JPH07149749A - Method for purifying glycidyl methacrylate - Google Patents

Method for purifying glycidyl methacrylate

Info

Publication number
JPH07149749A
JPH07149749A JP5297051A JP29705193A JPH07149749A JP H07149749 A JPH07149749 A JP H07149749A JP 5297051 A JP5297051 A JP 5297051A JP 29705193 A JP29705193 A JP 29705193A JP H07149749 A JPH07149749 A JP H07149749A
Authority
JP
Japan
Prior art keywords
gma
crude
distillation
montmorillonite
glycidyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5297051A
Other languages
Japanese (ja)
Other versions
JP3250200B2 (en
Inventor
Shigeru Yokota
滋 横田
Etsuo Takemoto
悦夫 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP29705193A priority Critical patent/JP3250200B2/en
Publication of JPH07149749A publication Critical patent/JPH07149749A/en
Application granted granted Critical
Publication of JP3250200B2 publication Critical patent/JP3250200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a purification method for obtaining high-purity glycidyl methacrylate(GMA) in a high yield from crude GMA obtained by ester interchange reaction of glycidol with methyl methacrylate while preventing polymerization of the crude GMA. CONSTITUTION:In purifying crude GMA produced by ester interchange reaction of glycidol with methyl methacrylate in the presence of a basic catalyst, preferably tert.-amine, especially triethylamine, the crude GMA is treated with 0.1-10wt.% of a montmorillonite-based mineral (e.g. active clay or acidic clay) before carrying out distillation purification to absorb the remaining basic catalyst and the montmorillonite-based mineral is separated by operation such as filtration or centrifugal separation and the crude GMA is distilled under 1-30 torr. pressure in the presence of a polymerization inhibitor to provide the objective high-purity GMA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、グリシドール(以下、
GDと言う)とメタクリル酸メチル(以下、MMAと言
う)とのエステル交換反応により製造したメタクリル酸
グリシジル(以下、GMAと言う)を精製する方法に関
する。
The present invention relates to glycidol (hereinafter,
The present invention relates to a method for purifying glycidyl methacrylate (hereinafter, referred to as GMA) produced by a transesterification reaction between GD) and methyl methacrylate (hereinafter, referred to as MMA).

【0002】GMAは、分子中に反応性の高い二重結合
およびエポキシ基を有しており、塗料用樹脂原料などに
使用される。
GMA has a highly reactive double bond and an epoxy group in the molecule and is used as a resin raw material for paints.

【0003】[0003]

【従来の技術】GDとMMAとのエステル交換反応によ
ってGMAを製造する方法は、これまでに多く知られて
おり、一般的には、塩基性触媒の存在下、副生するメタ
ノールを蒸留によって系外に除去しながら反応を行う。
2. Description of the Related Art Many methods for producing GMA by transesterification of GD and MMA have been known so far, and generally, by-produced methanol is distilled into a system in the presence of a basic catalyst. The reaction is performed while removing it to the outside.

【0004】反応終了後、反応で使用した触媒は、GM
Aの精製前に濾過(特公昭53−6133/デグッサ,
特公昭61−43351/日本油脂)や水洗(特開昭5
5−105676/三井東圧)等の操作により系外に除
去することが記載されている。 上記の濾過や水洗で触
媒を粗GMAの精製前に完全に除くことは非常に難し
く、処理後の粗GMAにも若干触媒が残存しているため
に、蒸留精製時に重合しやすい問題が残されている。さ
らに、水洗ではGMAや回収MMAのロスが多くなる等
の問題点があるまた、反応の触媒として、アミン類を用
いた場合(特開昭55−94379/ダイセル化学工
業)、アミン類がGMAより低沸点であるために、蒸留
によりGMAより先に系外に除去することができる。し
かしながら、極一部のアミンは副反応を起こして、高沸
点化合物としてGMA精製時の釜側に残存するために、
粗GMA精製時に重合しやすい問題がある。
After completion of the reaction, the catalyst used in the reaction is GM
Filtration before purification of A (Japanese Patent Publication No. 53-6133 / Degussa,
Japanese Examined Patent Publication No. 61-43351 / Nippon Yushi) and water washing (JP-A-5
5 to 105676 / Mitsui Toatsu) and the like to remove it outside the system. It is very difficult to completely remove the catalyst before the purification of the crude GMA by the above-mentioned filtration or washing with water, and since the catalyst still remains in the crude GMA after the treatment, there remains a problem that it is easily polymerized during the distillation purification. ing. Further, there is a problem that washing with water causes a large loss of GMA and recovered MMA. Further, when amines are used as a catalyst for the reaction (Japanese Patent Application Laid-Open No. 55-94379 / Daicel Chemical Industries), amines are better than GMA. Due to its low boiling point, it can be removed out of the system by distillation before GMA. However, a very small amount of amine undergoes a side reaction and remains as a high boiling point compound on the kettle side during GMA purification.
There is a problem that polymerization is likely to occur during purification of crude GMA.

