JPH0715203A - Primary radiator for common use of circularly polarized wave and linearly polarized wave - Google Patents

Primary radiator for common use of circularly polarized wave and linearly polarized wave

Info

Publication number
JPH0715203A
JPH0715203A JP26930591A JP26930591A JPH0715203A JP H0715203 A JPH0715203 A JP H0715203A JP 26930591 A JP26930591 A JP 26930591A JP 26930591 A JP26930591 A JP 26930591A JP H0715203 A JPH0715203 A JP H0715203A
Authority
JP
Japan
Prior art keywords
waveguide
circular waveguide
circular
circularly polarized
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26930591A
Other languages
Japanese (ja)
Inventor
Katsuaki Kaminakada
勝明 上中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP26930591A priority Critical patent/JPH0715203A/en
Publication of JPH0715203A publication Critical patent/JPH0715203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To output a signal from one rectangular waveguide joined to a circular waveguide by selecting any desired wave out of a circularly polarized wave (right turning and left turning circularly polarized waves) introduced to the circular waveguide and a linearly polarized wave (horizontally and vertically polarized waves). CONSTITUTION:This device is composed of a ferrite bar 5 arranged at the center of a circular waveguide 2 on the side of an opening part 1 inside the circular waveguide 1 so that the lengthwise direction can be parallel to the axis of the tube, excited coil 4 for impressing a DC magnetic field to the ferrite bar 5, and rectangular waveguide 6 provided as the output means and electromagnetic waves on the side of a terminal end face 3. A desired signal to be received is provided from an output means by selecting either the horizontally polarized wave or the vertically polarized wave while setting a value within a Faraday rotating area for the DC magnetic field of the ferrite bar, either the right turning circularly polarized wave or the left turning circularly polarized wave is absorbed by the magnetic resonance phenomenon of the positive circularly polarized wave while setting a value within a magnetic resonance area for the DC magnetic field of the ferrite bar 5, and the desired signal to be received is provided from the output means so that the other wave desired to be received can be a negative circularly polarized wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円偏波を使用している
衛星放送(BS)と、直線偏波(水平偏波および垂直偏
波)を使用している通信衛星(CS)とを、共に受信可
能とした円偏波および直線偏波共用一次放射器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a satellite broadcasting (BS) using circular polarization and a communication satellite (CS) using linear polarization (horizontal polarization and vertical polarization). , For both circularly polarized and linearly polarized primary radiators capable of receiving both.

【0002】[0002]

【従来の技術】従来のBSおよびCS共用アンテナは図
9(A)に示すように、同一リフレクタ16にBS用の
一次放射器17とCS用の一次放射器18を並べて取り
付け、リフレクタ16の焦点をずらせて、リフレクタ1
6の一端の焦点にBS用の一次放射器17が位置するよ
うにし、リフレクタ16の他端の焦点にCS用の一次放
射器18が位置するようにして、リフレクタ16の向き
を各々の衛星の向きにして、BSの電波およびCSの電
波を受信するようにしていた。
2. Description of the Related Art As shown in FIG. 9 (A), a conventional BS and CS common antenna has a BS primary radiator 17 and a CS primary radiator 18 mounted side by side on the same reflector 16 and a focal point of the reflector 16. Slide the reflector 1
The primary radiator 17 for BS is positioned at the focal point of one end of the reflector 6, and the primary radiator 18 for CS is positioned at the focal point of the other end of the reflector 16 so that the orientation of the reflector 16 of each satellite is changed. It was oriented so that it could receive BS radio waves and CS radio waves.

【0003】[0003]

【発明が解決しようとする課題】従って、リフレクタ1
6の焦点がずらせてあるため各々の一次放射器で得られ
る利得が低下するといった問題点があり、また、同一リ
フレクタ16に2個の一次放射器を取り付けているた
め、構造が複雑となるといった問題点もあった。本発明
は、BSとCS用に共用できる一次放射器とし、図9
(B)に示すように一次放射器20をリフレクタ19の
焦点に配置して、BSを受信するときにはリフレクタ1
9を放送衛星の方向に向け、CSを受信するときにはリ
フレクタ19を通信衛星の方向に向けて、BSの電波と
CSの電波が同一の一次放射器20で受信できるように
し、構造が簡単で価格の安い、経済的な受信システムを
提供することを目的とする。
Therefore, the reflector 1
There is a problem that the gain obtained by each primary radiator is reduced because the focus of 6 is deviated, and the structure becomes complicated because two primary radiators are attached to the same reflector 16. There were also problems. The present invention provides a primary radiator that can be commonly used for BS and CS.
The primary radiator 20 is arranged at the focal point of the reflector 19 as shown in FIG.
9 is directed toward the broadcasting satellite, and when receiving CS, the reflector 19 is directed toward the communication satellite so that the BS and CS radio waves can be received by the same primary radiator 20. The structure is simple and the price is low. The aim is to provide a cheap, economical receiving system for.

【0004】[0004]

