JPS6050859B2 - Corrosion resistant zirconium alloy for nuclear reactors - Google Patents

Corrosion resistant zirconium alloy for nuclear reactors

Info

Publication number
JPS6050859B2
JPS6050859B2 JP56003117A JP311781A JPS6050859B2 JP S6050859 B2 JPS6050859 B2 JP S6050859B2 JP 56003117 A JP56003117 A JP 56003117A JP 311781 A JP311781 A JP 311781A JP S6050859 B2 JPS6050859 B2 JP S6050859B2
Authority
JP
Japan
Prior art keywords
zirconium alloy
corrosion
nuclear reactors
grain boundaries
zircaloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56003117A
Other languages
Japanese (ja)
Other versions
JPS57116739A (en
Inventor
良昇 桑江
新一 中村
金光 佐藤
友信 桜永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56003117A priority Critical patent/JPS6050859B2/en
Publication of JPS57116739A publication Critical patent/JPS57116739A/en
Publication of JPS6050859B2 publication Critical patent/JPS6050859B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉の構造材料として使用する耐食性原子
炉用ジルコニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a corrosion-resistant zirconium alloy for nuclear reactors used as a structural material for nuclear reactors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば沸騰水型軽水炉においては、燃料被覆管や、チ
ャンネルボックス・スペーサなどの構造材料として、ジ
ルカロイー2、ジルカロイー4などと呼称される原子炉
用ジルコニウム合金が使用されている。
For example, in boiling water type light water reactors, zirconium alloys for nuclear reactors called Zircaloy 2, Zircaloy 4, etc. are used as structural materials for fuel cladding tubes, channel boxes, spacers, and the like.

即ち燃料被覆管やチャンネルボックスなど、所謂る炉心
構造物については、中性子経済および高温における耐食
性の点から、通常ASTM規格G2−74もしくはB3
53−77aによる耐食性試験に合格したジルコニウム
合金が実用に供されている。
In other words, so-called reactor core structures such as fuel cladding tubes and channel boxes are generally compliant with ASTM standards G2-74 or B3 from the viewpoint of neutron economy and corrosion resistance at high temperatures.
Zirconium alloys that have passed the corrosion resistance test according to No. 53-77a are in practical use.

ところで上記ジルコニウム合金から構成された炉心構造
物についてみると、実装運転において、ノジユラーコロ
ージヨンと呼ばれる腐食 反応による斑点状の白色生成
物が構造物表面に生成する。上記白色腐食生成物は、ノ
ジユラーコロージヨンの進展に伴ない次第に成長して、
時には剥落することもあり、またこの剥落による内戚り
は、チャンネルボックスや燃料被覆管などの炉心構造物
の機械的強度の低下を招来する恐れがある。炉心構造物
についてのより安全性乃至信頼性の点から、上記ノジユ
ラーコロージヨンに対する耐食性は注目されており、ジ
ルコニウム合金からなる構造物の表面に電子伝導性材料
層を薄く被覆することも試みられている(特開昭52−
5629号)。しかしこの電子伝導性材料の被覆による
ノジユラーコロージヨンの発生防止或いは軽減(ノジユ
ラーコロージヨンに対する耐食性付与)手段・は異種金
属との共存、接触腐食などの点から充分な手段とは言い
難い。 〔発明の目的〕 本発明は上記事情に鑑みなされたもので、チャンネル
ボックス、燃料被覆管、スペーサーなど炉フ心材に適す
るノジユラーコロージヨンに対する耐食性のすぐれた原
子炉用ジルコニウム合金を提供 しようとするものであ
る。
By the way, when we look at the core structure made of the above-mentioned zirconium alloy, during mounting operation, speckled white products due to a corrosion reaction called nodular corrosion are generated on the surface of the structure. The white corrosion products mentioned above gradually grow as the nodular corrosion progresses.
Occasionally, it may flake off, and this flaking may lead to a decrease in the mechanical strength of core structures such as channel boxes and fuel cladding tubes. In order to improve the safety and reliability of core structures, corrosion resistance against the nodular corrosion described above is attracting attention, and attempts have also been made to coat the surface of structures made of zirconium alloys with a thin layer of electronically conductive material. (Unexamined Japanese Patent Publication No. 1973-
No. 5629). However, this method of preventing or reducing the occurrence of nodular corrosion (providing corrosion resistance to nodular corrosion) by coating with an electron conductive material cannot be said to be a sufficient means from the viewpoint of coexistence with dissimilar metals, contact corrosion, etc. [Object of the Invention] The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a zirconium alloy for nuclear reactors that has excellent corrosion resistance against nodular corrosion and is suitable for reactor core materials such as channel boxes, fuel cladding tubes, and spacers. It is something.

