JPH07151881A - Nuclear fuel cladding tube - Google Patents

Nuclear fuel cladding tube

Info

Publication number
JPH07151881A
JPH07151881A JP5297712A JP29771293A JPH07151881A JP H07151881 A JPH07151881 A JP H07151881A JP 5297712 A JP5297712 A JP 5297712A JP 29771293 A JP29771293 A JP 29771293A JP H07151881 A JPH07151881 A JP H07151881A
Authority
JP
Japan
Prior art keywords
cladding tube
particle size
corrosion
corrosion resistance
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5297712A
Other languages
Japanese (ja)
Other versions
JP3256615B2 (en
Inventor
Terumitsu Nomata
輝満 野俣
Sayoko Shimizu
佐代子 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29771293A priority Critical patent/JP3256615B2/en
Publication of JPH07151881A publication Critical patent/JPH07151881A/en
Application granted granted Critical
Publication of JP3256615B2 publication Critical patent/JP3256615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the peeling of oxide film caused by the uniform growth of corro sion and to improve corrosion resistance performance under the state where nodular- corrosion reducing effect is maintained, by segregating the alloy component having a specified particle size on a part or all parts of a nuclear fuel cladding tube compris ing zirconium-group alloy. CONSTITUTION:On a cladding tube 1, which is formed out of zirconium-based alloy, the alloy component, which cannot form solid solution with zirconium base material, is deposited on the surface of the base alloy as the deposited material. The corrosion resistance of the cladding tube 1 is different with the particle sizes and the distribution of the deposited material 3. The corrosion resistance to nodular corrosion, which is conspicuous at a part separated by 1/3 from the lower end of a fuel rod where the average line output density is high, is high for the smaller particle size. The corrosion resistance to the uniform corrosion, which is liable to grow at the cladding tube 1 at the lowermost end part of the fuel rod 4 is high when the particle size is about 0.1mum or more. Therefore, the particle size of the deposited material 3 is set at 0.1mum or more at the lower part of the fuel rod 4, where the effect of the corrosion resistance against the uniform corrosion is expected, and the average particle size is set at 1mum or less so as to expect the effect of the corrosion resistance against the nodular corrosion at the upper part of the fuel rod 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽水炉の核燃料棒用被覆
管に係り、特にジルコニウム基合金からなる核燃料被覆
管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fuel rod cladding tube for a light water reactor, and more particularly to a nuclear fuel cladding tube made of a zirconium based alloy.

【0002】[0002]

【従来の技術】一般に軽水炉用核燃料棒は、ジルコニウ
ム基合金製の被覆管内に複数の核燃料ペレットを積み重
ねて装填し、被覆管の上下端をジルコニウム基合金の端
栓で溶接密封して構成されている。
2. Description of the Related Art Generally, a nuclear fuel rod for a light water reactor is constructed by stacking and loading a plurality of nuclear fuel pellets in a cladding tube made of a zirconium-based alloy, and sealing the upper and lower ends of the cladding tube by welding with end plugs of the zirconium-based alloy. There is.

【0003】ところでこの種の燃料棒においては、核燃
料被覆管の表面に炉心冷却水とジルコニウム基合金の酸
化反応によって酸化被膜が生成する。一般的にこの酸化
被膜は燃料被覆管の表面を覆い、燃焼度が高くなるに従
って成長する。
By the way, in this type of fuel rod, an oxide film is formed on the surface of the nuclear fuel cladding tube by the oxidation reaction of the core cooling water and the zirconium-based alloy. Generally, this oxide film covers the surface of the fuel cladding tube and grows as the burnup increases.

【0004】燃料被覆管の表面に生成する酸化被膜は、
時には表面に一様の厚さをもって成長するが、時には部
分的に斑点状に成長し、次第にレンズ状に厚みを持って
くることがある。前者を「一様腐食」、後者を「ノジュ
ラー腐食」という。
The oxide film formed on the surface of the fuel cladding tube is
It sometimes grows to have a uniform thickness on the surface, but sometimes it grows in spots, and gradually has a lens-like thickness. The former is called "uniform corrosion" and the latter is called "nodular corrosion".