【0005】[0005]

【発明の目的】本発明の目的は、GDとMMAとのエス
テル交換反応によりGMAを製造する方法において、蒸
留精製時に非常に重合しやすい粗GMAの重合を防止
し、高収率で高純度の製品GMAを得る方法を開発する
ことにある。
It is an object of the present invention to prevent the polymerization of crude GMA which is very easy to polymerize during distillation and purification in a method for producing GMA by transesterification of GD and MMA, and to obtain a high yield and high purity. It is to develop a method for obtaining the product GMA.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、
「塩基性触媒の存在下、グリシドールとメタクリル酸メ
チルとのエステル交換反応により製造したメタクリル酸
グリシジルを精製する方法に於いて、精製前にモンモリ
ロナイト系鉱物で処理した後に精製することを特徴とす
るメタクリル酸グリシジルの精製方法」である。
That is, the present invention is
“In a method for purifying glycidyl methacrylate produced by transesterification of glycidol and methyl methacrylate in the presence of a basic catalyst, methacrylic acid characterized by being treated with a montmorillonite-based mineral before purification and then purified. Purification method of glycidyl acid salt ".

【0007】本発明で言う塩基性触媒としては、通常塩
基性触媒として用いられる酢酸リチウム、酢酸カリウ
ム、酢酸マグネシウム等のアルカリ金属及びアルカリ土
類金属のカルボン酸塩やトリエチルアミン、トリブチル
アミン、ジブチルアミン等のアミンを挙げることができ
るが、他の塩基性触媒であっても本発明を実施する上で
何らさしつかえない。また、本発明のGDとMMAのエ
ステル交換反応によりGMAの製造は、反応で生成した
メタノ−ルを塔頂から抜く通常の反応蒸留で行うことが
できる。なお、メタノ−ルの共沸剤としてn−ヘキサン
やシクロヘキサンのような溶剤を用いても、本発明を実
施する上で何らさしつかえない。
Examples of the basic catalyst used in the present invention include carboxylic acid salts of alkali metals and alkaline earth metals such as lithium acetate, potassium acetate and magnesium acetate, which are usually used as basic catalysts, triethylamine, tributylamine, dibutylamine and the like. The above amines may be mentioned, but other basic catalysts may be used for carrying out the present invention. Further, the production of GMA by the transesterification reaction of GD and MMA of the present invention can be carried out by a usual reactive distillation in which methanol produced in the reaction is removed from the top of the column. In addition, even if a solvent such as n-hexane or cyclohexane is used as an azeotropic agent for methanol, there is no problem in carrying out the present invention.

【0008】次に、メタノ−ルの生成がなくなるかほと
んどなくなった後に、脱MMA、脱共沸剤、場合によっ
て脱触媒の操作を行うが、この操作中の重合は減圧度に
もよるが、通常実施されているような条件で行えば何ら
問題なく行うことができる。また、不溶性の塩基性触媒
を使用した場合は、通常脱MMA前(場合により脱MM
A後)に濾過等の操作により蒸留系外に除かれるが、依
然として若干の溶存塩基性触媒が粗GMA中に存在する
ことになる。
[0008] Next, after the production of methanol is eliminated or almost eliminated, deMMA, deazeotropic agent, and decatalyst are optionally operated. The polymerization during this operation depends on the degree of reduced pressure. It can be carried out without any problems if it is carried out under the conditions that are usually carried out. In addition, when an insoluble basic catalyst is used, usually before deMMA (in some cases, deMM
After A), it is removed from the distillation system by an operation such as filtration, but some dissolved basic catalyst is still present in the crude GMA.