〔発明の概要〕 本発明は原子炉用ジルコニウム合金の溶接部のノジユラ
ーコロージヨンに対する耐食性が母材の耐食性と比較し
て優れていることに基づいている。
[Summary of the Invention] The present invention is based on the fact that the corrosion resistance of a welded part of a zirconium alloy for a nuclear reactor against nodular corrosion is superior to that of the base metal.

本発明者らがかかる耐食性のすぐれたジルコニウム合金
の溶接部の組織を詳細に観察したところ、組織全体にわ
たり粒径約0.04〜1.5μmの金属間化合物及び粒
径約0.01〜1.5μmの金属錫が粒界または亜粒界
に沿つて連鎖状に偏析していた。従つて適当な熱処理方
法ないしは加工方法により、ジルコニウム合金に上記析
出物を粒界または亜粒界に沿つて連鎖状に析出させるな
らは、ノジユラーコロージヨンに対するジルコニウム合
金の耐食性は向上する。原子炉用ジルコニウム合金は一
般に原子炉の構造材として用いられるもので、Zrを主
成分として、Fe,Nl,Cr,Sn,Nbを含有する
ものであり、例えばSnl〜1.8Wt%、FeO.l
〜0.2V/t%NiO〜0.1Wt%、CrO−0.
2wt%残部実質的にZrからなるものが挙げられるが
特に組成に限定されることはなく、一般に原子炉用とし
て知られているジルカロイー1、ジルカロイー2、ジル
カロイー3、ジルカロイー4、オーゼナイト0.\オー
ゼナイト1.0、Zr−2.5%Nb等が挙げられる。
When the present inventors closely observed the structure of the welded part of such a zirconium alloy with excellent corrosion resistance, it was found that the entire structure contained intermetallic compounds with a grain size of about 0.04 to 1.5 μm and grain sizes of about 0.01 to 1. Metallic tin of .5 μm was segregated in a chain along grain boundaries or sub-grain boundaries. Therefore, if the above-mentioned precipitates are precipitated in the zirconium alloy in a chain along the grain boundaries or sub-grain boundaries by a suitable heat treatment or processing method, the corrosion resistance of the zirconium alloy against nodular corrosion will be improved. Zirconium alloys for nuclear reactors are generally used as structural materials for nuclear reactors, and contain Zr as a main component, Fe, Nl, Cr, Sn, and Nb, for example, Snl to 1.8 wt%, FeO. l
~0.2V/t%NiO~0.1Wt%, CrO-0.
Examples include Zircaloy 1, Zircaloy 2, Zircaloy 3, Zircaloy 4, Zircaloy 4, Zircaloy 4, Zircaloy 4, and Zircaloy 4, which are generally known for use in nuclear reactors, although the composition is not particularly limited. Examples include Auzenite 1.0 and Zr-2.5%Nb.