【0005】照射がある程度進んだ燃料寿命中期以降に
おいて、平均線出力密度の高い燃料棒下端から1/3付
近でノジュラー腐食が成長し易い。水質等の環境条件に
よってノジュラー腐食が150 μm程度以上に異常に成長
した場合、このノジュラー状の酸化被膜がかさぶたのよ
うに剥がれ燃料破損に至る恐れがある。
After the middle of the fuel life, where irradiation has progressed to a certain degree, nodular corrosion easily grows in the vicinity of 1/3 from the lower end of the fuel rod where the average linear power density is high. If nodular corrosion abnormally grows to about 150 μm or more due to environmental conditions such as water quality, this nodular oxide film may peel off like a scab, leading to fuel damage.

【0006】上記の問題点を回避するために、従来から
採られてきた方法としては、以下のようなものがある。
In order to avoid the above problems, the following methods have been conventionally adopted.

【0007】第1の方法としては、ジルコニウム基合金
製被覆管の合金成分及び不純物成分をコントロールして
耐食性向上をはかることがある。しかしながら、この方
法はきわめて一般的な傾向として耐食性向上につながる
が、より高燃焼度側における耐ノジュラー腐食性能を効
率よくコントロールする為には不十分である。
The first method is to improve the corrosion resistance by controlling the alloy components and impurity components of the zirconium-based alloy cladding tube. However, this method leads to the improvement of corrosion resistance as a very general tendency, but is not sufficient to efficiently control the nodular corrosion resistance on the higher burnup side.

【0008】第2の方法としては、燃料被覆管の製造履
歴に改良を加えて、燃料被覆管表面の金属微細組織をノ
ジュラー腐食に対し耐食性の高い状態にするもので、た
とえばジルカロイ−2製の燃料被覆管を製造する過程
で、素管の段階で燃料被覆管に焼き入れを施し、熱処理
履歴の指標であるアニーリングパラメータΣAi(ΣA
i=ΣtiExp(−40000 /Ti) ;tは時間(hr),Tは温
度(k) )を低減することで合金表面の析出物の粒径を小
さく、均一に分布するよう調整することである。
The second method is to improve the manufacturing history of the fuel cladding tube so that the metal microstructure on the surface of the fuel cladding tube has a high corrosion resistance against nodular corrosion. For example, it is made of Zircaloy-2. In the process of manufacturing a fuel cladding tube, the fuel cladding tube is quenched at the stage of the raw tube, and the annealing parameter ΣAi (ΣA
i = ΣtiExp (−40 000 / Ti); t is the time (hr), T is the temperature (k)) to reduce the grain size of the precipitates on the alloy surface and to adjust them so that they are distributed uniformly. .

【0009】[0009]

【発明が解決しようとする課題】しかしながら、最近の
研究からノジュラー腐食と一様腐食の熱履歴特性が異な
ることがわかり、ノジュラー腐食低減をねらったアニー
リングパラメータΣAiを大幅に低減した燃料被覆管
は、一様腐食に対してはノジュラー腐食と同等の腐食低
減効果は必ずしも得られないことがわかってきた。
However, recent research has revealed that the thermal history characteristics of nodular corrosion and uniform corrosion are different, and a fuel cladding tube with a significantly reduced annealing parameter ΣAi aimed at reducing nodular corrosion is It has been found that uniform corrosion does not necessarily achieve the same corrosion reduction effect as nodular corrosion.

【0010】特にノジュラー腐食が問題とならなかった
燃料集合体外周部の下部領域において一様腐食が成長
し、燃料の健全性には問題ないが、一様腐食酸化膜の剥
離を生じる課題がある。
In particular, uniform corrosion grows in the lower region of the outer periphery of the fuel assembly where nodular corrosion has not been a problem, and there is no problem in the integrity of the fuel, but there is a problem that the uniform corrosion oxide film peels off. .

【0011】本発明は上記課題を解決するためになされ
たもので、ノジュラー腐食低減効果を保った状態で、一
様腐食成長による酸化膜剥離の恐れがなく耐食性能を高
めた核燃料被覆管を提供することにある。
The present invention has been made to solve the above-mentioned problems, and provides a nuclear fuel clad tube having enhanced corrosion resistance without fear of oxide film peeling due to uniform corrosion growth while maintaining the effect of reducing nodular corrosion. To do.