【0009】通常問題となるのは、脱MMAを行った後
の粗GMA(当然MMAも含まれている)から製品GM
Aを蒸留分離する工程の重合防止である。
[0009] Usually, the problem is that the raw GMA after deMMA (of course MMA is also included) to the product GM is used.
This is to prevent polymerization in the step of separating A by distillation.

【0010】本発明者らが詳細に検討した結果、モンモ
リロナイト系鉱物で処理した後、濾過または遠心分離に
より系外に除去することにより、塩基性触媒が吸着除去
され、蒸留精製時に著しく重合しにくくなることが明ら
かになった。
As a result of a detailed study by the present inventors, after treatment with a montmorillonite-based mineral and removal to the outside of the system by filtration or centrifugation, the basic catalyst is adsorbed and removed, and it is extremely difficult to polymerize during distillation purification. Became clear.

【0011】本発明で使用するモンモリロナイト系鉱物
は通常活性白土及び酸性白土等として市販されているも
のの中から選ぶことができる。例えば、日産ガ−ドラ−
社(株)製Kシリ−ズ触媒のKSF、KSF/O、KP
10、KS等が挙げられる。また、モンモリロナイト系
鉱物はイオン交換能があり、プロトン型で用いても良い
し、アルカリ金属(リチウム、ナトリウム、カリウム、
ルビジウム等),アルカリ土類金属(ベリリウム、マグ
ネシウム、カルシウム、ストロンチウム等)、希土類金
属(ランタン、セリウム、プラセオジウム、ネオジウム
等)のイオンで交換された型で用いても良い。
The montmorillonite mineral used in the present invention can be selected from the commercially available products such as activated clay and acid clay. For example, Nissan Gardler
Co., Ltd. K series catalyst KSF, KSF / O, KP
10, KS and the like. Further, the montmorillonite-based mineral has an ion-exchange ability, and may be used in the proton form, or may be used as an alkali metal (lithium, sodium, potassium,
Rubidium and the like), alkaline earth metals (beryllium, magnesium, calcium, strontium, etc.), and rare earth metals (lanthanum, cerium, praseodymium, neodymium, etc.) may be used in a form exchanged with ions.

【0012】粗GMAの処理に使用するモンモリロナイ
ト鉱物は、粗GMA中の残存塩基量に応じて決める必要
があるが、通常粗GMAに対して0.1〜10wt%使
用するのが好ましい。モンモリロナイト鉱物を過剰に使
用すると、処理した粗GMAとの分離が繁雑になるばか
りか、使用率が高くなるので好ましくない。
The montmorillonite mineral used for the treatment of the crude GMA needs to be determined according to the amount of the residual base in the crude GMA, but normally 0.1 to 10 wt% is preferably used with respect to the crude GMA. Excessive use of the montmorillonite mineral is not preferable because the separation from the treated crude GMA becomes complicated and the usage rate increases.

【0013】モンモリロナイト鉱物は、通常未処理の粗
GMAを除熱しながら攪拌機で攪拌し、そのまま添加す
れば良い。また、モンモリロナイト鉱物は数回に分割し
て仕込んでも良いし、一度に全部仕込んでも良い。
The montmorillonite mineral may be added as it is while stirring the untreated crude GMA while stirring with a stirrer. Further, the montmorillonite mineral may be charged in several times, or may be charged all at once.

【0014】モンモリロナイト鉱物での処理は、通常常
温で行われ、加温するとむしろGMAが重合しやすくな
るので好ましくない。
The treatment with the montmorillonite mineral is usually carried out at room temperature, and if heated, GMA is likely to polymerize, which is not preferable.

【0015】また、モンモリロナイト鉱物は、処理した
粗GMAから、通常濾過または遠心分離等の操作により
分離される。
The montmorillonite mineral is usually separated from the treated crude GMA by an operation such as filtration or centrifugation.