また本発明に係る金属間化合物は上記原子炉用ジルコニ
ウム合金の構成元素であるZr,Sn(ジルカロイー1
)、Zr,Sn,Fe,Ni,Cr(ジルカロイー2,
3)、Zr,Sn,Fe,Ni,Nb(オーゼナイト0
.5,1.0)、Zr,Nb(Zr−2.5%Nb)、
上記原子炉用ジルコニウム合金の主な不純物であるAl
,C,Cn,Hf,O,Mn,Si,Ti,Wで構成さ
一れる金属間化合物であり、例えばZrc,zrcr2
,zrFe2,Zr2NlO.4FeO.69zrcr
l.lFeO.99ZrXFe5Cr2,Zr−Ni−
Fe,Zr22FelONi5Cr,zr29Fe7,
Nil2,zr63Fe,cr4等が挙げられる。特に
このような組成に限定されるものではない。 3本発
明合金は原子炉用ジルコニウム基合金に上記金属間化合
物及ひ金属錫を粒界または亜粒界に沿つて偏析させるこ
とにより耐食性を向上させるものである。ノジユラーコ
ロージヨンは、ジルコニウム合金と水とが接触すること
により形成され4、るZrO2皮膜とジルコニウム合金
との界面に発生するH2ガスの圧力がZrO2皮膜の耐
圧を越えるとZrO2皮膜が破壊されることによつて生
じる。ところが金属錫及び金属間化合物が粒界もしくは
亜粒界に連鎖状に析出した構造をとることにより、H2
ガスはZrO2皮膜外表面(ジルコニウム合金と接して
いない面)で発生することになり、ノジユラーコロージ
ヨンは発生せず、耐食性が向上するのである。本発明に
おいては、このような構造となる方法であればいかなる
方法を用いても良い。
Furthermore, the intermetallic compound according to the present invention is composed of Zr, Sn (zircaloy 1
), Zr, Sn, Fe, Ni, Cr (Zircaloy 2,
3), Zr, Sn, Fe, Ni, Nb (auzenite 0
.. 5,1.0), Zr, Nb (Zr-2.5%Nb),
Al is the main impurity in the above zirconium alloy for nuclear reactors.
, C, Cn, Hf, O, Mn, Si, Ti, W, for example, Zrc, zrcr2
,zrFe2,Zr2NlO. 4FeO. 69zrcr
l. lFeO. 99ZrXFe5Cr2, Zr-Ni-
Fe, Zr22FelONi5Cr, zr29Fe7,
Examples include Nil2, zr63Fe, cr4, and the like. The composition is not particularly limited to this type. 3 The alloy of the present invention improves the corrosion resistance of a zirconium-based alloy for nuclear reactors by segregating the above-mentioned intermetallic compounds and metallic tin along grain boundaries or sub-grain boundaries. Nodular corrosion is formed when a zirconium alloy and water come into contact with each other.4 If the pressure of H2 gas generated at the interface between the ZrO2 film and the zirconium alloy exceeds the withstand pressure of the ZrO2 film, the ZrO2 film will be destroyed. caused by something. However, due to the structure in which metallic tin and intermetallic compounds precipitate in a chain at grain boundaries or sub-grain boundaries, H2
Gas is generated on the outer surface of the ZrO2 film (the surface not in contact with the zirconium alloy), no nodular corrosion occurs, and corrosion resistance is improved. In the present invention, any method may be used as long as it provides such a structure.

例えばジルカロイー4等の直径5μm程度の原子炉用ジ
ルコニウム基合金粉と直径0.1μm程度の錫微粒ノ子
、鉄微粒子等を混合・焼結することにより、焼結現像と
同時に粒界にZrFe2,sn等が偏析した構造となる
。その後圧延等を加えて焼結体の密度をあげることもで
きる。また錫含有のジルコニウム板とSUS3O4等の
ステンレス鋼板とを密着させて熱処理すると粒内拡散よ
りも粒界拡散の方が速いためステンレス鋼板からの拡散
物であるFe,Ni,Cr等がジルコニウム板の粒界に
濃縮される。このときZr.!:.Fe,Ni,Cr等
が金属間化合物を形成する。また上記の方法以外にも原
子炉用ジルコニウム合金中の添加元素を偏析させる方法
でもよい。例えばオーゼナイト0.5.ジルカロイー4
等のジルコニウム合金に熱処理を加えることにより添加
元素を固溶させる。このとき添加元素の一部は固溶しき
れず粒界、亜粒界に析出する。このとき冷間椴造を施し
、粒界密度及び転移密度を増やすこともできる。次いで
焼鈍することにより固溶していた元素が粒界、亜粒界に
既に存在する析出物を核として連鎖状に析出すると同時
にZrと化合して金属間化合物を形成し、金属錫及ひ金
属間化合物が偏析した本発明合金を得ることができる。
〔発明の実施例〕 以下本発明の実施例をチャンネルボックスを構成するジ
ルコニウム合金(ジルカロイー4)を例にとつて図面を
参照にして詳細に説明する。
For example, ZrFe2, It has a structure in which sn etc. are segregated. After that, the density of the sintered body can be increased by rolling or the like. Furthermore, when a tin-containing zirconium plate and a stainless steel plate such as SUS3O4 are heat-treated in close contact with each other, grain boundary diffusion is faster than intragranular diffusion, so the diffused substances such as Fe, Ni, Cr, etc. from the stainless steel plate are absorbed into the zirconium plate. Concentrated at grain boundaries. At this time, Zr. ! :. Fe, Ni, Cr, etc. form an intermetallic compound. In addition to the above method, a method may also be used in which the added elements in the zirconium alloy for nuclear reactors are segregated. For example, ozenite 0.5. Zircaloy 4
Additive elements are dissolved in solid solution by applying heat treatment to zirconium alloys such as zirconium alloys. At this time, some of the added elements are not completely dissolved and precipitate at grain boundaries and sub-grain boundaries. At this time, it is also possible to increase the grain boundary density and dislocation density by performing cold milling. Then, by annealing, the elements that were in solid solution precipitate in a chain shape using the precipitates already existing at the grain boundaries and sub-grain boundaries as nuclei, and at the same time combine with Zr to form an intermetallic compound, and the metal tin and the metal It is possible to obtain an alloy of the present invention in which intermediate compounds are segregated.
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking as an example a zirconium alloy (Zircaloy 4) constituting a channel box.