【0012】[0012]

【課題を解決するための手段】本発明の第1は、ジルコ
ニウム基合金からなる核燃料被覆管において、被覆管の
一部または全部に、平均粒径0.1 μm以上の合金成分が
偏析し、被覆管の残りの一部または全部に平均粒径0.1
μm以下の合金成分が偏析したことを特徴とする。
The first object of the present invention is to provide a nuclear fuel cladding tube made of a zirconium-based alloy, wherein an alloy component having an average particle size of 0.1 μm or more segregates in a part or all of the cladding tube. The average particle size of 0.1
It is characterized by segregation of alloy components of μm or less.

【0013】第2は前記合金成分からなる析出物の粒径
を熱処理履歴の指標であるアニーリングパラメータΣA
i(ΣAi=ΣtiExp(−40000 /Ti) ;tは時間(h
r),Tは温度(k) )をコントロールすることで達成する
ことを特徴とする。
Second, the grain size of precipitates composed of the alloy components is an annealing parameter ΣA which is an index of the heat treatment history.
i (ΣAi = ΣtiExp (−40000 / Ti); t is time (h
r) and T are characterized by being achieved by controlling the temperature (k).

【0014】第3はジルコニウム基合金よりなる核燃料
被覆管において、炉心冷却水が単相である燃料被覆管下
部領域で合金成分の析出物平均粒径を0.1 μm以上と
し、炉心冷却水が二相となっている被覆管上部領域で析
出物平均粒径を0.1 μm以下とすること、あるいは、燃
料集合体の外周部で合金成分の析出物平均粒径を0.1 μ
m以上とし、燃料集合体の非外周部で析出物平均粒径を
0.1 μm以下とすることを特徴とする。
Thirdly, in a nuclear fuel cladding tube made of a zirconium-based alloy, the average grain size of precipitates of alloy components is set to 0.1 μm or more in the lower region of the fuel cladding tube where the core cooling water has a single phase, and the core cooling water has two phases. The average particle size of precipitates is 0.1 μm or less in the upper region of the cladding tube, or the average particle size of precipitates of alloy components is 0.1 μm at the outer periphery of the fuel assembly.
m or more and the average particle size of precipitates in the non-peripheral part of the fuel assembly
The feature is that the thickness is 0.1 μm or less.

【0015】[0015]

【作用】ジルコニウム基合金からなる核燃料被覆管にお
いて、固溶できない合金成分が析出する。アニーリング
パラメータΣAiをコントロールすることで、合金成分
の析出物粒径が0.1 μm以下と0.1 μm以上との領域に
分け、前者は耐ノジュラー腐食性能を要求される部位
に、後者は耐一様腐食性能を要求される部位に配置す
る。
Function: In the nuclear fuel cladding tube made of a zirconium-based alloy, alloy components that cannot be solid-dissolved are deposited. By controlling the annealing parameter ΣAi, the grain size of the precipitates of the alloy components is divided into areas of 0.1 μm or less and 0.1 μm or more. The former is the area where nodular corrosion resistance is required and the latter is uniform corrosion resistance. Are placed in the required area.

【0016】ノジュラー腐食の成長が問題である領域に
おいてはノジュラー腐食低減の効果を残したまま、一様
腐食の成長が問題となる領域においては、一様腐食低減
効果を達成することができ、より信頼性の高い核燃料被
覆管を提供できる。
In the region where the growth of uniform corrosion is a problem, the uniform corrosion reduction effect can be achieved in the region where the growth of uniform corrosion remains a problem. A highly reliable nuclear fuel cladding tube can be provided.

【0017】[0017]

【実施例】本発明に係る核燃料被覆管の一実施例を図面
を参照して詳細に説明する。図1に本発明に係る核燃料
被覆管の一例を示す。この被覆管1はたとえば、ジルコ
ニウムにスズ,鉄,クロム,ニッケル,ニオブ等を微量
に添加したジルコニウム基合金で製造されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the nuclear fuel cladding tube according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a nuclear fuel cladding tube according to the present invention. The cladding tube 1 is made of, for example, a zirconium-based alloy in which a small amount of tin, iron, chromium, nickel, niobium, or the like is added to zirconium.