【0016】モンモリロナイト鉱物を分離した粗GMA
の蒸留を行う場合、重合防止の観点から蒸留中の温度は
低い方が好ましいが、減圧器の能力やコンデンサ−の能
力を考慮して決める必要がある。コンデンサ−の能力が
小さいのもかかわらず、減圧度を高めて蒸留温度を低く
すると低沸点化合物(例えばMMA)が捕集しきれな
く、回収ロスが大きくなる。したがって、通常は1〜3
0Torrの圧力で蒸留を行うのが好ましい。
Crude GMA separated from montmorillonite minerals
In the case of carrying out the distillation of 1, the temperature during the distillation is preferably low from the viewpoint of preventing polymerization, but it must be determined in consideration of the capacity of the pressure reducer and the capacity of the condenser. Despite the small capacity of the condenser, if the degree of pressure reduction is increased and the distillation temperature is lowered, low boiling point compounds (eg MMA) cannot be collected and recovery loss increases. Therefore, usually 1-3
It is preferable to carry out the distillation at a pressure of 0 Torr.

【0017】また、蒸留塔の形式には特に拘らないが、
できれば低圧損の蒸留塔が好ましい。さらに、蒸留塔の
実段数も可能な限り少ないものが好まし。低圧損の蒸留
塔や実段数の少ない蒸留塔の方がボトムの圧力を低く抑
えられ、すなはち、ボトム温度を低く抑えられるため、
重合が起こりにくいからである。
Although not particularly limited to the type of distillation column,
If possible, a low pressure loss distillation column is preferred. Furthermore, it is preferable that the actual number of distillation columns is as small as possible. A distillation column with a low pressure loss or a distillation column with a small number of actual stages can keep the bottom pressure low, that is, the bottom temperature can be kept low.
This is because polymerization is unlikely to occur.

【0018】蒸留方法としては、バッチ方式でも連続方
式でもよい。
The distillation method may be a batch method or a continuous method.

【0019】具体的には、バッチ方式で行う場合、モン
モリロナイト系鉱物で処理した粗GMAを、重合禁止剤
と一緒に釜に張り込み、塔頂及びコンデンサ−に重合禁
止剤を連続的に添加しながら減圧蒸留する。釜には重合
防止のために、空気もしくは希釈空気を仕込んで蒸留を
行っても良い。
Specifically, when the batch method is used, crude GMA treated with a montmorillonite mineral is put in a kettle together with a polymerization inhibitor, and the polymerization inhibitor is continuously added to the tower top and the condenser. Distill under reduced pressure. In order to prevent polymerization, the kettle may be charged with air or dilution air for distillation.

【0020】また、連続蒸留を行う場合、モンモリロナ
イト系鉱物で処理した粗GMAを、重合禁止剤と一緒に
蒸留塔に連続的に仕込み、塔頂から未反応MMA等のG
MAより低沸点の成分を抜き取り、塔底よりGMA及び
GMAより高沸点の成分を抜き取る。塔底より抜けてき
た液は、さらに次の連続蒸留塔に仕込まれ、塔頂より製
品GMAが得られ、塔底よりGMAより高沸点の成分が
抜けてくる。この場合も通常塔頂及びコンデンサ−に重
合禁止剤を連続的に添加しながら減圧蒸留し、釜には重
合防止のために、空気もしくは希釈空気を仕込んで蒸留
を行う。
When performing continuous distillation, crude GMA treated with a montmorillonite mineral is continuously charged into a distillation column together with a polymerization inhibitor, and unreacted GMA such as unreacted MMA is charged from the top of the column.
Components having a lower boiling point than MA are withdrawn, and GMA and components having a higher boiling point than GMA are withdrawn from the bottom of the column. The liquid discharged from the bottom of the column is further charged into the next continuous distillation column, the product GMA is obtained from the top of the column, and the component having a higher boiling point than that of GMA is discharged from the bottom of the column. Also in this case, the distillation is usually performed under reduced pressure while continuously adding the polymerization inhibitor to the top of the column and the condenser, and air or diluted air is charged in the kettle to prevent the polymerization and the distillation is performed.