第1図は従来のジルコニウム合金の組織である。図から
明らかなように金属間化合物1と含錫無機化合物2(い
ずれも粒径は約0.2〜1.5μm)が組織全体にわた
つてほぼ均一に析出している。第2図に本発明に係る耐
食性原子炉用ジルコニウム合金の組織を示す。第2図に
示したジルコニウム合金は、ジルカロイー4を1120
℃に5分間保持した後、1120℃→1000℃を50
0〜700保C/SllOOO0C→800℃を100
〜500℃/Sの速度で冷却した後、真空中750℃で
30分間焼鈍することによつて形成した。
FIG. 1 shows the structure of a conventional zirconium alloy. As is clear from the figure, the intermetallic compound 1 and the tin-containing inorganic compound 2 (both have particle sizes of about 0.2 to 1.5 μm) are precipitated almost uniformly over the entire structure. FIG. 2 shows the structure of the corrosion-resistant zirconium alloy for nuclear reactors according to the present invention. The zirconium alloy shown in Figure 2 is Zircaloy 4 with 1120
℃ for 5 minutes, then 1120℃ → 1000℃ for 50 minutes.
0 to 700 C/SllOOO0C → 800℃ to 100
It was formed by cooling at a rate of ~500°C/S and then annealing in vacuum at 750°C for 30 minutes.

前記冷却により大半の添加元素は固溶するが、一部の元
素は固溶しきれす粒界、亜粒界に分散して析出する。次
いで行なう焼鈍により固溶していた元素が粒界もしくは
亜粒界に既出の析出物を核として析出し、金属間化合物
を形成する。図から明らかなように粒径約0.04〜1
.5μmの金属間化合物3と粒径約0.01〜1.5μ
mの体心正方の金属錫4が粒界または亜粒界に沿つて連
鎖状に偏析している。なおこの金属間化合物はZr,C
r及びFeを含有し、結晶構造は面心立方Hcr2型で
あつた。例えば同様の処理を施したジルカロイー2では
金属錫の他にZr,Fe及びCrを含有し、結晶構造が
面心立方Zrcr2型の金属間化合物、Zr及びSnを
含有し結晶構造が斜方HSn型の金属間化合物、Zr及
びSnを含有し結晶構造が六方Zr5sn3型の金属間
化合物が析出した。次にこのような本発明に係る耐食性
ジルコニウム合金のノジユラーコロージヨン挙動を従来
のジルコニウム合金のそれと比較しながら具体的に示す
By the cooling, most of the added elements become a solid solution, but some elements are dispersed and precipitated at the grain boundaries and sub-grain boundaries. During the subsequent annealing, the solid-dissolved elements precipitate at the grain boundaries or sub-grain boundaries using the precipitates that have already appeared as nuclei, forming intermetallic compounds. As is clear from the figure, the particle size is approximately 0.04 to 1
.. 5 μm intermetallic compound 3 and particle size approximately 0.01-1.5 μm
Metallic tin 4 having a square body center of m is segregated in a chain along grain boundaries or sub-grain boundaries. Note that this intermetallic compound is Zr, C
It contained r and Fe, and its crystal structure was a face-centered cubic Hcr2 type. For example, Zircaloy 2, which has undergone similar treatment, contains Zr, Fe, and Cr in addition to metal tin, and is an intermetallic compound with a face-centered cubic Zrcr2 type crystal structure, while it contains Zr and Sn and has an orthorhombic HSn type crystal structure. An intermetallic compound containing Zr and Sn and having a hexagonal Zr5sn3 crystal structure was precipitated. Next, the nodular corrosion behavior of the corrosion-resistant zirconium alloy according to the present invention will be specifically shown in comparison with that of a conventional zirconium alloy.

