JPH05110302A - Primary radiator in common use for circularily polarized wave and linearly polarized wave - Google Patents

Primary radiator in common use for circularily polarized wave and linearly polarized wave

Info

Publication number
JPH05110302A
JPH05110302A JP26930491A JP26930491A JPH05110302A JP H05110302 A JPH05110302 A JP H05110302A JP 26930491 A JP26930491 A JP 26930491A JP 26930491 A JP26930491 A JP 26930491A JP H05110302 A JPH05110302 A JP H05110302A
Authority
JP
Japan
Prior art keywords
circular waveguide
ferrite rod
polarized wave
output means
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26930491A
Other languages
Japanese (ja)
Inventor
Katsuaki Kaminakada
勝明 上中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP26930491A priority Critical patent/JPH05110302A/en
Publication of JPH05110302A publication Critical patent/JPH05110302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To provide the primary radiator able to receive both radio waves from a satellite employing a circularity polarized wave (rightand left-handed circularly polarized waves) and a linearly polarized wave (horizontal and vertical polarized waves). CONSTITUTION:The primary radiator is provided with a ferrite rod 5 arranged in the center of a circular waveguide 2 in a way that its lengthwise direction is in parallel with a guide axis to an opening 1 in the inside of the circular waveguide 2, an exciting coil 4 applying a DC magnetic field to the ferrite rod 5, an output means provided toward a termination face 3 in a way of outputting horizontal and vertical direction components in the TE11 mode of an electromagnetic wave, and square waveguides 6, 7, and a desired reception signal is obtained from one of the output means out of a horizontal polarized wave or a vertical polarized wave by setting a DC magnetic field in the ferrite rod 5 to be a strength in the Farady rotation region, and a desired reception signal is obtained from the other output means by setting a DC magnetic field in the ferrite rod 5 to be a strength in the magnetic resonance region so as to absorb either the right- or the left-handed circularly polarized wave through the magnetic resonance for the circularly polarized wave thereby obtaining the other of the reception desired waves as a negative circularly polarized wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円偏波を使用している
衛星放送(BS)と、直線偏波(水平偏波および垂直偏
波)を使用している通信衛星(CS)とを、共に受信可
能とした円偏波および直線偏波共用一次放射器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a satellite broadcasting (BS) using circular polarization and a communication satellite (CS) using linear polarization (horizontal polarization and vertical polarization). , For both circularly polarized and linearly polarized primary radiators capable of receiving both.

【0002】[0002]

【従来の技術】従来のBSおよびCS共用アンテナは図
8(A)に示すように、同一リフレクタ16にBS用の
一次放射器17とCS用の一次放射器18を並べて取り
付け、リフレクタ16の焦点をずらせて、リフレクタ1
6の一端の焦点にBS用の一次放射器17が位置するよ
うにし、リフレクタ16の他端の焦点にCS用の一次放
射器18が位置するようにして、リフレクタ16の向き
を各々の衛星の向きにして、BSの電波およびCSの電
波を受信するようにしていた。
2. Description of the Related Art As shown in FIG. 8 (A), a conventional BS and CS common antenna is provided with a BS primary radiator 17 and a CS primary radiator 18 mounted side by side on the same reflector 16 so that the reflector 16 has a focal point. Slide the reflector 1
The primary radiator 17 for BS is positioned at the focal point of one end of the reflector 6 and the primary radiator 18 for CS is positioned at the focal point of the other end of the reflector 16 so that the orientation of the reflector 16 is different from that of each satellite. It was oriented so that it could receive BS radio waves and CS radio waves.

【0003】[0003]

【発明が解決しようとする課題】従って、リフレクタ1
6の焦点がずらせてあるため各々の一次放射器で得られ
る利得が低下するといった問題点があり、また、同一リ
フレクタ16に2個の一次放射器を取り付けているた
め、構造が複雑となるといった問題点もあった。本発明
は、BSとCS用に共用できる一次放射器とし、図8
(B)に示すように一次放射器20をリフレクタ19の
焦点に配置して、BSを受信するときにはリフレクタ1
9を放送衛星の方向に向け、CSを受信するときにはリ
フレクタ19を通信衛星の方向に向けて、BSの電波と
CSの電波が同一の一次放射器20で受信できるように
し、構造が簡単で価格の安い、経済的な受信システムを
提供することを目的とする。
Therefore, the reflector 1
There is a problem that the gain obtained by each primary radiator is reduced because the focal points of 6 are deviated, and the structure is complicated because two primary radiators are attached to the same reflector 16. There were also problems. The present invention provides a primary radiator that can be commonly used for BS and CS.
The primary radiator 20 is arranged at the focal point of the reflector 19 as shown in FIG.
9 is directed toward the broadcasting satellite, and when receiving CS, the reflector 19 is directed toward the communication satellite so that the BS radio wave and the CS radio wave can be received by the same primary radiator 20, and the structure is simple and the price is low. The aim is to provide a cheap, economical receiving system for.

【0004】[0004]