【0021】なお、連続蒸留をサ−モサイホン式リボイ
ラ−を用いて行う場合のリボイラ−の容量は、原料仕込
み量や蒸留塔の能力のもよるが、可能な限り小さいもの
を用いるのが好ましい。したがって、サ−モサイホン式
リボイラ−より滞留時間の短い薄膜蒸発器のような蒸発
器をリボイラ−として用いてもよい。
The capacity of the reboiler in the case where the continuous distillation is carried out using a thermosiphon type reboiler is preferably as small as possible, although it depends on the amount of raw material charged and the capacity of the distillation column. Therefore, an evaporator such as a thin film evaporator having a shorter residence time than the thermosiphon type reboiler may be used as the reboiler.

【0022】次に、実施例を挙げて本発明を説明する
が、本発明はこれらの実施例によって何ら限定されるも
のではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0023】[実施例1]10段80mmφのオ−ルダ
ショ−蒸留塔、コンデンサ−、デカンタ−、還流ライ
ン、減圧装置及び20Lsus316製ジャケット付釜
からなる反応蒸留塔を用いて、粗GMAの製造を行っ
た。20L釜にMMA15600g、トリエチルアミン
65g、n−ヘキサン2250g、2,6−ジ−ter
t−ブチル−4−メチルフェノ−ル20g及びメトキシ
フェノ−ル20gを張り込み、200Torr減圧下ボ
トム温度53℃に昇温後、GDを1262gを1時間掛
けて仕込み、同一圧力及び同一温度で4時間保持した。
その後、デカンタ−で分液した上層液を塔に戻しながら
下層液を抜き取り、さらにGD1100gを仕込んだ。
ボトムのGDが0.2wt%以下になるまで反応した
後、脱n−ヘキサン,脱トリエチルアミン及び脱MMA
を行い、最終的に粗GMA(MMA1.1wt%、GM
A78.6wt%、GD0.4wt%、その他は不明の
高沸点物質及び低沸点物質)4621gを得た。この時
の粗GMA中のGMA収率は80.7%、GDベ−スの
GMA選択性は81.7%であり、電位差滴定法により
N/100塩酸で滴定分析したところ、6.5mmol
/kgの塩基性成分の存在することが判明した。
[Example 1] Production of crude GMA was carried out using a reaction distillation column consisting of a 10-stage 80 mmφ Oldershaw distillation column, a condenser, a decanter, a reflux line, a decompression device and a 20 Lsus 316 jacketed kettle. went. MMA 15600 g, triethylamine 65 g, n-hexane 2250 g, 2,6-di-ter in a 20 L kettle.
20 g of t-butyl-4-methylphenol and 20 g of methoxyphenol were charged, the bottom temperature was raised to 53 ° C. under reduced pressure of 200 Torr, and 1262 g of GD was added over 1 hour, and the mixture was kept at the same pressure and the same temperature for 4 hours. did.
After that, the lower layer liquid was extracted while returning the upper layer liquid separated by the decanter to the tower, and 1100 g of GD was charged.
After reacting until the bottom GD becomes 0.2 wt% or less, n-hexane removal, triethylamine removal and MMA removal
Finally, the crude GMA (MMA 1.1 wt%, GM
4621 g of A78.6 wt%, GD 0.4 wt% and other unknown high boiling point substances and low boiling point substances) were obtained. At this time, the GMA yield in the crude GMA was 80.7%, the GMA selectivity of the GD base was 81.7%, and the titration analysis with N / 100 hydrochloric acid was carried out by potentiometric titration to find that it was 6.5 mmol.
It was found that there was / kg of basic component.

【0024】[実施例2]実施例1の粗GMA500g
と日産ガ−ドラ−社(株)製Kシリ−ズ触媒の25gの
KSF/Oを室温で約1時間攪拌後、触媒を濾過分離し
濾液中の塩基性成分の測定を行ったところ、塩基性成分
は全く検出されなかった。また、この液のガスクロマト
分析を行った結果、この処理によるGMAの重合は全く
認められなかった。
[Example 2] 500 g of crude GMA of Example 1
And 25 g of KSF / O of K series catalyst manufactured by Nissan Gadler Co., Ltd. were stirred at room temperature for about 1 hour, the catalyst was separated by filtration, and the basic component in the filtrate was measured. No sex component was detected. Moreover, as a result of gas chromatographic analysis of this liquid, polymerization of GMA by this treatment was not observed at all.