先ず本発明に係る耐食ジルコニウム合金片(27順×2
0Twt×3?)と従来のジルコニウム合金片(27T
I0rL×2−×3?)とを用意し、それらを粒径約2
5μmのダイヤモンド粉て表面研摩後、500℃、10
7k9/c!Lの水蒸気環境中に保持した。
First, corrosion-resistant zirconium alloy pieces according to the present invention (27 orders x 2
0Twt×3? ) and conventional zirconium alloy piece (27T
I0rL×2−×3? ) and have a particle size of about 2
After surface polishing with 5μm diamond powder, 500℃, 10
7k9/c! It was maintained in a water vapor environment of L.

尚、この試験環境は、290゜C176k9/d′S,
騰水雰囲気て且つ中性子照射の影響を考慮した実炉環境
を摸擬したノジユラーコロージヨンの加速試験である。
上記試験において、本発明に係る耐食ジルコニウム合金
の場合、その表面には保持時間4[相]間後において斑
点状の白色生成物の発生は全く認められず、すぐれた耐
食性を示した。
The test environment is 290°C176k9/d'S,
This is an accelerated test of a nodular corrosion that simulates a real reactor environment in a rising water atmosphere and taking into account the effects of neutron irradiation.
In the above test, in the case of the corrosion-resistant zirconium alloy according to the present invention, no speckled white products were observed on the surface after a holding time of 4 [phases], indicating excellent corrosion resistance.

一方、従来のジルコニウム合金の表面には、数時間経過
で、斑点状の白色生成物が発生し、時間とともに次第に
大きく生長した。また本発明に係る耐食ジルコニウム合
金および従来のジルコニウム合金の重量変化(腐食量)
の傾向はそれぞれ第3図の曲線aおよび曲線bに示すご
とくであつた。さらに上記ジルカロイー4以外の例えば
オーゼナイトOゐ等の原子炉用ジルコニウム合金も相当
する従来のジルコニウム合金に比べてノジユラーコロー
ジヨンに対して優れた耐食性を示した。
On the other hand, speckled white products appeared on the surface of the conventional zirconium alloy after several hours, and gradually grew larger over time. In addition, the weight change (corrosion amount) of the corrosion-resistant zirconium alloy according to the present invention and the conventional zirconium alloy
The trends were as shown in curves a and b in FIG. 3, respectively. Furthermore, zirconium alloys for nuclear reactors other than Zircaloy 4, such as Auzenite O2, also exhibited superior corrosion resistance against nodular corrosion compared to corresponding conventional zirconium alloys.

〔発明の効果〕以上のことから明白であるように、本発
明に係る金属間化合物と金属錫のうち、少なくとも1種
が粒界または亜粒界に沿つて連鎖状に偏析しているジル
コニウム合金はノジユラーコロージヨンに対するすぐれ
た耐食性を備えている。
[Effects of the Invention] As is clear from the above, the present invention provides a zirconium alloy in which at least one of the intermetallic compound and metallic tin is segregated in a chain along grain boundaries or sub-grain boundaries. has excellent corrosion resistance against nodular corrosion.