【0018】この被覆管1は図2に示すように、ジルコ
ニウム母材に固溶できない合金成分が基合金表面に析出
している。なお、図2は合金の組織を顕微鏡写真により
拡大して部分的に模写したもので、図2中、符号2はジ
ルコニウム基合金金属結晶で、3はジルコニウム基合金
成分析出物である。
As shown in FIG. 2, the cladding tube 1 has alloy components that cannot be solid-dissolved in the zirconium base material deposited on the surface of the base alloy. Note that FIG. 2 is a partially enlarged copy of the structure of the alloy with a micrograph. In FIG. 2, reference numeral 2 is a zirconium-based alloy metal crystal, and 3 is a zirconium-based alloy component precipitate.

【0019】ところで、前記ジルコニウム基合金製燃料
被覆管において、表面の析出物粒径と分布によって耐食
性が異なることが知られている。析出物平均粒径と耐ノ
ジュラー腐食性能および耐一様腐食性能との相関を図3
に示す。図3に示したように、ノジュラー腐食及び一様
腐食は、析出物の平均粒径と大きく関係があり、ノジュ
ラー腐食に関しては析出物粒径が小さい方が耐食性が高
く、一様腐食に関しては析出物粒径が0.1 μm程度以上
で耐食性が高い。
By the way, it is known that the above zirconium-based alloy fuel cladding tube has different corrosion resistance depending on the particle size and distribution of precipitates on the surface. Fig. 3 shows the correlation between the average particle size of precipitates and the nodular corrosion resistance and uniform corrosion resistance.
Shown in. As shown in FIG. 3, the nodular corrosion and the uniform corrosion are closely related to the average particle size of the precipitates. Regarding the nodular corrosion, the smaller the precipitate particle size is, the higher the corrosion resistance is. Corrosion resistance is high when the particle size is 0.1 μm or more.

【0020】図4は一般的にノジュラー腐食と一様腐食
による酸化膜厚さの軸方向分布を示した特性図である。
図4に示したように、一様腐食は、燃料棒4の最下端部
の被覆管1において成長し易く、ノジュラー腐食は平均
線出力密度の高い燃料棒下端から1/3付近で著しい。
FIG. 4 is a characteristic diagram showing the axial distribution of the oxide film thickness generally caused by nodular corrosion and uniform corrosion.
As shown in FIG. 4, uniform corrosion is likely to grow in the cladding tube 1 at the lowermost end of the fuel rod 4, and nodular corrosion is remarkable around 1/3 from the lower end of the fuel rod where the average linear power density is high.

【0021】図5はこの被覆管1の析出物の大きさを拡
大し模写して示したものである。図5に示したように本
発明に係る核燃料被覆管のジルコニウム基合金成分析出
物3の粒径は、燃料棒4の上方と下方で異なり、燃料棒
4の下方においては、一様腐食に対する耐食性の効果を
期待して析出物3の平均粒径が0.1 μm以上、上方にお
いては、ノジュラー腐食に対する耐食性の効果を期待し
て析出物3の平均粒径を1μm以下としている。
FIG. 5 is an enlarged copy of the size of the deposit on the cladding tube 1. As shown in FIG. 5, the grain size of the zirconium-based alloy component precipitate 3 of the nuclear fuel cladding tube according to the present invention is different above and below the fuel rod 4, and below the fuel rod 4 against uniform corrosion. The average particle size of the precipitates 3 is set to 0.1 μm or more in anticipation of the effect of corrosion resistance, and in the upper part, the average particle size of the precipitates 3 is set to 1 μm or less in anticipation of the effect of corrosion resistance to nodular corrosion.

【0022】図6に、アニーリングパラメータΣAiと
析出物平均粒径との関係の一例として、ジルコニウム基
合金について示す。析出物の形態は合金の成分、加工度
によっても異なるが、一般的にΣAiの小さい方が析出
物平均粒径は小さい。
FIG. 6 shows a zirconium-based alloy as an example of the relationship between the annealing parameter ΣAi and the average grain size of precipitates. The morphology of the precipitates varies depending on the composition of the alloy and the workability, but generally, the smaller ΣAi, the smaller the average particle size of the precipitates.

【0023】図6により、平均粒径0.1 μm以上を達成
するためには、ΣAiを10−17〜10−18程度にし、
平均粒径0.1 μm以下を達成するためには、ΣAiを1
21程度にすると良い。すなわち、たとえば、一度Σ
Aiが10−21程度の核燃料被覆管を製造した後、燃料
棒4の下端から1/5〜1/4程度の領域のみ再加熱す
ることによって製造する。
According to FIG. 6, in order to achieve an average particle size of 0.1 μm or more, ΣAi is set to about 10 −17 to 10 −18 ,
To achieve an average particle size of 0.1 μm or less, ΣAi is 1
0 - it may be in the order of 21. That is, for example, once Σ
After producing a nuclear fuel cladding tube having an Ai of about 10 −21, it is produced by reheating only a region of about 1/5 to 1/4 from the lower end of the fuel rod 4.