【0025】実施例3]実施例1の粗GMA500gと
日産ガ−ドラ−社(株)製Kシリ−ズ触媒の25gのK
P10を室温で約1時間攪拌後、触媒を濾過分離し濾液
中の塩基性成分の測定を行ったところ、2.5mmol
/kgの塩基性成分の存在することが判明した。そこで
再度この濾液に5gのKP10を添加し、室温で約1時
間攪拌後、触媒を濾過分離し濾液中の塩基性成分の測定
を行ったところ、塩基性成分は全く検出されなかった。
また、この液のガスクロマト分析を行った結果、この処
理によるGMAの重合は全く認められなかった。
Example 3] 500 g of crude GMA of Example 1 and 25 g of K series catalyst K series manufactured by Nissan Gadler Co., Ltd.
After stirring P10 at room temperature for about 1 hour, the catalyst was separated by filtration, and the basic component in the filtrate was measured.
It was found that there was / kg of basic component. Then, 5 g of KP10 was added to this filtrate again, and after stirring at room temperature for about 1 hour, the catalyst was separated by filtration and the basic component in the filtrate was measured, but no basic component was detected at all.
Moreover, as a result of gas chromatographic analysis of this liquid, polymerization of GMA by this treatment was not observed at all.

【0026】[実施例4]図1のような100mlガラ
ス製フラスコ、ヘリパック(充填剤)を充填した単菅
(40mmφ×300mm、ヘリパック30mm充填)
及びコンデンサ−を備えた装置を用いて、SUS籠に乗
せたポップコ−ン重合物の種が成長する度合いを評価し
た。
Example 4 A 100 ml glass flask as shown in FIG. 1, a single tube filled with a helipack (filler) (40 mmφ × 300 mm, helipack 30 mm filled)
The degree of growth of the seeds of the popcorn polymer placed on the SUS basket was evaluated using an apparatus equipped with a condenser.

【0027】実施例2のモンモリロナイト系鉱物で処理
した粗GMAに重合禁止剤として、N−ニトロソ−N−
シクロヘキシルアニリン5000ppm、メトキシフェ
ノ−ル1000ppm及びハイドロキノン1ppm(以
上の禁止剤以外にGMA製造反応時に使用した2,6−
ジ−tert−ブチル−4−メチルフェノ−ル4500
ppmを含有している)を添加して、ポップコ−ン重合
物の種の成長率を測定した。禁止剤を添加した粗GMA
60gをフラスコに張り込み、塔頂の温度が100℃に
なるように減圧度をコントロ−ルして、6時間全還流状
態で運転した。その結果、SUS籠に乗せたポップコ−
ン重合物の種は全く重量増加が認められなかった(ポッ
プコ−ン重合物の種は全還流終了後、n−ヘキサンで十
分洗浄し、減圧乾燥して重量測定した)。なお、フラス
コ,コンデンサ−及び空塔に重合物の付着は認められな
かった。
The crude GMA treated with the montmorillonite mineral of Example 2 was treated with N-nitroso-N- as a polymerization inhibitor.
Cyclohexylaniline 5000 ppm, methoxyphenol 1000 ppm, and hydroquinone 1 ppm (in addition to the above inhibitors, 2,6-
Di-tert-butyl-4-methylphenol 4500
(containing ppm) was added to measure the seed growth rate of the popcorn polymer. Crude GMA with inhibitor added
60 g was placed in a flask, the degree of vacuum was controlled so that the temperature at the top of the column was 100 ° C., and the system was operated under a total reflux condition for 6 hours. As a result, the popco placed on the SUS basket
No increase in weight was observed for the seeds of the polymerized polymer (the seeds of the polymerized popcorn were thoroughly washed with n-hexane after completion of the total reflux, dried under reduced pressure, and weighed). No polymer deposit was found on the flask, condenser and empty column.