【課題を解決するための手段】図1は、本発明の一実施
例を示す、円偏波および直線偏波共用一次放射器の一部
切欠き斜視図であり、同図に示すように、一端に電磁波
を導入する開口部1を設け、他端に終端面3を設けた円
形導波管2と、同円形導波管2の内部の開口部1側に、
長手方向が管軸と平行となるようにして円形導波管2の
中心に配置したフェライト棒5と、同フェライト棒5に
直接巻き付けて同フェライト棒5に直流磁界を加える励
磁コイル4と、同円形導波管2の終端面3側に、円形導
波管2内に導入された電磁波の出力手段として設けた方
形導波管あるいはプローブ(図1においては、方形導波
管6)とからなり、フェライト棒5の直流磁界をファラ
デー回転領域内で値を設定することにより、前記円形導
波管2内に導入された水平偏波あるいは垂直偏波の内、
受信希望の偏波信号を選択して前記出力手段(図1にお
いては、方形導波管6)から出力せしめ、前記フェライ
ト棒5の直流磁界を磁気共鳴領域内で値を設定すること
により、前記円形導波管2内に導入された右旋あるいは
左旋円偏波の内、一方を正円偏波の磁気共鳴現象で吸収
し、受信希望の他方を負の円偏波となるようにして前記
出力手段(図1においては、方形導波管6)から出力せ
しめるものである。
FIG. 1 is a partially cutaway perspective view of a primary radiator for both circularly polarized waves and linearly polarized waves, showing an embodiment of the present invention. As shown in FIG. A circular waveguide 2 having an opening 1 for introducing an electromagnetic wave at one end and a terminating surface 3 at the other end, and an opening 1 side inside the circular waveguide 2,
A ferrite rod 5 arranged at the center of the circular waveguide 2 with its longitudinal direction parallel to the tube axis; an exciting coil 4 wound directly on the ferrite rod 5 to apply a DC magnetic field to the ferrite rod 5; On the end face 3 side of the circular waveguide 2, a rectangular waveguide or probe (in FIG. 1, rectangular waveguide 6) provided as an output means of the electromagnetic wave introduced into the circular waveguide 2 is formed. By setting the value of the DC magnetic field of the ferrite rod 5 within the Faraday rotation region, the horizontal polarized wave or the vertical polarized wave introduced into the circular waveguide 2,
By selecting the polarization signal desired to be received and outputting it from the output means (the rectangular waveguide 6 in FIG. 1), and setting the value of the DC magnetic field of the ferrite rod 5 within the magnetic resonance region, One of the right-handed or left-handed circularly polarized waves introduced into the circular waveguide 2 is absorbed by the magnetic resonance phenomenon of the right-handed circularly polarized wave, and the other one desired to be received becomes the negatively circularly polarized wave. The output means (the rectangular waveguide 6 in FIG. 1) is used for output.

【0005】[0005]

【作用】本発明によれば、リフレクタの焦点に配置した
一つの一次放射器を使用して、CSを受信するときには
リフレクタを通信衛星の方向に向けて、同一次放射器内
に導入された垂直および水平偏波から希望する方を選択
して、信号として出力しコンバータに入力し、BSを受
信するときにはリフレクタを放送衛星の方向に向けて、
同一次放射器内に導入された右旋および左旋円偏波から
希望する方を選択して、信号として出力しコンバータに
入力し、同コンバータで局部発信周波数を変化させて選
局することにより衛星放送、あるいは通信衛星の電波を
受信することができる。図3は、本発明の一次放射器の
円形導波管内に使用するフェライト棒5のマイクロ波透
磁率特性の説明図であり、横軸Hdcは図1に示す励磁
コイル4を使用してフェライト棒5に加える直流磁界の
値を示し、縦軸は以下の大きさを示す。 μ1′は正円偏波の透磁率の実数部 μ2′は負円偏波の透磁率の実数部 μ1″は正円偏波の透磁率の虚数部 また、は、ファラデー回転領域を示し、は、μ1′
の零透磁率近傍の領域を示し、は、正円偏波の共鳴現
象領域を示し、Hoは、共鳴点の直流磁界の強さを示
す。
According to the invention, one primary radiator located at the focal point of the reflector is used to direct the reflector towards the communication satellite when receiving the CS, with the vertical radiator introduced in the same primary radiator. And select the desired one from the horizontal polarization, output it as a signal and input it to the converter, when receiving the BS, turn the reflector toward the broadcasting satellite,
The satellite is selected by selecting the desired one from the right-handed and left-handed circularly polarized waves introduced in the same primary radiator, outputting it as a signal, inputting it to the converter, and changing the local oscillation frequency with this converter to select the satellite. It is possible to receive broadcast or radio waves from communication satellites. FIG. 3 is an explanatory view of the microwave permeability characteristics of the ferrite rod 5 used in the circular waveguide of the primary radiator of the present invention, and the horizontal axis Hdc is the ferrite rod using the exciting coil 4 shown in FIG. 5 shows the value of the DC magnetic field applied to No. 5, and the vertical axis shows the following magnitude. μ1 ′ is the real part of the permeability of the right circular polarization μ2 ′ is the real part of the permeability of the negative circular polarization μ1 ″ is the imaginary part of the permeability of the right circular polarization In addition, is the Faraday rotation region, and is , Μ1 ′
Indicates a region in the vicinity of zero magnetic permeability, indicates a resonance phenomenon region of circularly polarized wave, and Ho indicates the strength of the DC magnetic field at the resonance point.

【0006】図4は、フェライト棒5を装填した円形導
波管のファラデー回転の説明図であり、円形導波管2の
開口部1から直線偏波が垂直方向に向かう電界の向きで
入射され、電磁波の伝播方向に向かってフェライト棒5
に直流磁界Hdcを加えたとする。直線偏波は右回りと
左回りの2つの円偏波に分解することができ、電波の伝
播方向に対して、右回りを正とし、左回りを負とする
と、図3に示すようにフェライト棒5の透磁率は正円偏
波および負円偏波に対し、各々異なった値のμ1′、μ
2′となり、正円偏波および負円偏波に対する位相定数
も各々異なった値、β1、β2となる。フェライト棒5
の長さをLとすると、直線偏波がフェライト棒5を通り
抜けたところでは、直線偏波の空間的な位相角は、入射
された状態に対して、 Θ=L(β2−β1)/2─────(1) だけ回転する。
FIG. 4 is an explanatory view of the Faraday rotation of a circular waveguide loaded with a ferrite rod 5, in which linearly polarized light is incident from the opening 1 of the circular waveguide 2 in the direction of an electric field directed in the vertical direction. , The ferrite rod 5 in the direction of electromagnetic wave propagation
It is assumed that a DC magnetic field Hdc is applied to. The linearly polarized wave can be decomposed into two circularly polarized waves, clockwise and counterclockwise. If the clockwise direction is positive and the counterclockwise direction is negative with respect to the propagation direction of the radio wave, the ferrite is as shown in FIG. The magnetic permeability of the rod 5 is different between μ1 'and μ for circularly polarized waves and negatively polarized waves.
2 ', and the phase constants for the circularly polarized wave and the negatively polarized wave also have different values of β1 and β2. Ferrite rod 5
Is L, the spatial phase angle of the linearly polarized wave at the place where the linearly polarized wave passes through the ferrite rod 5 is Θ = L (β2-β1) / 2 with respect to the incident state. ───── (1) Rotate only.