かくして本発明に係る耐食性ジルコニウム合金は、例え
ばチャンネルボックス、燃料被覆管、スペーサなどの炉
心構造物の素材として用いた場合も長時間に亘つて構造
材として所要の機能を果し得ると言える。
Thus, it can be said that the corrosion-resistant zirconium alloy according to the present invention can perform the required functions as a structural material for a long time even when used as a material for core structures such as channel boxes, fuel cladding tubes, and spacers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のジルコニウム合金組織、第2図は本発明
に係るジルコニウム合金の組織、第3図は腐食による重
量変化の状態を示す曲線図である。 ノ1,3・・・・・金属間化合物、2,4・・・・・含
錫無機化合物。
FIG. 1 is a conventional zirconium alloy structure, FIG. 2 is a zirconium alloy structure according to the present invention, and FIG. 3 is a curve diagram showing the state of weight change due to corrosion. 1, 3...Intermetallic compound, 2,4...Tin-containing inorganic compound.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉用ジルコニウム合金基体の全体にわたり粒径
0.04〜1.5μmの金属間化合物および粒径0.0
1〜1.5μmの金属錫が粒界または亜粒界に沿つて連
鎖状に偏析したことを特徴とする耐食性原子炉用ジルコ
ニウム合金。
1 Intermetallic compounds with a particle size of 0.04 to 1.5 μm and a particle size of 0.0 throughout the zirconium alloy substrate for nuclear reactors
A corrosion-resistant zirconium alloy for nuclear reactors, characterized in that metallic tin of 1 to 1.5 μm is segregated in a chain along grain boundaries or sub-grain boundaries.
JP56003117A 1981-01-14 1981-01-14 Corrosion resistant zirconium alloy for nuclear reactors Expired JPS6050859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56003117A JPS6050859B2 (en) 1981-01-14 1981-01-14 Corrosion resistant zirconium alloy for nuclear reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56003117A JPS6050859B2 (en) 1981-01-14 1981-01-14 Corrosion resistant zirconium alloy for nuclear reactors

Publications (2)

Publication Number Publication Date
JPS57116739A JPS57116739A (en) 1982-07-20
JPS6050859B2 true JPS6050859B2 (en) 1985-11-11

Family

ID=11548404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56003117A Expired JPS6050859B2 (en) 1981-01-14 1981-01-14 Corrosion resistant zirconium alloy for nuclear reactors

Country Status (1)

Country Link
JP (1) JPS6050859B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717434A (en) * 1982-01-29 1988-01-05 Westinghouse Electric Corp. Zirconium alloy products
US4584030A (en) * 1982-01-29 1986-04-22 Westinghouse Electric Corp. Zirconium alloy products and fabrication processes
JPS60255945A (en) * 1984-06-01 1985-12-17 Hitachi Ltd Zirconium base alloy
JP2680370B2 (en) * 1988-09-09 1997-11-19 株式会社東芝 Corrosion resistant material

Also Published As

Publication number Publication date
JPS57116739A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
TWI434290B (en) A zirconium alloy that withstands shadow corrosion for a component of a boiling water reactor fuel assembly, a component made of the alloy, a fuel assembly, and the use thereof
JPH0625389B2 (en) Zirconium based alloy with high corrosion resistance and low hydrogen absorption and method for producing the same
JPH04232220A (en) Corrosion-resistant zirconium alloy with improved extensibility
EP0155603B1 (en) Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube
CN108770361A (en) The involucrum of light-water reactor fuel rod
Fazi et al. Performance and evolution of cold spray Cr-coated optimized ZIRLO™ claddings under simulated loss-of-coolant accident conditions
JPH07224373A (en) Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy
JPH05247567A (en) Zirconium-bismuth-niobium alloy for bulkhead for nuclear fuel cladding
JPS6050859B2 (en) Corrosion resistant zirconium alloy for nuclear reactors
US3431104A (en) Zirconium base alloy
JP3064562B2 (en) Crevice corrosion resistant surface-modified Ti or Ti-based alloy member
JPH05240979A (en) Structure material for high burnup fuel assembly and fuel assembly
JP3146687B2 (en) High corrosion resistant surface modified Ti or Ti-based alloy member
JPS6035992B2 (en) Al coating method for Ni alloy
JPH0651079A (en) Nuclear reactor member of zr-base alloy
KR100296952B1 (en) New zirconium alloys for fuel rod cladding and process for manufacturing thereof
JPS61581A (en) Corrosion resistant beryllium substrate
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPH07228963A (en) Precipitation-hardened nickel-base alloy for atomic fuel
JPS6345553B2 (en)
US3574571A (en) Coatings for high-temperature alloys
JPH02118044A (en) Corrosion-resistant zirconium alloy
JPH07166280A (en) Highly corrosion resistant zirconium alloy
JPS6115950B2 (en)