【課題を解決するための手段】図1は、本発明の一実施
例を示す、円偏波および直線偏波共用一次放射器の一部
切欠き斜視図であり、同図に示すように、一端に電磁波
を導入する開口部1を設け、他端に終端面3を設けた円
形導波管2と、同円形導波管2の内部の開口部1側に、
長手方向が管軸と平行となるようにして円形導波管2の
中心に配置したフェライト棒5と、同フェライト棒5に
直接巻き付けて同フェライト棒5に直流磁界を加える励
磁コイル4と、同円形導波管2の終端面3側に、円形導
波管2内を伝播する電磁波のTE11モードの水平方向
成分および垂直方向成分を出力可能にして設けた2つの
出力手段(図1においては、方形導波管6および7)と
からなり、フェライト棒5の直流磁界をファラデー回転
領域内で値を設定することにより、前記円形導波管2内
に導入された水平偏波あるいは垂直偏波の内、受信希望
の偏波信号を選択して前記出力手段の一方から出力せし
め、前記フェライト棒5の直流磁界を磁気共鳴領域内で
値を設定することにより、前記円形導波管2内に導入さ
れた右旋あるいは左旋円偏波の内、一方を正円偏波の磁
気共鳴現象で吸収し、受信希望の他方を負の円偏波とな
るようにして前記出力手段の他方から出力せしめるよう
にしたものである。
FIG. 1 is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing an embodiment of the present invention. As shown in FIG. A circular waveguide 2 having an opening 1 for introducing an electromagnetic wave at one end and a terminating surface 3 at the other end, and an opening 1 side inside the circular waveguide 2,
A ferrite rod 5 arranged in the center of the circular waveguide 2 with its longitudinal direction parallel to the tube axis; an exciting coil 4 wound directly around the ferrite rod 5 to apply a DC magnetic field to the ferrite rod 5; Two output means (in FIG. 1, in FIG. 1) are provided on the end face 3 side of the circular waveguide 2 so as to output the horizontal and vertical components of the TE11 mode of the electromagnetic wave propagating in the circular waveguide 2. Rectangular waveguides 6 and 7), by setting the value of the DC magnetic field of the ferrite rod 5 within the Faraday rotation region, the horizontal polarization or vertical polarization of the circular waveguide 2 Among them, a polarized wave signal desired to be received is selected and output from one of the output means, and the direct current magnetic field of the ferrite rod 5 is set in the magnetic resonance region to be introduced into the circular waveguide 2. Right turn or One of the circularly polarized waves is absorbed by the magnetic resonance phenomenon of the circularly polarized wave, and the other desired reception is made to be the negative circularly polarized wave so that the other one of the output means outputs it. ..

【0005】[0005]

【作用】本発明によれば、リフレクタの焦点に配置した
一つの一次放射器を使用して、CSを受信するときには
リフレクタを通信衛星の方向に向けて、同一次放射器内
に導入された垂直および水平偏波から希望する方を選択
して、同一次放射器に設けた出力手段の一方から信号と
して出力しCSコンバータに入力し、BSを受信すると
きにはリフレクタを放送衛星の方向に向けて、同一次放
射器内に導入された右旋および左旋円偏波から希望する
方を選択して、同一次放射器に設けた出力手段の他方か
ら信号として出力しBSコンバータに入力し、各々のコ
ンバータでは局部発信周波数を異ならせて、CSコンバ
ータでは入力信号をCSーIF信号に変換し、BSコン
バータでは入力信号をBSーIF信号に変換して、各々
を衛星放送受信器に入力することにより、通信衛星、あ
るいは衛星放送の電波を受信することが可能となるよう
にしている。
According to the invention, one primary radiator located at the focal point of the reflector is used to direct the reflector towards the communication satellite when receiving the CS and to introduce a vertical radiator into the same primary radiator. And a desired one from the horizontally polarized waves, and outputs it as a signal from one of the output means provided in the same primary radiator, inputs it to the CS converter, and when receiving BS, directs the reflector toward the broadcasting satellite, A desired one is selected from right-handed and left-handed circularly polarized waves introduced into the same-order radiator, and is output as a signal from the other of the output means provided in the same-order radiator to be input to the BS converter. Then, by changing the local oscillation frequency, the CS converter converts the input signal into a CS-IF signal, the BS converter converts the input signal into a BS-IF signal, and each is converted into a satellite broadcast receiver. By entering, so that it is possible to receive the radio wave of the communication satellite or satellite.

【0006】図3は、本発明の一次放射器の円形導波管
内に使用するフェライト棒のマイクロ波透磁率特性の説
明図であり、横軸Hdcは図1に示す励磁コイル4を使
用してフェライト棒5に加える直流磁界の値を示し、縦
軸は以下の大きさを示す。 μ1′は正円偏波の透磁率の実数部 μ2′は負円偏波の透磁率の実数部 μ1″は正円偏波の透磁率の虚数部 また、は、ファラデー回転領域を示し、は、μ1′
の零透磁率近傍の領域を示し、は、正円偏波の共鳴現
象領域を示し、Hoは、共鳴点の直流磁界の強さを示
す。
FIG. 3 is an explanatory view of the microwave permeability characteristics of the ferrite rod used in the circular waveguide of the primary radiator of the present invention. The horizontal axis Hdc is the excitation coil 4 shown in FIG. The value of the DC magnetic field applied to the ferrite rod 5 is shown, and the vertical axis shows the following magnitude. μ1 ′ is the real part of the permeability of the right circular polarization μ2 ′ is the real part of the permeability of the negative circular polarization μ1 ″ is the imaginary part of the permeability of the right circular polarization Further, is the Faraday rotation region, , Μ1 ′
Indicates a region near zero magnetic permeability, indicates a resonance phenomenon region of circularly polarized wave, and Ho indicates the strength of the DC magnetic field at the resonance point.