【0007】CSを受信するときには、図1に示す円形
導波管2内に導入された水平偏波あるいは垂直偏波に対
して希望する方を選択し、方形導波管6から選択された
偏波が最大となるように、励磁コイル4に流れる電流を
制御し、フェライト棒5に加える直流磁界を図3のに
示すファラデー回転領域内で調整する。円形導波管2内
に導入された水平偏波あるいは垂直偏波の電界分布は、
互いに直交したTE11モードの直線偏波であり、フェ
ライト棒5で相対的に(1)式により位相角が回転する
ため、一方が方形導波管6から出力されるように設定す
れば、他方は出力されない。従って、方形導波管6から
受信希望の信号のみを取り出してコンバータに入力する
ことができる。
When receiving CS, a desired one is selected for the horizontal polarization or the vertical polarization introduced into the circular waveguide 2 shown in FIG. 1, and the selected polarization is selected from the rectangular waveguide 6. The current flowing through the exciting coil 4 is controlled so that the wave becomes maximum, and the DC magnetic field applied to the ferrite rod 5 is adjusted within the Faraday rotation region shown in FIG. The electric field distribution of horizontal polarization or vertical polarization introduced into the circular waveguide 2 is
Since the TE11 mode linearly polarized waves are orthogonal to each other and the phase angle is relatively rotated by the ferrite rod 5 by the equation (1), if one is set to be output from the rectangular waveguide 6, the other is No output. Therefore, only the signal desired to be received can be taken out from the rectangular waveguide 6 and input to the converter.

【0008】BSを受信するときで、受信希望が右旋円
偏波である場合、円形導波管2内に導入された右旋円偏
波あるいは左旋円偏波の内、右旋円偏波が、負の円偏波
となるようにフェライト棒5に加える直流磁界の方向を
設定する。このようにすれば、不要な左旋円偏波は正の
円偏波となる。フェライト棒5に加える直流磁界を図3
のに示すHoの共鳴点の直流磁界の強さとすることに
より、フェライト棒5の装填部分を右旋円偏波および左
旋円偏波が通過すると、不要な左旋円偏波は磁気共鳴現
象により吸収され、受信希望の右旋円偏波だけがフェラ
イト棒5の装填部分を通過する。受信希望の右旋円偏波
は、円偏波の直交する直線偏波の内、一方のみを方形導
波管6から信号として取り出してコンバータに入力する
ようにしているため、受信信号レベルとしては約3db
の減衰を受けるが、CSの電波に対してBSの電波は強
いので、CSの電波が受信できるような大きいリフレク
タをアンテナとして使用すれば、BSの電波を受信する
ことができる。
When the BS is received and the desired reception is a right-handed circularly polarized wave, a right-handed circularly polarized wave out of the right-handed circularly polarized wave or the left-handed circularly polarized wave introduced into the circular waveguide 2. However, the direction of the DC magnetic field applied to the ferrite rod 5 is set so that a negative circular polarization is obtained. By doing this, the unnecessary left-handed circularly polarized wave becomes a positive circularly polarized wave. The DC magnetic field applied to the ferrite rod 5 is shown in FIG.
By setting the strength of the DC magnetic field at the resonance point of Ho as shown by, when the right-handed circularly polarized wave and the left-handed circularly polarized wave pass through the loading part of the ferrite rod 5, unnecessary left-handed circularly polarized waves are absorbed by the magnetic resonance phenomenon. Then, only the right-handed circularly polarized wave desired to be received passes through the loaded portion of the ferrite rod 5. Regarding the right-handed circularly polarized wave desired to be received, only one of the linearly polarized waves orthogonal to the circularly polarized wave is taken out as a signal from the rectangular waveguide 6 and input to the converter. About 3db
However, since the BS radio waves are stronger than the CS radio waves, the BS radio waves can be received by using a large reflector that can receive the CS radio waves as an antenna.

【0009】左旋円偏波を受ける場合は、受信希望の左
旋円偏波が、負の円偏波となるようにフェライト棒5に
加える直流磁界の方向を設定する。このようにすれば、
不要な右旋円偏波は正の円偏波となる。フェライト棒5
に加える直流磁界を図3のに示すHoの共鳴点の直流
磁界の強さとすることにより、フェライト棒5の装填部
分を右旋円偏波および左旋円偏波が通過すると、不要な
右旋円偏波は磁気共鳴現象により吸収され、受信希望の
左旋円偏波だけがフェライト棒5の装填部分を通過す
る。従って、左旋円偏波の直交する直線偏波の内、一方
のみを方形導波管6から信号として取り出してコンバー
タに入力することが可能となる。
When receiving a left-handed circularly polarized wave, the direction of the DC magnetic field applied to the ferrite rod 5 is set so that the desired left-handed circularly polarized wave becomes a negative circularly polarized wave. If you do this,
Unnecessary right-handed circular polarization becomes positive circular polarization. Ferrite rod 5
By setting the DC magnetic field to be added to the strength of the DC magnetic field at the resonance point of Ho shown in FIG. 3, when the right-handed circular polarization and the left-handed circular polarization pass through the loading portion of the ferrite rod 5, unnecessary right-handed circular The polarized wave is absorbed by the magnetic resonance phenomenon, and only the left-handed circularly polarized wave desired to be received passes through the loaded portion of the ferrite rod 5. Therefore, it becomes possible to extract only one of the left-handed circularly polarized linearly polarized waves as a signal from the rectangular waveguide 6 and input it to the converter.