【0028】[比較例1]実施例4と同じ評価装置を用
いて評価を行った。
[Comparative Example 1] Evaluation was performed using the same evaluation apparatus as in Example 4.

【0029】実施例1の粗GMAに粗GMAに重合禁止
剤として、N−ニトロソ−N−シクロヘキシルアニリン
5000ppm、メトキシフェノ−ル1000ppm及
びハイドロキノン1ppm(以上の禁止剤以外にGMA
製造反応時に使用した2,6−ジ−tert−ブチル−
4−メチルフェノ−ル4500ppmを含有している)
を添加して、ポップコ−ン重合物の種の成長率を測定し
た。禁止剤を添加した粗GMA60gをフラスコに張り
込み、塔頂の温度が100℃になるように減圧度をコン
トロ−ルして、6時間全還流状態で運転しようしたが、
昇温中にボトムに重合物が生成したために実験を中止し
た。また、SUS籠に乗せたポップコ−ン重合物の種は
籠から溢れ出ていた。
In addition to the crude GMA of Example 1, as a polymerization inhibitor for the crude GMA, 5000 ppm of N-nitroso-N-cyclohexylaniline, 1000 ppm of methoxyphenol and 1 ppm of hydroquinone (in addition to the above inhibitors, GMA
2,6-di-tert-butyl-used in the production reaction
(Containing 4500 ppm of 4-methylphenol)
Was added to measure the seed growth rate of the popcorn polymer. 60 g of crude GMA added with an inhibitor was put in a flask, the degree of pressure reduction was controlled so that the temperature at the top of the tower was 100 ° C., and operation was carried out under a total reflux condition for 6 hours.
The experiment was stopped because a polymer was formed in the bottom during the temperature rise. Also, the seeds of the popcorn polymer placed on the SUS basket overflowed from the basket.

【0030】比較例1は粗GMAを全還流前にモンモリ
ロナイト系鉱物で処理しないとポップコ−ンの種が著し
く成長し、非常に重合しやすい液であることを示してい
る。 [実施例5]還流ヘッドとトップコンデンサ−を備え、
充填物として住友/スルザ−ラボパッキング(45mm
φ×55mm)を7エレメント充填した真空ジャケット
式蒸留塔を用いて、バッチ蒸留を行った。バッチ釜とし
て、希釈空気仕込みライン,ボトム圧力測定ライン及び
ボトム温度測定ラインを備えた0.5Lガラス製フラス
コを用いて蒸留を行った。実施例2の粗GMA420g
に重合禁止剤として、N−ニトロソ−N−シクロヘキシ
ルアニリン5000ppm,メトキシフェノ−ル100
0ppm及びハイドロキノン1ppm(以上の禁止剤以
外にGMA製造反応時に使用した2,6−ジ−tert
−ブチル−4−メチルフェノ−ル4500ppmを含有
している)を添加して、バッチ蒸留を行った。蒸留中、
塔頂側にハイドロキノン10ppmのGMA溶液を10
ml/hrで連続的に仕込み、コンデンサ−側にメトキ
シフェノ−ル500ppmのGMA溶液を10ml/h
rで連続的に仕込みながら塔頂圧力20Torrで蒸留
を行った。蒸留が終了するのに、約9時間要したが蒸留
系のどの部分にも重合物は認められなかった。蒸留収率
は80.2%であり、得られた製品のGMA純度は9
9.2%であった。
Comparative Example 1 shows that if the crude GMA is not treated with a montmorillonite-based mineral before the total reflux, the popcorn seeds grow remarkably and the liquid is very easily polymerized. [Embodiment 5] A reflux head and a top condenser are provided,
Sumitomo / Sulzer Lab Packing (45mm)
Batch distillation was performed using a vacuum jacket type distillation column in which 7 elements of φ × 55 mm) were filled. Distillation was performed using a 0.5 L glass flask equipped with a dilution air charging line, a bottom pressure measuring line and a bottom temperature measuring line as a batch kettle. 420 g of crude GMA of Example 2
As a polymerization inhibitor, N-nitroso-N-cyclohexylaniline 5000 ppm, methoxyphenol 100
0 ppm and hydroquinone 1 ppm (in addition to the above inhibitors, 2,6-di-tert used in the GMA production reaction)
-Butyl-4-methylphenol 4500 ppm) was added and batch distillation was carried out. During distillation,
On the top side of the column, 10 parts of GMA solution containing 10 ppm of hydroquinone was used.
It was continuously charged at a flow rate of ml / hr, and a GMA solution of methoxyphenol 500 ppm was added to the condenser side at 10 ml / h.
While continuously charging with r, distillation was carried out at a column top pressure of 20 Torr. It took about 9 hours to complete the distillation, but no polymer was found in any part of the distillation system. The distillation yield was 80.2% and the GMA purity of the obtained product was 9
It was 9.2%.