【0024】[0024]

【発明の効果】本発明によれば、アニーリングパラメー
タΣAiを領域により変化させることで核燃料被覆管の
微細組織に関し、ジルコニウム基合金上に偏析した析出
物粒径を領域により変化させ、ノジュラー腐食の問題と
なる領域ではノジュラー腐食性能の高い、また一様腐食
の問題となる領域では一様腐食性能の高い核燃料被覆管
を製造することが可能となり、より信頼性の高い核燃料
被覆管を提供できる。
According to the present invention, regarding the fine structure of the nuclear fuel cladding tube by changing the annealing parameter ΣAi depending on the region, the grain size of precipitates segregated on the zirconium-based alloy is changed depending on the region, and the problem of nodular corrosion occurs. It becomes possible to manufacture a nuclear fuel clad tube having a high nodular corrosion performance in a region in which the above-mentioned problem occurs, and a high uniform corrosion performance in a region in which a problem of uniform corrosion occurs, thereby providing a more reliable nuclear fuel clad tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料被覆管の一実施例を示す斜視
図。
FIG. 1 is a perspective view showing an embodiment of a fuel cladding tube according to the present invention.

【図2】図1における被覆管の表面を拡大して示す結晶
組織の模写図。
FIG. 2 is an enlarged view of a crystal structure showing an enlarged surface of the cladding tube in FIG.

【図3】本発明に係るジルコニウム基合金の析出物平均
粒径と関連して、平均粒径と耐ノジュラー腐食性能,耐
一様腐食性能との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the average particle size of precipitates and the nodular corrosion resistance and uniform corrosion resistance of the zirconium-based alloy according to the present invention.

【図4】ノジュラー腐食と一様腐食による酸化膜厚さの
軸方向分布を示す特性図。
FIG. 4 is a characteristic diagram showing an axial distribution of oxide film thickness due to nodular corrosion and uniform corrosion.

【図5】本発明に係る被覆管の析出物の大きさを拡大し
て示す模写図。
FIG. 5 is a magnified view showing an enlarged size of deposits of the cladding tube according to the present invention.

【図6】ジルコニウム基合金のアニーリングパラメータ
(ΣAi)と析出物平均粒径との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the annealing parameter (ΣAi) of a zirconium-based alloy and the average grain size of precipitates.

【符号の説明】[Explanation of symbols]

1…被覆管、2…ジルコニウム基合金結晶、3…ジルコ
ニウム基合金成分析出物、4…燃料棒。
1 ... Cladding tube, 2 ... Zirconium-based alloy crystal, 3 ... Zirconium-based alloy component precipitate, 4 ... Fuel rod.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム基合金からなる核燃料被覆
管において、被覆管の一部または全部に、平均粒径0.1
μm以上の合金成分が偏析し、被覆管の残りの一部また
は全部に平均粒径0.1 μm以下の合金成分が偏析したこ
とを特徴とする核燃料被覆管。
1. A nuclear fuel cladding tube made of a zirconium-based alloy, wherein a part or all of the cladding tube has an average particle size of 0.1.
A nuclear fuel cladding tube characterized by segregation of alloy components having a particle diameter of 0.1 μm or more and segregation of alloy components having an average particle size of 0.1 μm or less in the remaining part or all of the cladding tube.
【請求項2】 前記合金成分からなる析出物の粒径を熱
処理履歴の指標であるアニーリングパラメータΣAi
(ΣAi=ΣtiExp(−40000 /Ti) ;tは時間(hr),
Tは温度(k) )を燃料被覆管の部位によって異なる値に
コントロールすることを特徴とする請求項1記載の核燃
料被覆管。
2. The annealing parameter ΣAi, which is an index of the heat treatment history, is the grain size of precipitates composed of the alloy components.
(ΣAi = ΣtiExp (−40000 / Ti); t is time (hr),
The nuclear fuel cladding tube according to claim 1, wherein T controls the temperature (k) to a different value depending on the location of the fuel cladding tube.
【請求項3】 ジルコニウム基合金からなる核燃料被覆
管において、炉心冷却水が単相である燃料被覆管下部領
域で合金成分の析出物平均粒径を0.1 μm以上とし、炉
心冷却水が二相となっている被覆管上部領域で析出物平
均粒径を0.1μm以下とすること、あるいは燃料集合体
の外周部で合金成分の析出物平均粒径を0.1 μm以上と
し、燃料集合体の非外周部で析出物平均粒径を0.1 μm
以下とすることを特徴とする核燃料被覆管。
3. In a nuclear fuel cladding tube made of a zirconium-based alloy, the average grain size of precipitates of alloy components is 0.1 μm or more in the lower region of the fuel cladding tube where the core cooling water is a single phase, and the core cooling water is two phases. The average particle size of precipitates is 0.1 μm or less in the upper region of the cladding tube, or the average particle size of precipitates of alloy components is 0.1 μm or more in the outer peripheral part of the fuel assembly, and the non-outer peripheral part of the fuel assembly is And the average particle size of the precipitate is 0.1 μm
A nuclear fuel cladding tube characterized by the following:
JP29771293A 1993-11-29 1993-11-29 Nuclear fuel cladding and fuel assemblies Expired - Fee Related JP3256615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29771293A JP3256615B2 (en) 1993-11-29 1993-11-29 Nuclear fuel cladding and fuel assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29771293A JP3256615B2 (en) 1993-11-29 1993-11-29 Nuclear fuel cladding and fuel assemblies