【0007】図4は、フェライト棒を装填した円形導波
管のファラデー回転の説明図であり、円形導波管2の開
口部1から直線偏波が垂直方向に向かう電界の向きで入
射され、電磁波の伝播方向に向かってフェライト棒5に
直流磁界Hdcを加えたとする。直線偏波は右回りと左
回りの2つの円偏波に分解することができ、電波の伝播
方向に対して、右回りを正とし、左回りを負とすると、
図3に示すようにフェライト棒5の透磁率は正円偏波お
よび負円偏波に対し、各々異なった値のμ1′、μ2′
となり、正円偏波および負円偏波に対する位相定数も各
々異なった値、β1、β2となる。フェライト棒の長さ
をLとすると、直線偏波がフェライト棒を通り抜けたと
ころでは、直線偏波の空間的な位相角は、入射された状
態に対して、 Θ=L(β2−β1)/2─────(1) だけ回転する。
FIG. 4 is an explanatory view of the Faraday rotation of a circular waveguide loaded with a ferrite rod, in which linearly polarized light is incident from the opening 1 of the circular waveguide 2 in the direction of an electric field directed in the vertical direction, It is assumed that a DC magnetic field Hdc is applied to the ferrite rod 5 in the electromagnetic wave propagation direction. Linearly polarized light can be decomposed into two circularly polarized waves, clockwise and counterclockwise. If the clockwise direction is positive and the counterclockwise direction is negative with respect to the propagation direction of the radio wave,
As shown in FIG. 3, the magnetic permeability of the ferrite rod 5 is different between μ1 ′ and μ2 ′ for the right circular polarization and the right circular polarization.
Therefore, the phase constants for the circularly polarized wave and the negatively polarized wave also have different values, β1 and β2, respectively. Letting the length of the ferrite rod be L, where the linearly polarized wave passes through the ferrite rod, the spatial phase angle of the linearly polarized wave is Θ = L (β2-β1) / 2 ───── (1) Rotate only.

【0008】CSを受信するときには、図1に示す円形
導波管2内に導入された水平偏波あるいは垂直偏波に対
して希望する方を選択し、方形導波管6から選択された
偏波が最大となるように、励磁コイル4に流れる電流を
制御し、フェライト棒5に加える直流磁界を図3のに
示すファラデー回転領域内で調整する。円形導波管2内
に導入された水平偏波および垂直偏波の電界分布は、互
いに直交したTE11モードの直線偏波であり、フェラ
イト棒5で相対的に(1)式により位相角が回転するた
め、一方が方形導波管6から出力されるように設定すれ
ば、他方は方形導波管7から出力される。
When receiving CS, a desired one is selected for the horizontal polarization or the vertical polarization introduced into the circular waveguide 2 shown in FIG. 1, and the selected polarization is selected from the rectangular waveguide 6. The current flowing through the exciting coil 4 is controlled so that the wave becomes maximum, and the DC magnetic field applied to the ferrite rod 5 is adjusted within the Faraday rotation region shown in FIG. The electric field distributions of the horizontal polarization and the vertical polarization introduced into the circular waveguide 2 are TE11 mode linear polarizations orthogonal to each other, and the phase angle is relatively rotated by the ferrite rod 5 by the equation (1). Therefore, if one is set to output from the rectangular waveguide 6, the other is output from the rectangular waveguide 7.

【0009】BSを受信するときで、受信希望が右旋円
偏波である場合、円形導波管2内に導入された右旋円偏
波あるいは左旋円偏波の内、右旋円偏波が、負の円偏波
となるようにフェライト棒5に加える直流磁界の方向を
設定する。このようにすれば、不要な左旋円偏波は正の
円偏波となる。フェライト棒5に加える直流磁界を図3
のに示すHoの共鳴点の直流磁界の強さとすることに
より、フェライト棒5の装填部分を右旋円偏波および左
旋円偏波が通過すると、不要な左旋円偏波は磁気共鳴現
象により吸収され、受信希望の右旋円偏波だけがフェラ
イト棒5の装填部分を通過する。従って、右旋円偏波の
みが方形導波管6および7の接合部に伝播する。
When the BS is received and the desired reception is right-handed circular polarization, the right-handed circular polarization out of the right-handed circular polarization or the left-handed circular polarization introduced into the circular waveguide 2. , The direction of the DC magnetic field applied to the ferrite rod 5 is set so that the circularly polarized wave becomes negative. By doing so, the unnecessary left-handed circularly polarized wave becomes a positive circularly polarized wave. The DC magnetic field applied to the ferrite rod 5 is shown in FIG.
By setting the strength of the DC magnetic field at the resonance point of Ho shown in, when the right-handed circularly polarized wave and the left-handed circularly polarized wave pass through the loading portion of the ferrite rod 5, unnecessary left-handed circularly polarized waves are absorbed by the magnetic resonance phenomenon. Then, only the right-handed circularly polarized wave desired to be received passes through the loaded portion of the ferrite rod 5. Therefore, only right-handed circularly polarized waves propagate to the junction of the rectangular waveguides 6 and 7.

【0010】左旋円偏波を受ける場合は、受信希望の左
旋円偏波が、負の円偏波となるようにフェライト棒5に
加える直流磁界の方向を設定する。このようにすれば、
不要な右旋円偏波は正の円偏波となる。フェライト棒5
に加える直流磁界を図3のに示すHoの共鳴点の直流
磁界の強さとすることにより、フェライト棒5の装填部
分を右旋円偏波および左旋円偏波が通過すると、不要な
右旋円偏波は磁気共鳴現象により吸収され、受信希望の
左旋円偏波だけがフェライト棒5の装填部分を通過す
る。従って、前記と異なり、左旋円偏波のみが方形導波
管6および7の接合部に伝播する。
When receiving the left-handed circularly polarized wave, the direction of the DC magnetic field applied to the ferrite rod 5 is set so that the desired left-handed circularly polarized wave becomes the negative circularly polarized wave. If you do this,
Unnecessary right-handed circular polarization becomes positive circular polarization. Ferrite rod 5
By setting the DC magnetic field to be applied to the strength of the DC magnetic field at the resonance point of Ho shown in FIG. The polarized wave is absorbed by the magnetic resonance phenomenon, and only the left-handed circularly polarized wave desired to be received passes through the loaded portion of the ferrite rod 5. Therefore, unlike the above, only left-handed circularly polarized waves propagate to the junction of the rectangular waveguides 6 and 7.

【0011】受信希望の円偏波は、円偏波の直交する直
線偏波の内、一方を方形導波管7から信号として出力す
るように設定すれば、他方は方形導波管6から出力され
る。例えば、方形導波管6の先端にCSコンバータを接
続し、方形導波管7の先端にBSコンバータを接続する
ようにすれば、CSコンバータとBSコンバータとで
は、IF信号に変換するための局部発振周波数が異なら
せてあるため、CSコンバータでは入力されたCS信号
のみを選局し、BSコンバータでは入力されたBS信号
のみを選局して、各々信号処理を行うため、通信衛星、
あるいは衛星放送の電波を受信することが可能となる。
衛星放送を受ける場合は、円偏波の直交する直線偏波の
内、一方のみを受信するようになるため、受信信号レベ
ルは約3dbの減衰を受けるが、CSの電波に対してB
Sの電波は強いので、CSの電波が受信できるような大
きいリフレクタをアンテナとして使用すれば、BSの電
波を受信することができる。
Regarding the circularly polarized wave desired to be received, if one of the linearly polarized waves orthogonal to the circularly polarized wave is set to be output as a signal from the rectangular waveguide 7, the other is output from the rectangular waveguide 6. To be done. For example, if the CS converter is connected to the tip of the rectangular waveguide 6 and the BS converter is connected to the tip of the rectangular waveguide 7, the CS converter and the BS converter are each a local part for converting into an IF signal. Since the oscillation frequencies are different, the CS converter tunes only the input CS signal, and the BS converter tunes only the input BS signal to perform signal processing respectively.
Alternatively, it becomes possible to receive satellite broadcast radio waves.
When receiving satellite broadcasting, only one of the linearly polarized waves that are orthogonal to the circularly polarized wave is received, so the received signal level is attenuated by about 3 db, but the received signal level is B for CS radio waves.
Since the S radio wave is strong, if a large reflector that can receive the CS radio wave is used as an antenna, the BS radio wave can be received.

【0012】[0012]

【実施例】図1は、本発明の一実施例を示す、円偏波お
よび直線偏波共用一次放射器の一部切欠き斜視図であ
り、図2は、図1の正面図であり、同図において、円形
導波管2の管軸に対して垂直方向に向かう軸をY軸と
し、水平方向に向かう軸をX軸とする〔以下、図4、図
5、図6及び図7において同じ〕。円形導波管2の一端
を電磁波を効率的に導入できるようにホーン形状の開口
部1とし、他端に導入された電磁波を反射させる終端面
3を設けており、円形導波管2の開口部1側に、長手方
向が管軸と平行となるようにして円形導波管2の中心部
にフェライト棒5を配置している。フェライト棒5には
励磁コイル4を直接巻き付けて、フェライト棒5に直流
磁界を加えることができるようにしており、励磁コイル
4は接着剤等を使用して円形導波管2の内部の所定の位
置に保持するようにしている。励磁コイル4は直接フェ
ライト棒5に巻き付けて使用する代わりに、フェライト
棒5が位置する円形導波管2の外部側面に巻き付けて、
フェライト棒5に直流磁界を加えるようにしても良い。
この場合には、誘電体材料を使用して、フェライト棒5
を円形導波管2の中心部に保持できるようにする。フェ
ライト棒5は、直径を大きくすると、必要な電磁波の回
転角度を得るための長さが短くなり、直径を細くする
と、必要な電磁波の回転角度を得るための長さが長くな
るが、円形導波管2の内部に配置できるように適当な直
径のものを選択して使用する。
1 is a partially cutaway perspective view of a primary radiator for circular polarization and linear polarization, showing an embodiment of the present invention, and FIG. 2 is a front view of FIG. In the figure, the axis extending in the direction perpendicular to the tube axis of the circular waveguide 2 is defined as the Y axis, and the axis extending in the horizontal direction is defined as the X axis [hereinafter, in FIGS. 4, 5, 6, and 7]. the same〕. One end of the circular waveguide 2 is formed as a horn-shaped opening 1 so that electromagnetic waves can be efficiently introduced, and a terminal surface 3 for reflecting the introduced electromagnetic waves is provided at the other end. On the side of the portion 1, a ferrite rod 5 is arranged in the center of the circular waveguide 2 so that the longitudinal direction is parallel to the tube axis. The exciting coil 4 is directly wound around the ferrite rod 5 so that a direct-current magnetic field can be applied to the ferrite rod 5. The exciting coil 4 uses an adhesive agent or the like to provide a predetermined inside of the circular waveguide 2. I try to keep it in position. Instead of winding the exciting coil 4 directly on the ferrite rod 5, the exciting coil 4 is wound around the outer side surface of the circular waveguide 2 where the ferrite rod 5 is located,
A DC magnetic field may be applied to the ferrite rod 5.
In this case, use a dielectric material to
Can be held at the center of the circular waveguide 2. If the diameter of the ferrite rod 5 is increased, the length for obtaining the required rotation angle of the electromagnetic wave is shortened, and if the diameter is reduced, the length for obtaining the required rotation angle of the electromagnetic wave is increased. An appropriate diameter is selected and used so that it can be placed inside the wave tube 2.

【0013】円形導波管2の終端面3側の側面に、円形
導波管2内を伝播する電磁波のTE11モードの水平方
向成分および垂直方向成分を出力可能とした方形導波管
6および7を接合しており、方形導波管6および7の管
軸の延長線と円形導波管2の管軸とが直交する配置と
し、また、方形導波管6の管軸の延長線と方形導波管7
の管軸の延長線も相互に直交する配置とし、円形導波管
2と方形導波管6とは開口9を介して接続し、円形導波
管2と方形導波管7とは開口10を介して接続し、方形
導波管6および方形導波管7から電磁波が出力できるよ
うにしている。円形導波管2内に設けられた励磁コイル
4の引き出し線8は、円形導波管2の側面に設けられた
開口11を通して、円形導波管2の外部に引き出して直
流電源と接続して、励磁コイル4に直流電流を流して、
所定の直流磁界をフェライト棒5に加えることができる
ようにしている。
The rectangular waveguides 6 and 7 capable of outputting the horizontal and vertical components of the TE11 mode of the electromagnetic wave propagating in the circular waveguide 2 to the side surface of the circular waveguide 2 on the side of the termination surface 3. Are arranged so that the extension lines of the tube axes of the rectangular waveguides 6 and 7 and the tube axis of the circular waveguide 2 are orthogonal to each other, and the extension line of the tube axis of the rectangular waveguide 6 and the rectangle Waveguide 7
The extension lines of the tube axes are also arranged so as to be orthogonal to each other, the circular waveguide 2 and the rectangular waveguide 6 are connected through the opening 9, and the circular waveguide 2 and the rectangular waveguide 7 are connected through the opening 10. , And the electromagnetic waves can be output from the rectangular waveguide 6 and the rectangular waveguide 7. The lead wire 8 of the exciting coil 4 provided in the circular waveguide 2 is drawn to the outside of the circular waveguide 2 through an opening 11 provided on the side surface of the circular waveguide 2 and connected to a DC power source. , Applying a direct current to the exciting coil 4,
A predetermined DC magnetic field can be applied to the ferrite rod 5.

【0014】例えば、方形導波管6の先端にCSコンバ
ータを接続し、方形導波管7の先端にBSコンバータを
接続したとする。通信衛星からの水平偏波あるいは垂直
偏波を受ける場合は、励磁コイル4に流す直流電流を調
整して、フェライト棒5に加える直流磁界をファラデー
回転領域内で値を設定することにより、円形導波管2内
に導入された水平偏波あるいは垂直偏波の内、方形導波
管6から出力される受信希望の偏波信号が最大となるよ
うにして同出力をCSコンバータに入力して通信衛星を
受信するようにしている。衛星放送を受ける場合は、励
磁コイル4に流す直流電流を調整して、フェライト棒5
に加える直流磁界を磁気共鳴領域内で値を設定すること
により、円形導波管2内に導入された衛星からの右旋あ
るいは左旋円偏波に対して、一方を正円偏波の磁気共鳴
現象で吸収し、受信希望の他方を負の円偏波となるよう
にし、方形導波管7から受信希望の偏波信号が出力され
るようにして、同出力をBSコンバータに入力して衛星
放送を受信するようにしている。
For example, assume that a CS converter is connected to the tip of the rectangular waveguide 6 and a BS converter is connected to the tip of the rectangular waveguide 7. When receiving horizontal polarization or vertical polarization from the communication satellite, adjust the DC current flowing through the exciting coil 4 and set the value of the DC magnetic field applied to the ferrite rod 5 within the Faraday rotation region to obtain a circular guide. The horizontal polarization or the vertical polarization introduced into the wave tube 2 is input to the CS converter so that the desired polarization signal output from the rectangular waveguide 6 is maximized, and communication is performed. I am trying to receive satellites. When receiving satellite broadcasting, adjust the direct current flowing through the exciting coil 4 to
By setting the value of the DC magnetic field applied to the magnetic resonance region within the magnetic resonance region, one of the right-handed circular polarization or the left-handed circularly polarized wave from the satellite introduced into the circular waveguide 2 is a circularly polarized magnetic resonance. It is absorbed by the phenomenon so that the other desired reception is made into a negative circular polarization, the polarized signal desired to be received is output from the rectangular waveguide 7, and the same output is input to the BS converter. I try to receive the broadcast.

【0015】図5は、本発明のその他の実施例を示す円
偏波および直線偏波共用一次放射器の一部切欠き斜視図
であり、図6は、図5に示す円形導波管2を切断線ab
で切断した断面図を示す。円形導波管2内を伝播する電
磁波のTE11モードの水平方向成分および垂直方向成
分を出力可能とした2つの出力手段を前記終端面に向か
って順に並べて設けたものであり、出力手段の一方は図
1に示す実施例と同様に方形導波管7を用いて出力を取
り出すようにしており、出力手段の他方は、円形導波管
2の開口部1側からみた円形導波管2に対する取付角度
が方形導波管7と同一になるようにして、方形導波管1
2を取り付け、円形導波管2の側面からみた取付位置
は、方形導波管7と終端面3の間としている。図1の実
施例の場合は、円形導波管2の終端面3からほぼ同距離
の位置に2つの出力手段を交差する向きに取り付けてお
り、円形導波管2の長さを短くすることができ、図5の
実施例の場合は、2つの出力手段を同一方向から円形導
波管2に接合しており、加工、あるいはリフレクタへの
取付等において、一次放射器の取扱がしやすくなる。
FIG. 5 is a partially cutaway perspective view of a circularly polarized wave and linearly polarized wave primary radiator showing another embodiment of the present invention, and FIG. 6 is a circular waveguide 2 shown in FIG. The cutting line ab
Sectional drawing cut by. Two output means capable of outputting the horizontal direction component and the vertical direction component of the TE11 mode of the electromagnetic wave propagating in the circular waveguide 2 are arranged in order toward the terminal face, and one of the output means is provided. Similar to the embodiment shown in FIG. 1, the rectangular waveguide 7 is used to take out the output, and the other of the output means is attached to the circular waveguide 2 as seen from the opening 1 side of the circular waveguide 2. The angle of the rectangular waveguide 1 is made equal to that of the rectangular waveguide 1.
2 is mounted, and the mounting position when viewed from the side surface of the circular waveguide 2 is between the rectangular waveguide 7 and the end surface 3. In the case of the embodiment shown in FIG. 1, the two output means are attached in a direction intersecting with each other at a position substantially the same distance from the end face 3 of the circular waveguide 2 to shorten the length of the circular waveguide 2. In the case of the embodiment shown in FIG. 5, the two output means are joined to the circular waveguide 2 from the same direction, which makes it easier to handle the primary radiator during processing or mounting on the reflector. ..

【0016】方形導波管12と円形導波管2とは、プロ
ーブ13を使用して接続しており、円形導波管2の側面
からみた、プローブ13の終端面3からの取付位置は、
プローブ13に結合させる電磁波の約1/4波長の長さ
とし、円形導波管2に対するプローブ13の挿入の深さ
は、プローブ13に電磁波を効率良く結合できるように
調整して決定する。プローブ13は電磁波を電気信号に
変換して、方形導波管12の内部に伝え、方形導波管1
2に挿入されている先端を折り曲げた部分で電磁波を励
振する。プローブ13の方形導波管12に対する挿入の
深さは、同プローブ13で励振する電磁波の約1/4波
長の長さとし、プローブ13は円形導波管2の側面に絶
縁物を使用した固定具14で保持している。
The rectangular waveguide 12 and the circular waveguide 2 are connected by using a probe 13, and the mounting position of the probe 13 from the end surface 3 as seen from the side surface of the circular waveguide 2 is as follows.
The length of the electromagnetic wave coupled to the probe 13 is about ¼ wavelength, and the insertion depth of the probe 13 into the circular waveguide 2 is determined by adjusting so that the electromagnetic wave can be efficiently coupled to the probe 13. The probe 13 converts an electromagnetic wave into an electric signal and transmits the electric signal to the inside of the rectangular waveguide 12, and the rectangular waveguide 1
Electromagnetic waves are excited at the bent portion of the tip inserted in 2. The depth of insertion of the probe 13 into the rectangular waveguide 12 is about 1/4 wavelength of the electromagnetic wave excited by the probe 13, and the probe 13 is a fixture using an insulator on the side surface of the circular waveguide 2. Holds at 14.

【0017】方形導波管7とプローブ13の取付部間の
円形導波管2の内部に略長方形の金属板15を設け、同
金属板15の短辺を円形導波管2の管軸に対して平行と
なる向きとし、円形導波管2の開口部1からみた金属板
15の長辺を同プローブ13の中心軸の延長線と直交す
る向きに配置して、方形導波管7ではX軸と平行な向き
に電界を有する電磁波のTE11モードの水平方向成分
を出力し、同水平方向成分がプローブ13の方に向かわ
ないように同水平方向成分を金属板15で反射させ、Y
軸と平行な向きに電界を有する電磁波のTE11モード
の垂直方向成分をプローブ13に結合させるようにし
て、プローブ13に対する不要モードのみを前記金属板
15で減衰させるようにしている。
A substantially rectangular metal plate 15 is provided inside the circular waveguide 2 between the mounting portions of the rectangular waveguide 7 and the probe 13, and the short side of the metal plate 15 is used as the tube axis of the circular waveguide 2. With the rectangular waveguide 7, the long side of the metal plate 15 viewed from the opening 1 of the circular waveguide 2 is arranged in a direction orthogonal to the extension line of the central axis of the probe 13, The horizontal component of the TE11 mode of an electromagnetic wave having an electric field in the direction parallel to the X axis is output, and the horizontal component is reflected by the metal plate 15 so that the horizontal component does not face the probe 13, and Y
The vertical component of the TE11 mode of the electromagnetic wave having the electric field in the direction parallel to the axis is coupled to the probe 13, and only the unnecessary mode for the probe 13 is attenuated by the metal plate 15.

【0018】図7は、本発明のその他の実施例を示す円
偏波および直線偏波共用一次放射器の一部切欠き斜視図
であり、図1に示す実施例との相違は、円形導波管2の
長さを延長し、方形導波管6を終端面3側にずらして円
形導波管2の側面に接合し、方形導波管7と方形導波管
6の接合部間の円形導波管2の内部に略長方形の金属板
15を設け、同金属板15の短辺を円形導波管2の管軸
に対して平行となる向きとし、円形導波管2の開口部1
からみた金属板15の長辺を方形導波管6の管軸の延長
線と平行する向きに配置して、方形導波管7ではX軸と
平行な向きに電界を有する電磁波のTE11モードの水
平方向成分を出力し、同水平方向成分が方形導波管6の
方に向かわないように同水平方向成分を金属板15で反
射させ、Y軸と平行な向きに電界を有する電磁波のTE
11モードの垂直方向成分を方形導波管6で出力させる
ようにして、方形導波管6に対する不要モードのみを前
記金属板15で減衰させるようにしている。
FIG. 7 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention. The difference from the embodiment shown in FIG. The length of the wave guide 2 is extended, the rectangular waveguide 6 is shifted to the end face 3 side and joined to the side surface of the circular waveguide 2, and the rectangular waveguide 7 and the rectangular waveguide 6 are joined to each other. A substantially rectangular metal plate 15 is provided inside the circular waveguide 2, and the short side of the metal plate 15 is oriented parallel to the tube axis of the circular waveguide 2, and the opening of the circular waveguide 2 is formed. 1
The long side of the metal plate 15 when viewed is arranged in a direction parallel to the extension line of the tube axis of the rectangular waveguide 6, and in the rectangular waveguide 7, the TE11 mode of the electromagnetic wave having the electric field is oriented in the direction parallel to the X axis. The horizontal component is output, the horizontal component is reflected by the metal plate 15 so that the horizontal component does not face the rectangular waveguide 6, and the TE of the electromagnetic wave having the electric field in the direction parallel to the Y axis is output.
The 11-mode vertical component is output by the rectangular waveguide 6, and only the unnecessary mode for the rectangular waveguide 6 is attenuated by the metal plate 15.