【0010】[0010]

【実施例】図1は、本発明の一実施例を示す、円偏波お
よび直線偏波共用一次放射器の一部切欠き斜視図であ
り、図2は、図1の正面図であり、同図において、円形
導波管2の管軸に対して垂直方向に向かう軸をY軸と
し、水平方向に向かう軸をX軸とする〔以下、図4、図
5(A)および(B)、図6(A)および(B)、図
7、図8(A)および(B)において同じ〕。円形導波
管2の一端を電磁波を効率的に導入できるようにホーン
形状の開口部1とし、他端に導入された電磁波を反射さ
せる終端面3を設けており、円形導波管2の開口部1側
に、長手方向が管軸と平行となるようにして円形導波管
2の中心部にフェライト棒5を配置している。フェライ
ト棒5には励磁コイル4を直接巻き付けて、フェライト
棒5に直流磁界を加えることができるようにしており、
励磁コイル4は接着材等を使用して円形導波管2の内部
に保持している。励磁コイル4は直接フェライト棒5に
巻き付けて使用する代わりに、フェライト棒5が位置す
る円形導波管2の外部側面に巻き付けて、フェライト棒
5に直流磁界を加えるようにしても良い。この場合に
は、誘電体材料を使用して、フェライト棒5を円形導波
管2の中心部に保持できるようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing an embodiment of the present invention, and FIG. 2 is a front view of FIG. In the figure, the axis extending in the direction perpendicular to the tube axis of the circular waveguide 2 is the Y axis, and the axis extending in the horizontal direction is the X axis [hereinafter, FIG. 4, FIG. 5 (A) and (B)]. , FIG. 6 (A) and (B), FIG. 7, FIG. 8 (A) and (B)]. One end of the circular waveguide 2 has a horn-shaped opening 1 so that electromagnetic waves can be efficiently introduced, and a terminal surface 3 for reflecting the introduced electromagnetic waves is provided at the other end. On the part 1 side, a ferrite rod 5 is arranged at the center of the circular waveguide 2 so that the longitudinal direction is parallel to the tube axis. The exciting coil 4 is directly wound around the ferrite rod 5 so that a direct magnetic field can be applied to the ferrite rod 5.
The exciting coil 4 is held inside the circular waveguide 2 by using an adhesive or the like. The exciting coil 4 may be wound around the outer side surface of the circular waveguide 2 in which the ferrite rod 5 is located and used to apply a DC magnetic field to the ferrite rod 5, instead of being wound directly around the ferrite rod 5. In this case, a dielectric material is used so that the ferrite rod 5 can be held at the center of the circular waveguide 2.

【0011】フェライト棒5は、直径を大きくすると、
必要な電磁波の回転角度を得るための長さが短くなり、
直径を細くすると、必要な電磁波の回転角度を得るため
の長さが長くなるが、円形導波管2の内部に配置できる
ように適当な直径のものを選択して使用する。円形導波
管2の終端面3側の側面に、円形導波管2内に導入され
た電磁波の出力手段として方形導波管6を接合してお
り、方形導波管6の管軸の延長線と円形導波管2の管軸
とが直交する配置とし、円形導波管2と方形導波管6と
は開口7を介して接続され、方形導波管6から電磁波が
出力できるようにしている。円形導波管2内に設けられ
た励磁コイル4の引き出し線8は、円形導波管2の側面
に設けられた開口9を通して、円形導波管2の外部に引
き出して直流電源と接続して、励磁コイル4に直流電流
を流して所定の直流磁界をフェライト棒5に加えること
ができるようにしている。
If the diameter of the ferrite rod 5 is increased,
The length to obtain the required rotation angle of the electromagnetic wave becomes shorter,
If the diameter is made smaller, the length for obtaining the necessary rotation angle of the electromagnetic wave becomes longer, but the one having an appropriate diameter is selected and used so that it can be arranged inside the circular waveguide 2. A rectangular waveguide 6 is joined to the side surface of the circular waveguide 2 on the side of the end surface 3 as an output means of the electromagnetic wave introduced into the circular waveguide 2, and the tube axis of the rectangular waveguide 6 is extended. The line and the tube axis of the circular waveguide 2 are arranged to be orthogonal to each other, and the circular waveguide 2 and the rectangular waveguide 6 are connected through an opening 7 so that electromagnetic waves can be output from the rectangular waveguide 6. ing. The lead wire 8 of the exciting coil 4 provided in the circular waveguide 2 is drawn out of the circular waveguide 2 through an opening 9 provided on the side surface of the circular waveguide 2 and connected to a DC power source. A direct current is passed through the exciting coil 4 so that a predetermined DC magnetic field can be applied to the ferrite rod 5.

【0012】通信衛星からの水平偏波あるいは垂直偏波
を受ける場合は、励磁コイル4に流す直流電流を調整し
て、フェライト棒5に加える直流磁界をファラデー回転
領域内で値を設定することにより、円形導波管2内に導
入された水平偏波あるいは垂直偏波の内、方形導波管6
から出力される受信希望の偏波信号が最大となるように
して同出力をコンバータに入力して通信衛星を受信する
ようにしている。衛星放送を受ける場合は、励磁コイル
4に流す直流電流を調整して、フェライト棒5に加える
直流磁界を磁気共鳴領域内で値を設定することにより、
円形導波管2内に導入された衛星からの右旋あるいは左
旋円偏波に対して、一方を正円偏波の磁気共鳴現象で吸
収し、受信希望の他方を負の円偏波となるようにし、方
形導波管6から受信希望の偏波信号が出力されるように
して、同出力をコンバータに入力して衛星放送を受信す
るようにしている。
When receiving the horizontal polarization or the vertical polarization from the communication satellite, by adjusting the direct current flowing through the exciting coil 4 and setting the value of the direct magnetic field applied to the ferrite rod 5 within the Faraday rotation region. Of the horizontal polarization or the vertical polarization introduced in the circular waveguide 2, the rectangular waveguide 6
The polarization signal desired to be received from the receiver is maximized so that the same output is input to the converter to receive the communication satellite. When receiving satellite broadcasting, by adjusting the DC current flowing through the exciting coil 4 and setting the value of the DC magnetic field applied to the ferrite rod 5 within the magnetic resonance region,
The right-handed or left-handed circularly polarized wave from the satellite introduced into the circular waveguide 2 is absorbed by the magnetic resonance phenomenon of the circularly polarized wave, and the other desired reception becomes the circularly polarized wave. Thus, the polarized wave signal desired to be received is output from the rectangular waveguide 6, and the output is input to the converter to receive the satellite broadcast.