Publications (2)

Publication Number Publication Date
JPH07151881A true JPH07151881A (en) 1995-06-16
JP3256615B2 JP3256615B2 (en) 2002-02-12

Family

ID=17850194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29771293A Expired - Fee Related JP3256615B2 (en) 1993-11-29 1993-11-29 Nuclear fuel cladding and fuel assemblies

Country Status (1)

Country Link
JP (1) JP3256615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337311A (en) * 2005-06-06 2006-12-14 Global Nuclear Fuel-Japan Co Ltd Hydrogenation method and hydrogenation test piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337311A (en) * 2005-06-06 2006-12-14 Global Nuclear Fuel-Japan Co Ltd Hydrogenation method and hydrogenation test piece
JP4628875B2 (en) * 2005-06-06 2011-02-09 株式会社グローバル・ニュークリア・フュエル・ジャパン Hydrogenation method and hydrogenation test piece

Also Published As

Publication number Publication date
JP3256615B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US5681404A (en) Method of fabricating Zircaloy tubing having high resistance to crack propagation
US4689091A (en) Process for producing zirconium-based alloy
JP2988493B2 (en) Zirconium alloy material processing method
EP0895247A1 (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2003149365A (en) Manufacturing method of niobium-containing zircalloy nuclear fuel cladding with excellent corrosion resistance
JP2003149369A (en) Method of manufacturing fuel assembly support grid
JPS58224139A (en) Zirconium alloy with high corrosion resistance
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
EP0899747B1 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP5274463B2 (en) Water reactor fuel clad tube, method of manufacturing the same, water reactor fuel rod and water reactor fuel assembly having the same
CN1131526C (en) Zirconium alloy tube for nuclear reactor fuel assembly and method for making same
JPS6234095A (en) Nuclear fuel coated tube
JPH07151881A (en) Nuclear fuel cladding tube
JPS6050859B2 (en) Corrosion resistant zirconium alloy for nuclear reactors
JP4989818B2 (en) Method for producing zirconium-based alloy components for the nuclear industry
JP2003277859A (en) Zirconium alloy having excellent corrosion resistance and production method therefor
JPH0348193A (en) Cladding tube for nuclear fuel
JPH0868884A (en) High corrosion resistive zirconium alloy pipe
JPH08100231A (en) Highly corrosion resistant zirconium alloy and its production
JPH1152087A (en) Nuclear fuel clad and its production
JPH09227973A (en) High corrosion resistant zirconium alloy and alloy tube
JP2002302723A (en) Zirconium alloy and structural parts for nuclear reactor consisting of the same
JPH09264981A (en) Channel box and manufacture thereof
JPH11158591A (en) High corrosion resistance zirconium alloy tube and its production
JPH1081929A (en) Zirconium alloy and alloy pipe and their production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees