ波電力は、入力整合回路41,50
のインピーダンス変換線路Zi4,Zi3,Zi2,Zi1を通
って、それぞれのセル101A,101B,101Cに
対して一様にインピーダンス変換される。そしてボンデ
ィング用金ワイヤ10を通ってFET101に入力され
たマイクロ波電力は、各セル101A,101B,10
1Cの引き出し線路13a,13b,13cの長さla,
lb,lcが異なるため、帯域がずれて増幅されるようにな
る。
Next, the operation will be described. The microwave power that has passed through the 50Ω line is input matching circuits 41, 50.
The impedance conversion lines Zi4, Zi3, Zi2, and Zi1 are subjected to uniform impedance conversion for the respective cells 101A, 101B, and 101C. Then, the microwave power input to the FET 101 through the bonding gold wire 10 is applied to the cells 101A, 101B, 10
The lengths la of the 1C lead lines 13a, 13b, 13c,
Since lb and lc are different, the bands are shifted and amplified.

【0016】このような本実施例2では、FET101
の各セル101A,101B,101Cのゲート電極か
らの引き出し線路13a,13b,13cの長さをそれ
ぞれ異なるものとすることにより、各セルにおける整合
が少しずつずれることとなり、増幅器全体として見た場
合、整合のとれる帯域を大きくすることができるもので
ある。
In the second embodiment as described above, the FET 101
By making the lengths of the lead-out lines 13a, 13b, 13c from the gate electrodes of the cells 101A, 101B, 101C different from each other, the matching in each cell slightly shifts, and when viewed as the amplifier as a whole, The band that can be matched can be increased.

【0017】実施例3.次に本発明の第3の実施例によ
るマイクロ波増幅器を図について説明する。図7におい
て、14a,14b,14cは、セル100A,100
B,100Cと入力整合回路50とを接続する、それぞ
れ口径の異なる金ワイヤ、15a,15b,15cは、
セル100A,100B,100Cと出力整合回路80
とを接続する、それぞれ口径の異なる金ワイヤである。
Embodiment 3. Next, a microwave amplifier according to a third embodiment of the present invention will be described with reference to the drawings. In FIG. 7, 14a, 14b, and 14c are cells 100A and 100c.
Gold wires 15a, 15b, and 15c, which connect B and 100C to the input matching circuit 50, have different diameters,
Output matching circuit 80 with cells 100A, 100B, 100C
And gold wires with different diameters that connect with each other.

【0018】このような本実施例3では、分割されたセ
ル100A,100B,100Cと、入力及び出力整合
回路50,80とを、各セル毎に口径の異なる金ワイヤ
14a,14b,14c及び15a,15b,15cを
用いて接続するようにしたから、各セル毎のインダクタ
ンスLA ,LB ,LC (図8参照)が異なるようにな
り、各セルにおける整合が少しずつずれて、増幅器全体
として見た場合、整合のとれる帯域を大きくすることが
できることとなる。
In the third embodiment, the divided cells 100A, 100B and 100C and the input and output matching circuits 50 and 80 are provided with gold wires 14a, 14b, 14c and 15a having different diameters. , 15b, 15c are used, the inductances LA, LB, LC (see FIG. 8) of each cell are different, and the matching in each cell is slightly deviated, and the whole amplifier is viewed. In this case, it is possible to increase the matching band.

【0019】実施例4.次に本発明の第4の実施例によ
るマイクロ波増幅器を図について説明する。図におい
て、5a,8aはそれぞれFET100に対して斜めに
配置された入力及び出力整合回路である。16はこれら
整合回路5a,8aとセル100A,100B,100
Cとを接続する金ワイヤであり、各セル100A,10
0B,100C毎にその長さが異なっている。
Example 4. Next, a microwave amplifier according to a fourth embodiment of the present invention will be described with reference to the drawings. In the figure, 5a and 8a are input and output matching circuits arranged obliquely with respect to the FET 100, respectively. 16 is these matching circuits 5a, 8a and cells 100A, 100B, 100
It is a gold wire that connects to C and each of the cells 100A, 10A
The length is different every 0B and 100C.

【0020】このような本実施例4では、入力及び出力
整合回路5a,8aをFET100に対して斜めに形成
したから、各セル100A,100B,100C毎に長
さの異なる金ワイヤ16でもって整合回路5a,8aと
の接続が行われるようになり、その結果、各セル毎のイ
ンダクタンスが異なるようになり、各セルにおける整合
が少しずつずれて、増幅器全体として見た場合、整合の
とれる帯域を大きくすることができることとなる。
In this fourth embodiment, since the input and output matching circuits 5a and 8a are formed obliquely with respect to the FET 100, matching is performed with the gold wire 16 having a different length for each cell 100A, 100B and 100C. The connection with the circuits 5a and 8a is made, and as a result, the inductance of each cell is different, and the matching in each cell is slightly deviated. It can be increased.

【0021】[0021]

【発明の効果】以上のように、この発明に係るマイクロ
波増幅器によれば、FETを複数の独立したセルに分割
し、そのセル毎に整合をずらすように構成したので、増
幅器全体としての整合のとれる帯域が大きくなり、広帯
域の内部整合型マイクロ波FETを得ることができると
いう効果がある。
As described above, according to the microwave amplifier of the present invention, the FET is divided into a plurality of independent cells, and the matching is shifted for each cell. There is an effect that the obtainable band is widened and a wide band internally matched microwave FET can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例によるマイクロ波増幅
器を示す平面図。
FIG. 1 is a plan view showing a microwave amplifier according to a first embodiment of the present invention.

【図2】上記マイクロ波増幅器の等価回路図。FIG. 2 is an equivalent circuit diagram of the microwave amplifier.

【図3】この発明の第2の実施例によるマイクロ波増幅
器に用いられるFETの平面図。
FIG. 3 is a plan view of an FET used in the microwave amplifier according to the second embodiment of the present invention.

【図4】上記FETの等価回路図。FIG. 4 is an equivalent circuit diagram of the FET.

【図5】上記第2の実施例のマイクロ波増幅器の平面
図。
FIG. 5 is a plan view of the microwave amplifier according to the second embodiment.

【図6】上記マイクロ波増幅器の等価回路図。FIG. 6 is an equivalent circuit diagram of the microwave amplifier.

【図7】この発明の第3の実施例によるマイクロ波増幅
器を示す平面図。
FIG. 7 is a plan view showing a microwave amplifier according to a third embodiment of the present invention.

【図8】上記マイクロ波増幅器の等価回路図。FIG. 8 is an equivalent circuit diagram of the microwave amplifier.

【図9】この発明の第4の実施例によるマイクロ波増幅
器を示す平面図。
FIG. 9 is a plan view showing a microwave amplifier according to a fourth embodiment of the present invention.

【図10】従来のマイクロ波増幅器の平面図。FIG. 10 is a plan view of a conventional microwave amplifier.

【図11】従来のマイクロ波増幅器の等価回路図。FIG. 11 is an equivalent circuit diagram of a conventional microwave amplifier.

【符号の説明】 1 GaAsFET 100 分割されたGaAsFET 100A〜100C セル 101 GaAsFET 2 誘電体基板(εr =10) 3 誘電体基板(εr =38) 4 入力整合回路 40 入力整合回路 40a〜40c 分岐パターン 41a〜41c 分岐パターン 5 入力整合回路 5a 入力整合回路 50 入力整合回路 50a〜50c 分岐パターン 6 誘電体基板(ε=10) 7 誘電体基板(ε=38) 8 出力整合回路 8a 出力整合回路 80 出力整合回路 80a〜80c 分岐パターン 9 出力整合回路 90 出力整合回路 90a〜90c 分岐パターン 91a〜91c 分岐パターン 10 金ワイヤ 11 ゲートパッド 12 ドレインパッド 13a〜13c ゲート電極引き出し線路 14a〜14c 口径の異なる金ワイヤ 15a〜15c 口径の異なる金ワイヤ[Description of Reference Signs] 1 GaAsFET 100 Divided GaAsFET 100A to 100C Cell 101 GaAsFET 2 Dielectric substrate (εr = 10) 3 Dielectric substrate (εr = 38) 4 Input matching circuit 40 Input matching circuit 40a to 40c Branching pattern 41a ~ 41c Branch pattern 5 Input matching circuit 5a Input matching circuit 50 Input matching circuit 50a ~ 50c Branch pattern 6 Dielectric substrate (ε = 10) 7 Dielectric substrate (ε = 38) 8 Output matching circuit 8a Output matching circuit 80 Output matching circuit Circuit 80a-80c Branching pattern 9 Output matching circuit 90 Output matching circuit 90a-90c Branching pattern 91a-91c Branching pattern 10 Gold wire 11 Gate pad 12 Drain pad 13a-13c Gate electrode lead-out line 14a-14c Gold wire 15 with different diameters 15 Different gold wire of ~15c caliber

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年9月27日[Submission date] September 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】実施例4.次に本発明の第4の実施例によ
るマイクロ波増幅器を図について説明する。図におい
て、5a,8aはそれぞれFET100に対して斜めに
配置された入力及び出力整合回路である。16はこれら
整合回路5a,8aとセル100A,100B,100
Cとを接続する金ワイヤであり、各セル100A,10
0B,100C毎にその長さが異なっている。
Example 4. Next, a microwave amplifier according to a fourth embodiment of the present invention will be described with reference to the drawings. In FIG. 9 , 5a and 8a are input and output matching circuits arranged obliquely with respect to the FET 100. 16 is these matching circuits 5a, 8a and cells 100A, 100B, 100
It is a gold wire that connects to C and each of the cells 100A, 10A
The length is different every 0B and 100C.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 1 GaAsFET 100 分割されたGaAsFET 100A〜100C セル 101 GaAsFET 2 誘電体基板(εr =10) 3 誘電体基板(εr =38) 4 入力整合回路 40 入力整合回路 40a〜40c 分岐パターン 41a〜41c 分岐パターン 5 入力整合回路 5a 入力整合回路 50 入力整合回路 50a〜50c 分岐パターン 6 誘電体基板(ε=10) 7 誘電体基板(ε=38) 8 出力整合回路 8a 出力整合回路 80 出力整合回路 80a〜80c 分岐パターン 9 出力整合回路 90 出力整合回路 90a〜90c 分岐パターン 91a〜91c 分岐パターン 10 金ワイヤ 11 ゲートパッド 12 ドレインパッド 13a〜13c ゲート電極引き出し線路 14a〜14c 口径の異なる金ワイヤ 15a〜15c 口径の異なる金ワイヤ16 長さの異なる金ワイヤ [Description of Reference Signs] 1 GaAsFET 100 Divided GaAsFET 100A to 100C Cell 101 GaAsFET 2 Dielectric substrate (εr = 10) 3 Dielectric substrate (εr = 38) 4 Input matching circuit 40 Input matching circuit 40a to 40c Branching pattern 41a -41c Branch pattern 5 Input matching circuit 5a Input matching circuit 50 Input matching circuit 50a-50c Branch pattern 6 Dielectric substrate (ε = 10) 7 Dielectric substrate (ε = 38) 8 Output matching circuit 8a Output matching circuit 80 Output matching circuit Circuit 80a-80c Branching pattern 9 Output matching circuit 90 Output matching circuit 90a-90c Branching pattern 91a-91c Branching pattern 10 Gold wire 11 Gate pad 12 Drain pad 13a-13c Gate electrode lead-out line 14a-14c Gold wire with different diameter 15 Different gold wire of different gold wire 16 lengths of ~15c diameter

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波増幅用FETと、その入力及
び出力側にそれぞれ設けられた整合回路とを備えたマイ
クロ波増幅器において、 上記マイクロ波増幅用FETは、そのゲート,ドレイ
ン,及びソース電極が複数の部分に分かれて複数の独立
したセルに分割されており、 上記複数のゲート、及びドレインの引き出し電極線路の
長さがそれぞれ異なっていることを特徴とするマイクロ
波増幅器。
1. A microwave amplifier comprising a microwave amplification FET and matching circuits respectively provided on the input and output sides thereof, wherein the microwave amplification FET has a gate, a drain, and a source electrode. A microwave amplifier, which is divided into a plurality of parts and is divided into a plurality of independent cells, and the lengths of the lead-out electrode lines of the plurality of gates and the drains are different from each other.
【請求項2】 マイクロ波増幅用FETと、その入力及
び出力側にそれぞれ設けられた整合回路とを備えたマイ
クロ波増幅器において、 上記マイクロ波増幅用FETは、そのゲート,ドレイ
ン,及びソース電極が複数の部分に分かれて複数の独立
したセルに分割されており、 上記入力側、及び出力側の整合回路は、上記セル毎にそ
のパターンが分割されており、各セルに対する分配線
路,及び結合線路のそれぞれの長さが相互に異なってい
ることを特徴とするマイクロ波増幅器。
2. A microwave amplifier comprising a microwave amplification FET and matching circuits respectively provided on the input side and the output side of the microwave amplification FET, wherein the microwave amplification FET has a gate, a drain and a source electrode. It is divided into a plurality of parts and divided into a plurality of independent cells. The matching circuit on the input side and the output side has its pattern divided for each cell, and the distribution line and the coupling line for each cell are divided. A microwave amplifier characterized in that the respective lengths of the two are different from each other.
【請求項3】 請求項2記載のマイクロ波増幅器におい
て、 上記整合回路のパターンの長さが、上記各セル毎に異な
ることを特徴とするマイクロ波増幅器。
3. The microwave amplifier according to claim 2, wherein the pattern length of the matching circuit is different for each cell.
【請求項4】 請求項2記載のマイクロ波増幅器におい
て、 上記各セルの電極パッドと、該各セルの各整合回路パタ
ーンとの間を結ぶ金ワイヤの口径が、相互に異なること
を特徴とするマイクロ波増幅器。
4. The microwave amplifier according to claim 2, wherein the diameter of the gold wire connecting the electrode pad of each cell and each matching circuit pattern of each cell is different from each other. Microwave amplifier.
【請求項5】 請求項2記載のマイクロ波増幅器におい
て、 上記分割されたセルからなるFETに隣接する各整合回
路パターンを、前記FETに対して斜めに形成し、上記
各セルの各整合回路パターンと上記各セルの電極パッド
との間を、各セル毎にその長さの異なる金属ワイヤを用
いて接続したことを特徴とするマイクロ波増幅器。
5. The microwave amplifier according to claim 2, wherein each matching circuit pattern adjacent to the FET composed of the divided cells is formed obliquely to the FET, and each matching circuit pattern of each cell is formed. A microwave amplifier characterized in that a metal wire having a different length for each cell is connected between the electrode pad of each cell and the electrode pad of each cell.
JP5158495A 1993-06-29 1993-06-29 Microwave amplifier Pending JPH0715256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158495A JPH0715256A (en) 1993-06-29 1993-06-29 Microwave amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158495A JPH0715256A (en) 1993-06-29 1993-06-29 Microwave amplifier

Publications (1)

Publication Number Publication Date
JPH0715256A true JPH0715256A (en) 1995-01-17

Family

ID=15672991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158495A Pending JPH0715256A (en) 1993-06-29 1993-06-29 Microwave amplifier

Country Status (1)

Country Link
JP (1) JPH0715256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288434A (en) * 2006-04-14 2007-11-01 Toshiba Corp Amplifier and radio communication circuit
JP2008109227A (en) * 2006-10-23 2008-05-08 Mitsubishi Electric Corp High-frequency power amplifier
JP2015015496A (en) * 2008-12-10 2015-01-22 株式会社東芝 High-frequency semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288434A (en) * 2006-04-14 2007-11-01 Toshiba Corp Amplifier and radio communication circuit
JP2008109227A (en) * 2006-10-23 2008-05-08 Mitsubishi Electric Corp High-frequency power amplifier
JP2015015496A (en) * 2008-12-10 2015-01-22 株式会社東芝 High-frequency semiconductor device

Similar Documents

Publication Publication Date Title
JP3306664B2 (en) Push-pull power amplifier
US5528203A (en) Coplanar waveguide-mounted flip chip
US5061910A (en) Balun transformers
US5550518A (en) Miniature active conversion between microstrip and coplanar wave guide
US4547745A (en) Composite amplifier with divider/combiner
US4668920A (en) Power divider/combiner circuit
JPH0396007A (en) Apparatus for executing impedance conversion
JP2544595B2 (en) Ultra high frequency power amplifier
JPH0715256A (en) Microwave amplifier
WO1997017738A1 (en) Slotline-to-coplanar waveguide transition
US6265937B1 (en) Push-pull amplifier with dual coplanar transmission line
JPH0352407A (en) Hybrid amplifier
JPS6181017A (en) Power divider and power coupler
JP2980001B2 (en) Field-effect transistor
WO2003107472A1 (en) Distributed amplifier tapered constant "r" network
CN1206495A (en) Method for making circuit structure having flip-mounted matrix of device
CN1206499A (en) Circuit structure having a flip-mounted matrix of devices
JP4153898B2 (en) RF power amplifier module
JPH05110355A (en) Semiconductor device
CN1206506A (en) Slotline-to-coplanar waveguide transition
JPS60150639A (en) Microwave semiconductor amplifier
AU694066C (en) Method for making a circuit structure having a flip-mounted matrix of devices
JP2022190781A (en) Amplifier circuit and semiconductor amplifier device
JPH0239573A (en) Gate viahole type semiconductor element
JPH0298201A (en) Microwave high output amplifier