【0019】[0019]

【発明の効果】以上説明したように、本発明によればB
S用およびCS用に共用とした円偏波および直線偏波共
用一次放射器を使用して、同一次放射器をリフレクタの
焦点に配置し、リフレクタの向きをBS受信のときは放
送衛星の方向にし、CS受信のときは通信衛星の方向に
して、BSおよびCSを受信可能としており、従来のよ
うに同一リフレクタにBS用の一次放射器とCS用の一
次放射器を並べて取り付けて、BSの電波およびCSの
電波を受信するようにしたものより、構造が簡単で価格
の安い、経済的な受信システムを提供することができ
る。
As described above, according to the present invention, B
The primary radiators for both circular polarization and linear polarization that are shared for S and CS are used, and the same primary radiator is placed at the focal point of the reflector, and the direction of the reflector is the direction of the broadcasting satellite when receiving BS. In the case of CS reception, BS and CS can be received in the direction of the communication satellite. As in the conventional case, the BS primary radiator and the CS primary radiator are mounted side by side on the same reflector, It is possible to provide an economical receiving system having a simpler structure and lower cost than the one that receives radio waves and CS radio waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す、円偏波および直線偏
波共用一次放射器の一部切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization, showing an embodiment of the present invention.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】フェライト棒のマイクロ波透磁率特性の説明図
である。
FIG. 3 is an explanatory diagram of microwave magnetic permeability characteristics of a ferrite rod.

【図4】フェライト棒を装填した円形導波管のファラデ
ー回転の説明図である。
FIG. 4 is an explanatory diagram of Faraday rotation of a circular waveguide loaded with a ferrite rod.

【図5】本発明のその他の実施例を示す円偏波および直
線偏波共用一次放射器の一部切欠き斜視図である。
FIG. 5 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention.

【図6】図5を切断線abで切断した断面図を示す。FIG. 6 shows a cross-sectional view of FIG. 5 taken along the cutting line ab.

【図7】本発明のその他の実施例を示す円偏波および直
線偏波共用一次放射器の一部切欠き斜視図である。
FIG. 7 is a partially cutaway perspective view of a primary radiator for both circular polarization and linear polarization showing another embodiment of the present invention.

【図8】リフレクタと一次放射器の配置を示す説明図で
あり、(A)は従来例を示し、(B)は本発明の実施例
を示す。
FIG. 8 is an explanatory view showing the arrangement of a reflector and a primary radiator, (A) showing a conventional example, and (B) showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 開口部 2 円形導波管 3 終端面 4 励磁コイル 5 フェライト棒 6 方形導波管 7 方形導波管 8 引き出し線 9 開口 10 開口 11 開口 12 方形導波管 13 プローブ 14 固定具 15 金属板 16 リフレクタ 17 一次放射器 18 一次放射器 19 リフレクタ 20 一次放射器 25 切欠き線 26 切欠き線 27 切欠き線 28 切欠き線 29 切欠き線 30 切欠き線 31 切欠き線 1 Opening 2 Circular Waveguide 3 End Face 4 Excitation Coil 5 Ferrite Rod 6 Rectangular Waveguide 7 Rectangular Waveguide 8 Leader Line 9 Opening 10 Opening 11 Opening 12 Rectangular Waveguide 13 Probe 14 Fixture 15 Metal Plate 16 Reflector 17 Primary radiator 18 Primary radiator 19 Reflector 20 Primary radiator 25 Notched line 26 Notched line 27 Notched line 28 Notched line 29 Notched line 30 Notched line 31 Notched line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一端に電磁波を導入する開口部を設け、
他端に終端面を設けた円形導波管と、同円形導波管の内
部の開口部側に、長手方向が管軸と平行となるようにし
て円形導波管の中心に配置したフェライト棒と、同フェ
ライト棒に直接巻き付けて同フェライト棒に直流磁界を
加える励磁コイルと、同円形導波管の終端面側に、円形
導波管内を伝播する電磁波のTE11モードの水平方向
成分および垂直方向成分を出力可能にして設けた2つの
出力手段とからなり、フェライト棒の直流磁界をファラ
デー回転領域内で値を設定することにより、前記円形導
波管内に導入された水平偏波あるいは垂直偏波の内、受
信希望の偏波信号を選択して前記出力手段の一方から出
力せしめ、前記フェライト棒の直流磁界を磁気共鳴領域
内で値を設定することにより、前記円形導波管内に導入
された右旋あるいは左旋円偏波の内、一方を正円偏波の
磁気共鳴現象で吸収し、受信希望の他方を負の円偏波と
なるようにして前記出力手段の他方から出力せしめるこ
とを特徴とする円偏波および直線偏波共用一次放射器。
1. An opening for introducing an electromagnetic wave is provided at one end,
A circular waveguide with a terminating surface at the other end, and a ferrite rod placed at the center of the circular waveguide on the opening side inside the circular waveguide with the longitudinal direction parallel to the tube axis. And an exciting coil that is wound directly around the ferrite rod to apply a DC magnetic field to the ferrite rod, and the horizontal direction component and vertical direction of the TE11 mode of the electromagnetic wave propagating in the circular waveguide on the end face side of the circular waveguide. And a horizontal polarization or a vertical polarization introduced into the circular waveguide by setting the value of the DC magnetic field of the ferrite rod within the Faraday rotation region. Of the desired polarization signal to be received and output from one of the output means, and the direct current magnetic field of the ferrite rod is set to a value within the magnetic resonance region so that it is introduced into the circular waveguide. Right turn One of the left-handed circularly polarized waves is absorbed by the magnetic resonance phenomenon of the right-handed circularly polarized wave, and the other desired reception is made a negative circularly polarized wave, and is output from the other of the output means. Primary radiator for both polarized and linear polarization.
【請求項2】 前記2つの出力手段が、2つの方形導波
管、又はプローブ、あるいは両者を組み合わせたものか
らなることを特徴とする請求項1記載の円偏波および直
線偏波共用一次放射器。
2. The primary radiation for both circularly polarized light and linearly polarized light according to claim 1, wherein the two output means are two rectangular waveguides or probes, or a combination of both. vessel.
【請求項3】 前記2つの出力手段を前記円形導波管の
終端面に向かって順に並べて設け、両出力手段の取付部
間の円形導波管の内部に略長方形の金属板を設け、同金
属板の短辺を前記円形導波管の管軸に対して平行となる
向きとし、前記終端面側に設けた出力手段が方形導波管
の場合には、円形導波管の開口部からみた前記金属板の
長辺を同方形導波管の管軸の延長線に対して平行となる
向きに配置し、前記終端面側に設けた出力手段がプロー
ブの場合には、円形導波管の開口部からみた前記金属板
の長辺を同プローブの中心軸の延長線と直交する向きに
配置して、終端面側に設けた前記出力手段で出力する信
号に対して、不要モードを前記金属板で減衰させること
を特徴とする請求項1記載の円偏波および直線偏波共用
一次放射器。
3. The two output means are arranged side by side toward the end face of the circular waveguide, and a substantially rectangular metal plate is provided inside the circular waveguide between the mounting portions of the both output means. When the short side of the metal plate is oriented parallel to the tube axis of the circular waveguide, and the output means provided on the end face side is a rectangular waveguide, the opening of the circular waveguide is used. When the long side of the viewed metal plate is arranged in a direction parallel to the extension line of the tube axis of the isotropic waveguide, and the output means provided on the end face side is a probe, a circular waveguide is used. The long side of the metal plate viewed from the opening of the probe is arranged in a direction orthogonal to the extension line of the central axis of the probe, and the unnecessary mode is set to the signal output by the output means provided on the end face side. The primary radiator for dual-use circular polarization and linear polarization according to claim 1, wherein the primary radiator is attenuated by a metal plate.
【請求項4】 前記励磁コイルを直接フェライト棒に巻
き付ける代わりに、同フェライト棒が位置する前記円形
導波管の外部側面に巻き付けたことを特徴とする請求項
1記載の円偏波および直線偏波共用一次放射器。
4. The circularly polarized wave and linear polarization according to claim 1, wherein the exciting coil is wound around an outer side surface of the circular waveguide where the ferrite rod is located, instead of directly winding around the ferrite rod. Wave primary radiator.
JP26930491A 1991-10-17 1991-10-17 Primary radiator in common use for circularily polarized wave and linearly polarized wave Pending JPH05110302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26930491A JPH05110302A (en) 1991-10-17 1991-10-17 Primary radiator in common use for circularily polarized wave and linearly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26930491A JPH05110302A (en) 1991-10-17 1991-10-17 Primary radiator in common use for circularily polarized wave and linearly polarized wave

Publications (1)

Publication Number Publication Date
JPH05110302A true JPH05110302A (en) 1993-04-30

Family

ID=17470480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26930491A Pending JPH05110302A (en) 1991-10-17 1991-10-17 Primary radiator in common use for circularily polarized wave and linearly polarized wave

Country Status (1)

Country Link
JP (1) JPH05110302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181528A (en) * 1994-12-22 1996-07-12 Nec Corp Phased array antenna
WO2006027588A1 (en) * 2004-09-08 2006-03-16 Invacom Ltd Broadcast signal waveguide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593302A (en) * 1979-01-09 1980-07-15 Mitsubishi Electric Corp Selector for straight line and circular polarized wave
JPS583339A (en) * 1981-06-27 1983-01-10 Sony Corp Selector for circular polarized electromagnetic wave
JPH0318101A (en) * 1989-06-15 1991-01-25 Inax Corp Constant current circuit for polarizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593302A (en) * 1979-01-09 1980-07-15 Mitsubishi Electric Corp Selector for straight line and circular polarized wave
JPS583339A (en) * 1981-06-27 1983-01-10 Sony Corp Selector for circular polarized electromagnetic wave
JPH0318101A (en) * 1989-06-15 1991-01-25 Inax Corp Constant current circuit for polarizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181528A (en) * 1994-12-22 1996-07-12 Nec Corp Phased array antenna
WO2006027588A1 (en) * 2004-09-08 2006-03-16 Invacom Ltd Broadcast signal waveguide
US7804381B2 (en) 2004-09-08 2010-09-28 Invacom Ltd. Broadcast signal waveguide

Similar Documents

Publication Publication Date Title
US4141015A (en) Conical horn antenna having a mode generator
US9742069B1 (en) Integrated single-piece antenna feed
JP3195923B2 (en) Circularly polarized dielectric antenna
US6417742B1 (en) Circular polarizer having two waveguides formed with coaxial structure
US20220102827A1 (en) Full band orthomode transducers
EP1291965A1 (en) Antenna
JPH05110302A (en) Primary radiator in common use for circularily polarized wave and linearly polarized wave
JPH0715203A (en) Primary radiator for common use of circularly polarized wave and linearly polarized wave
JPH03185901A (en) Polarized wave converter
US3646589A (en) Multimode tracking system utilizing a circular waveguide having slots angularly oriented with respect to the waveguide axis
US4907010A (en) Directionally sensitive receiving antenna employing gyrotropic material
JP2825261B2 (en) Coaxial horn antenna
JPH06132720A (en) Primary radiator sharing circular polarization and linear polarization waves
US5216433A (en) Polarimetric antenna
Li et al. Polarization Reconfigurable Horn Antenna Based on Spoof Surface Plasmon Polaritons
JPH0729917U (en) Primary radiator
JP2699462B2 (en) Satellite broadcast receiving converter
JPH05327337A (en) Circularly polarized wave and linearly polarized wave multicoupling primary radiator
JPH05175726A (en) Power feeder
JPH07254803A (en) Waveguide coaxial converter
JPH05299928A (en) Primary radiator in common use for circularly polarized wave and linearly polarized wave
JPH03190402A (en) Circularly polarized wave/linearly polarized wave converter
GB2034124A (en) Improved antenna
JPH11308005A (en) Polarization branching filter
JPH05327304A (en) Microwave receiver