【0013】図5(A)は、本発明のその他の実施例を
示す円偏波および直線偏波共用一次放射器の一部切欠き
斜視図であり、(B)は同上の正面図である。円形導波
管2の終端面3側の側面に、円形導波管2内に導入され
た電磁波の出力手段として方形導波管6を接合してお
り、方形導波管6の管軸の延長線と円形導波管2の管軸
とが直交する配置とし、円形導波管2と方形導波管6と
は開口7を介して接続され、方形導波管6から電磁波が
出力できるようにしている。方形導波管6の接合部と円
形導波管2の終端面3間に略長方形の抵抗板10を設
け、同抵抗板10の短辺が終端面3に対して垂直となる
向きとし、方形導波管6の管軸の延長線に対して抵抗板
10の長辺方向が平行となる向きに配置して、受信希望
の信号に対して不要モードを抵抗板10で減衰させるよ
うにしている。
FIG. 5A is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention, and FIG. 5B is a front view of the same. . A rectangular waveguide 6 is joined to the side surface of the circular waveguide 2 on the side of the end surface 3 as an output means of the electromagnetic wave introduced into the circular waveguide 2, and the tube axis of the rectangular waveguide 6 is extended. The line and the tube axis of the circular waveguide 2 are arranged to be orthogonal to each other, and the circular waveguide 2 and the rectangular waveguide 6 are connected through an opening 7 so that electromagnetic waves can be output from the rectangular waveguide 6. ing. A substantially rectangular resistance plate 10 is provided between the junction of the rectangular waveguide 6 and the end surface 3 of the circular waveguide 2, and the short side of the resistance plate 10 is oriented perpendicular to the end surface 3 to form a square shape. The resistance plate 10 is arranged in a direction in which the long side direction of the waveguide 6 is parallel to the extension line of the waveguide axis so that the unwanted mode is attenuated by the resistance plate 10 with respect to a signal desired to be received. .

【0014】図6(A)は、本発明のその他の実施例を
示す円偏波および直線偏波共用一次放射器の一部切欠き
斜視図であり、(B)は同上の正面図である。図5
(A)および(B)に示す実施例との相違は、受信希望
の信号に対して不要モードを減衰させるために使用して
いる抵抗板10の代わりに、略長方形の金属板11を使
用し、方形導波管6の接合部とフェライト棒5間に配置
している点である。金属板11は、同金属板11の短辺
を円形導波管2の管軸に対して平行となる向きとし、同
金属板11の長辺を方形導波管6の管軸の延長線に対し
て平行となる向きに配置して、不要モードの電磁波を反
射させ、受信希望の信号のみが方形導波管6から出力さ
れるようにしている。
FIG. 6 (A) is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. 6 (B) is a front view of the same. . Figure 5
The difference from the embodiments shown in (A) and (B) is that a substantially rectangular metal plate 11 is used in place of the resistance plate 10 used for attenuating unnecessary modes for a signal desired to be received. That is, it is arranged between the junction of the rectangular waveguide 6 and the ferrite rod 5. In the metal plate 11, the short side of the metal plate 11 is oriented parallel to the tube axis of the circular waveguide 2, and the long side of the metal plate 11 is an extension line of the tube axis of the rectangular waveguide 6. They are arranged in parallel to each other so that electromagnetic waves in unnecessary modes are reflected and only signals desired to be received are output from the rectangular waveguide 6.

【0015】図7は、本発明のその他の実施例を示す、
円偏波および直線偏波共用一次放射器の一部切欠き斜視
図であり、図1の実施例との相違は、円形導波管2内に
導入された電磁波の出力手段として、方形導波管6を円
形導波管2の側面に接合する代わりに、方形導波管13
を円形導波管2の終端面3の外側に接合し、方形導波管
13の管軸と円形導波管2の管軸の延長線とが重なる向
きにして配置している。 方形導波管13と円形導波管
2の接続はスリット12を介して接続するようにしてい
る。スリット12の形状は、長手方向を出力する電磁波
の約半波長程度の長さとし、スリット12の幅は、希望
信号と直交関係にある不要モードの電磁波の電界がスリ
ット12を通り抜けないような長さとしている。スリッ
ト12の長手方向がY軸と平行となるようにスリット1
2を配置した場合は、方形導波管13の断面の長手方向
がY軸と平行となるようにして円形導波管2に方形導波
管13を接合する。スリット12の長手方向と、方形導
波管13の断面の長手方向とが、平行な状態あれば、ス
リット12の長手方向は他の向きに設けるようにしても
良い。
FIG. 7 shows another embodiment of the present invention,
FIG. 2 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, which is different from the embodiment of FIG. 1 in that a rectangular waveguide is used as an output means of an electromagnetic wave introduced into a circular waveguide 2. Instead of joining the tube 6 to the side of the circular waveguide 2, a rectangular waveguide 13
Is joined to the outside of the end surface 3 of the circular waveguide 2, and is arranged so that the tube axis of the rectangular waveguide 13 and the extension line of the tube axis of the circular waveguide 2 overlap. The rectangular waveguide 13 and the circular waveguide 2 are connected via the slit 12. The shape of the slit 12 is a length of about a half wavelength of the electromagnetic wave output in the longitudinal direction, and the width of the slit 12 is such that the electric field of the electromagnetic wave in the unnecessary mode orthogonal to the desired signal does not pass through the slit 12. I am trying. Slit 1 so that the longitudinal direction of slit 12 is parallel to the Y axis
When 2 is arranged, the rectangular waveguide 13 is joined to the circular waveguide 2 such that the longitudinal direction of the cross section of the rectangular waveguide 13 is parallel to the Y axis. If the longitudinal direction of the slit 12 and the longitudinal direction of the cross section of the rectangular waveguide 13 are parallel to each other, the longitudinal direction of the slit 12 may be provided in another direction.

【0016】図8(A)は、本発明のその他の実施例を
示す円偏波および直線偏波共用一次放射器の一部切欠き
斜視図であり、(B)は同上の正面図であり、図1の実
施例との相違は、円形導波管2内に導入された電磁波の
出力手段として、方形導波管6を円形導波管2の側面に
接合する代わりに、プローブ14を使用するようにして
おり、プローブ14の中心軸の延長線と円形導波管2の
管軸とが直交する向きとして円形導波管2内に外部側面
から挿入している。円形導波管2の側面に固定具15を
使用してプローブ14を固定し、円形導波管2内に挿入
したプローブ14の部分に円形導波管2内に導入された
受信希望の電磁波を結合させて、電気信号としてプロー
ブ14で円形導波管2の外部に取り出すようにしてい
る。円形導波管2に対するプローブ14の挿入の深さ
は、プローブ14で取り出す信号が最大となるように調
整する。図5および図6に示す抵抗板10および金属板
11を使用する場合は、円形導波管2の開口部1からみ
たプローブ14の中心軸の延長線に対して、抵抗板10
は、抵抗板10の長辺が直交する向きとし、あるいは金
属板11を使用するときは、同金属板11の長辺が直交
する向きとなるように配置して、受信希望の信号に対し
て不要モードの信号がプローブ14に結合しないように
しても良い。
FIG. 8 (A) is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. 8 (B) is a front view of the same. The difference from the embodiment of FIG. 1 is that instead of joining the rectangular waveguide 6 to the side surface of the circular waveguide 2, the probe 14 is used as an output means of the electromagnetic wave introduced into the circular waveguide 2. The extension line of the central axis of the probe 14 and the tube axis of the circular waveguide 2 are orthogonal to each other, and the probe 14 is inserted into the circular waveguide 2 from the outer side surface. The probe 14 is fixed to the side surface of the circular waveguide 2 by using the fixture 15, and the electromagnetic wave desired to be received introduced into the circular waveguide 2 is introduced into the portion of the probe 14 inserted into the circular waveguide 2. The probes 14 are coupled to each other and are output to the outside of the circular waveguide 2 by the probe 14 as an electric signal. The insertion depth of the probe 14 into the circular waveguide 2 is adjusted so that the signal extracted by the probe 14 becomes maximum. When the resistance plate 10 and the metal plate 11 shown in FIGS. 5 and 6 are used, the resistance plate 10 is extended with respect to the extension line of the central axis of the probe 14 as viewed from the opening 1 of the circular waveguide 2.
Is arranged such that the long sides of the resistance plate 10 are orthogonal to each other, or when the metal plate 11 is used, the long sides of the metal plate 11 are arranged to be orthogonal to each other, and the signal desired to be received is received. The unwanted mode signal may not be coupled to the probe 14.

【0017】[0017]

【発明の効果】以上説明したように、本発明によればB
S用およびCS用に共用とした円偏波および直線偏波共
用一次放射器を使用して、同一次放射器をリフレクタの
焦点に配置し、リフレクタの向きをBS受信のときは放
送衛星の方向にし、CS受信のときは通信衛星の方向に
して、BSおよびCSを受信可能としており、従来のよ
うに同一リフレクタにBS用の一次放射器とCS用の一
次放射器を並べて取り付けて、BSの電波およびCSの
電波を受信するようにしたものより、構造が簡単で価格
の安い、経済的な受信システムを提供することができ
る。
As described above, according to the present invention, B
The primary radiators for both circular polarization and linear polarization that are shared for S and CS are used, and the same primary radiator is placed at the focal point of the reflector, and the direction of the reflector is the direction of the broadcasting satellite when receiving BS. In the case of CS reception, BS and CS can be received in the direction of the communication satellite. As in the conventional case, the BS primary radiator and the CS primary radiator are mounted side by side on the same reflector, It is possible to provide an economical receiving system which has a simple structure and is cheaper than the one which receives radio waves and CS radio waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す、円偏波および直線偏
波共用一次放射器の一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing an embodiment of the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】フェライト棒のマイクロ波透磁率特性の説明図
である。
FIG. 3 is an explanatory diagram of microwave magnetic permeability characteristics of a ferrite rod.

【図4】フェライト棒を装填した円形導波管のファラデ
ー回転の説明図である。
FIG. 4 is an explanatory diagram of Faraday rotation of a circular waveguide loaded with a ferrite rod.

【図5】(A)は、本発明のその他の実施例を示す円偏
波および直線偏波共用一次放射器の一部切欠き斜視図で
あり、(B)は同上の正面図である。
FIG. 5 (A) is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention, and FIG. 5 (B) is a front view of the same.

【図6】(A)は、本発明のその他の実施例を示す円偏
波および直線偏波共用一次放射器の一部切欠き斜視図で
あり、(B)は同上の正面図である。
FIG. 6 (A) is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. 6 (B) is a front view of the same.

【図7】本発明のその他の実施例を示す、円偏波および
直線偏波共用一次放射器の一部切欠き斜視図である。
FIG. 7 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing another embodiment of the present invention.

【図8】(A)は、本発明のその他の実施例を示す円偏
波および直線偏波共用一次放射器の一部切欠き斜視図で
あり、(B)は同上の正面図である。
FIG. 8A is a partially cutaway perspective view of a primary radiator for both circularly polarized waves and linearly polarized waves showing another embodiment of the present invention, and FIG. 8B is a front view of the same.

【図9】リフレクタと一次放射器の配置を示す説明図で
あり、(A)は従来例を示し、(B)は本発明の実施例
を示す。
9A and 9B are explanatory views showing the arrangement of a reflector and a primary radiator, FIG. 9A showing a conventional example, and FIG. 9B showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 開口部 2 円形導波管 3 終端面 4 励磁コイル 5 フェライト棒 6 方形導波管 7 開口 8 引き出し線 9 開口 10 抵抗板 11 金属板 12 スリット 13 方形導波管 14 プローブ 15 固定具 16 リフレクタ 17 一次放射器 18 一次放射器 19 リフレクタ 20 一次放射器 25 切欠き線 26 切欠き線 27 切欠き線 28 切欠き線 29 切欠き線 30 切欠き線 31 切欠き線 1 Opening 2 Circular Waveguide 3 End Surface 4 Excitation Coil 5 Ferrite Rod 6 Rectangular Waveguide 7 Opening 8 Leader Line 9 Opening 10 Resistor Plate 11 Metal Plate 12 Slit 13 Square Waveguide 14 Probe 15 Fixture 16 Reflector 17 Primary radiator 18 Primary radiator 19 Reflector 20 Primary radiator 25 Notched line 26 Notched line 27 Notched line 28 Notched line 29 Notched line 30 Notched line 31 Notched line 31

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月27日[Submission date] April 27, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】本発明に係わる説明図であり、(A)は本発明
のその他の実施例を示す円偏波および直線偏波共用一次
放射器の一部切欠き斜視図であり、(B)は同上の正面
図である。
5A and 5B are explanatory views according to the present invention, in which FIG. 5A is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention, and FIG. Is a front view of the above.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】本発明に係わる説明図であり、(A)は本発明
のその他の実施例を示す円偏波および直線偏波共用一次
放射器の一部切欠き斜視図であり、(B)は同上の正面
図である。
6A and 6B are explanatory views according to the present invention, in which FIG. 6A is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing another embodiment of the present invention; Is a front view of the above.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】本発明に係わる説明図であり、(A)は本発明
のその他の実施例を示す円偏波および直線偏波共用一次
放射器の一部切欠き斜視図であり、(B)は同上の正面
図である。
8A and 8B are explanatory views according to the present invention, in which FIG. 8A is a partially cutaway perspective view of a circularly-polarized and linearly-polarized primary radiator showing another embodiment of the present invention; Is a front view of the above.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一端に電磁波を導入する開口部を設け、
他端に終端面を設けた円形導波管と、同円形導波管の内
部の開口部側に、長手方向が管軸と平行となるようにし
て円形導波管の中心に配置したフェライト棒と、同フェ
ライト棒に直接巻き付けて同フェライト棒に直流磁界を
加える励磁コイルと、同円形導波管の終端面側に、円形
導波管内に導入された電磁波の出力手段として設けた方
形導波管あるいはプローブとからなり、フェライト棒の
直流磁界をファラデー回転領域内で値を設定することに
より、前記円形導波管内に導入された水平偏波あるいは
垂直偏波の内、受信希望の偏波信号を選択して前記出力
手段から出力せしめ、前記フェライト棒の直流磁界を磁
気共鳴領域内で値を設定することにより、前記円形導波
管内に導入された右旋あるいは左旋円偏波の内、一方を
正円偏波の磁気共鳴現象で吸収し、受信希望の他方を負
の円偏波となるようにして前記出力手段から出力せしめ
ることを特徴とする円偏波および直線偏波共用一次放射
器。
1. An opening for introducing an electromagnetic wave is provided at one end,
A circular waveguide with a terminating surface at the other end, and a ferrite rod placed at the center of the circular waveguide on the opening side inside the circular waveguide with its longitudinal direction parallel to the tube axis. And an exciting coil that is wound directly around the ferrite rod to apply a DC magnetic field to the ferrite rod, and a rectangular waveguide provided on the end face side of the circular waveguide as an output means of electromagnetic waves introduced into the circular waveguide. It consists of a tube or a probe, and by setting the value of the DC magnetic field of the ferrite rod within the Faraday rotation region, the desired polarization signal of the horizontal polarization or the vertical polarization introduced into the circular waveguide is obtained. To output from the output means, by setting the value of the DC magnetic field of the ferrite rod in the magnetic resonance region, of the right-handed or left-handed circularly polarized wave introduced into the circular waveguide, one of Is a circularly polarized magnetic Absorbed by phenomenon, circular polarization and linear polarization shared primary radiators, characterized in that allowed to output from said output means as the other desired received a negative circularly polarized wave.
【請求項2】 前記方形導波管の管軸の延長線と前記円
形導波管の管軸とが直交する向きとして同円形導波管の
側面に前記方形導波管を接合し、同方形導波管の接合部
と前記円形導波管の終端面間に略長方形の抵抗板を設
け、同抵抗板の短辺が前記終端面に対して垂直となる向
きとし、前記方形導波管の管軸の延長線に対して同抵抗
板の長辺方向が平行となる向きに配置して、受信希望の
信号に対して不要モードを前記抵抗板で減衰させること
を特徴とする請求項1記載の円偏波および直線偏波共用
一次放射器。
2. The rectangular waveguide is joined to the side surface of the circular waveguide so that the extension line of the tubular axis of the rectangular waveguide and the tube axis of the circular waveguide are orthogonal to each other, and A substantially rectangular resistance plate is provided between the junction part of the waveguide and the end face of the circular waveguide, and the short side of the resistance plate is oriented perpendicular to the end face, and the rectangular waveguide 2. The resistor plate is arranged in a direction in which a long side direction of the resistor plate is parallel to an extension line of the tube axis, and an unnecessary mode is attenuated by the resistor plate with respect to a signal desired to be received. Primary radiator for both circular and linear polarization.
【請求項3】 前記プローブの中心軸の延長線と前記円
形導波管の管軸とが直交する向きとして同円形導波管の
側面に前記プローブを設け、同プローブの取付部と同円
形導波管の終端面間に略長方形の抵抗板を設け、同抵抗
板の短辺が前記終端面に対して垂直となる向きとし、前
記プローブの中心軸の延長線に対して同抵抗板の長辺が
直交する向きに配置して、受信希望の信号に対して不要
モードを前記抵抗板で減衰させることを特徴とする請求
項1記載の円偏波および直線偏波共用一次放射器。
3. The probe is provided on the side surface of the circular waveguide so that the extension line of the central axis of the probe and the tube axis of the circular waveguide are orthogonal to each other, and the circular guide and the circular guide are provided. A substantially rectangular resistance plate is provided between the end faces of the wave tube, the short side of the resistance plate is oriented perpendicular to the end face, and the length of the resistance plate is long with respect to the extension line of the central axis of the probe. The primary radiator for both circularly polarized waves and linearly polarized waves according to claim 1, characterized in that the resistance plates attenuate the unwanted modes with respect to a signal desired to be received by arranging the sides in directions orthogonal to each other.
【請求項4】 前記方形導波管の管軸の延長線と前記円
形導波管の管軸とが直交する向きとして同円形導波管の
側面に前記方形導波管を接合し、同方形導波管の接合部
と前記フェライト棒間に略長方形の金属板を設け、同金
属板の短辺を円形導波管の管軸に対して平行となる向き
とし、同金属板の長辺を前記方形導波管の管軸の延長線
に対して平行となる向きに配置して、受信希望の信号に
対して不要モードを前記金属板で減衰させることを特徴
とする請求項1記載の円偏波および直線偏波共用一次放
射器。
4. The rectangular waveguide is joined to the side surface of the circular waveguide so that the extension line of the tubular axis of the rectangular waveguide is orthogonal to the tube axis of the circular waveguide, and the rectangular waveguide is bonded to the side surface of the circular waveguide. A substantially rectangular metal plate is provided between the waveguide joint and the ferrite rod, the short side of the metal plate is oriented parallel to the tube axis of the circular waveguide, and the long side of the metal plate is 2. The circle according to claim 1, wherein the rectangular waveguide is arranged in a direction parallel to the extension line of the tube axis, and an unwanted mode is attenuated by the metal plate with respect to a signal desired to be received. Primary radiator for both polarized and linear polarization.
【請求項5】 前記プローブの中心軸の延長線と前記円
形導波管の管軸とが直交する向きとして同円形導波管の
側面に前記プローブを設け、同プローブの取付部と前記
フェライト棒間に略長方形の金属板を設け、同金属板の
短辺を円形導波管の管軸に対して平行となる向きとし、
前記円形導波管の開口部からみた同金属板の長辺を前記
プローブの中心軸の延長線に対して直交する向きに配置
して、受信希望の信号に対して不要モードを前記金属板
で減衰させることを特徴とする請求項1記載の円偏波お
よび直線偏波共用一次放射器。
5. The probe is provided on a side surface of the circular waveguide so that an extension line of a central axis of the probe and a tube axis of the circular waveguide are orthogonal to each other, and a mounting portion of the probe and the ferrite rod are provided. A substantially rectangular metal plate is provided between them, and the short side of the metal plate is oriented parallel to the tube axis of the circular waveguide,
The long side of the metal plate viewed from the opening of the circular waveguide is arranged in a direction orthogonal to the extension line of the central axis of the probe, and an unnecessary mode is received by the metal plate for a signal desired to be received. The primary radiator for dual use of circular polarization and linear polarization according to claim 1, which is attenuated.
【請求項6】 前記方形導波管を前記円形導波管の終端
面の外側に接合し、同方形導波管の管軸と前記円形導波
管の管軸とが重なる向きにして配置し、前記方形導波管
と前記円形導波管とをスリットで結合せしめたことを特
徴とする請求項1記載の円偏波および直線偏波共用一次
放射器。
6. The rectangular waveguide is joined to the outside of the end surface of the circular waveguide, and is arranged so that the tube axis of the rectangular waveguide and the tube axis of the circular waveguide overlap each other. The primary radiator for dual-purpose circular polarization and linear polarization according to claim 1, wherein the rectangular waveguide and the circular waveguide are coupled by a slit.
【請求項7】 前記励磁コイルを直接フェライト棒に巻
き付ける代わりに、同フェライト棒が位置する前記円形
導波管の外部側面に巻き付けたことを特徴とする請求項
1記載の円偏波および直線偏波共用一次放射器。
7. The circularly polarized wave and linear polarization according to claim 1, wherein the exciting coil is wound around an outer side surface of the circular waveguide in which the ferrite rod is located, instead of directly winding around the ferrite rod. Wave primary radiator.
JP26930591A 1991-10-17 1991-10-17 Primary radiator for common use of circularly polarized wave and linearly polarized wave Pending JPH0715203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26930591A JPH0715203A (en) 1991-10-17 1991-10-17 Primary radiator for common use of circularly polarized wave and linearly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26930591A JPH0715203A (en) 1991-10-17 1991-10-17 Primary radiator for common use of circularly polarized wave and linearly polarized wave

Publications (1)

Publication Number Publication Date
JPH0715203A true JPH0715203A (en) 1995-01-17

Family

ID=17470492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26930591A Pending JPH0715203A (en) 1991-10-17 1991-10-17 Primary radiator for common use of circularly polarized wave and linearly polarized wave

Country Status (1)

Country Link
JP (1) JPH0715203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322178B1 (en) * 1998-11-20 2002-02-06 가타오카 마사타카 Apparatus for converting linearly polarized wave into circularly polarized wave
KR20030004794A (en) * 2001-07-06 2003-01-15 삼성전기주식회사 Feeding system for receiving both cp signal and lp signal using cut-off frequency
JP2006200985A (en) * 2005-01-19 2006-08-03 Mie Tsuda Denki Sangyo Kk Receiving antenna, nondestructive inspection device, and inspection method for nondestructive inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322178B1 (en) * 1998-11-20 2002-02-06 가타오카 마사타카 Apparatus for converting linearly polarized wave into circularly polarized wave
KR20030004794A (en) * 2001-07-06 2003-01-15 삼성전기주식회사 Feeding system for receiving both cp signal and lp signal using cut-off frequency
JP2006200985A (en) * 2005-01-19 2006-08-03 Mie Tsuda Denki Sangyo Kk Receiving antenna, nondestructive inspection device, and inspection method for nondestructive inspection

Similar Documents

Publication Publication Date Title
US4141015A (en) Conical horn antenna having a mode generator
JP3195923B2 (en) Circularly polarized dielectric antenna
US4742359A (en) Antenna system
JP2009200719A (en) Plane microwave antenna, one-dimensional microwave antenna and two-dimensional microwave antenna array
US3274603A (en) Wide angle horn feed closely spaced to main reflector
Kedze et al. Effects of split position on the performance of a compact broadband printed dipole antenna with split-ring resonators
JP2009521885A (en) Antenna device and application method thereof
JP2536996B2 (en) Hollow body antenna with notch
JPH0715203A (en) Primary radiator for common use of circularly polarized wave and linearly polarized wave
US4502053A (en) Circularly polarized electromagnetic-wave radiator
JPH05110302A (en) Primary radiator in common use for circularily polarized wave and linearly polarized wave
US4907010A (en) Directionally sensitive receiving antenna employing gyrotropic material
Reggia et al. Ferrod radiator systems
JPH0324807B2 (en)
JPH0729917U (en) Primary radiator
JPH03185901A (en) Polarized wave converter
JPH06132720A (en) Primary radiator sharing circular polarization and linear polarization waves
JP2825261B2 (en) Coaxial horn antenna
JP2000348858A (en) Microwave oven
US3007165A (en) Antenna with electrical lobing
JPH05299928A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JPH04506741A (en) polarization device
US5216433A (en) Polarimetric antenna
JPH0851312A (en) Circularly polarized wave loop antenna
RU2060575C1 (en) Helix antenna