【0031】[比較例2]実施例5のバッチ蒸留装置を
用いて、実施例1の粗GMA420gをモンモリロナイ
ト系鉱物で処理しないで、N−ニトロソ−N−シクロヘ
キシルアニリン5000ppm、メトキシフェノ−ル1
000ppm及びハイドロキノン1ppm(以上の禁止
剤以外にGMA製造反応時に使用した2,6−ジ−te
rt−ブチル−4−メチルフェノ−ル4500ppmを
含有している)を添加して、バッチ蒸留を行った。蒸留
中、塔頂側にハイドロキノン10ppmのGMA溶液を
10ml/hrで連続的に仕込み、コンデンサ−側にメ
トキシフェノ−ル500ppmのGMA溶液を10ml
/hrで連続的に仕込みながら塔頂圧力20Torrで
蒸留を行った。
Comparative Example 2 Using the batch distillation apparatus of Example 5, 420 g of crude GMA of Example 1 was not treated with a montmorillonite mineral, but 5000 ppm of N-nitroso-N-cyclohexylaniline and methoxyphenol 1 were used.
000 ppm and hydroquinone 1 ppm (in addition to the above inhibitors, 2,6-di-te used in the GMA production reaction)
rt-Butyl-4-methylphenol) (containing 4500 ppm) was added and batch distillation was performed. During distillation, the column top side was continuously charged with 10 ppm hydroquinone GMA solution at 10 ml / hr, and the condenser side was charged 10 ml with 500 ppm methoxyphenol GMA solution.
Distillation was carried out at a column top pressure of 20 Torr while continuously charging at / hr.

【0032】蒸留を開始して、1時間目にボトムのガラ
ス製フラスコの気相部にポップコ−ン重合物が生成した
ので、蒸留を中止した。
At the first hour after the start of distillation, a popcorn polymer was formed in the gas phase of the bottom glass flask, so the distillation was stopped.

【0033】比較例2は粗GMAを蒸留前にモンモリロ
ナイト系鉱物で処理して、塩基性成分を除去しておかな
いと、重合物が生成し蒸留できないことを示している。
Comparative Example 2 shows that the crude GMA must be treated with a montmorillonite mineral before distillation to remove the basic component, and a polymerized product cannot be distilled.

【0034】[0034]

【発明の効果】塩基性触媒存在下、グリシドールとメタ
クリル酸メチルとのエステル交換反応によりメタクリル
酸グリシジルを製造した後、精製の前にモンモリロナイ
ト系鉱物で処理することにより、精製時の重合物の生成
が著しく抑制され、高収率でメタクリル酸グリシジルが
得られる。(以下余白)
EFFECT OF THE INVENTION After producing glycidyl methacrylate by transesterification of glycidol and methyl methacrylate in the presence of a basic catalyst, treatment with a montmorillonite mineral prior to purification produces a polymer during purification. Is significantly suppressed, and glycidyl methacrylate can be obtained in high yield. (Below margin)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩基性触媒の存在下、グリシドールとメ
タクリル酸メチルとのエステル交換反応により製造した
メタクリル酸グリシジルを精製する方法に於いて、精製
前にモンモリロナイト系鉱物で処理した後に精製するこ
とを特徴とするメタクリル酸グリシジルの精製法。
1. A method for purifying glycidyl methacrylate produced by transesterification of glycidol and methyl methacrylate in the presence of a basic catalyst, which comprises treating with a montmorillonite-based mineral before purification. A characteristic method for purifying glycidyl methacrylate.
【請求項2】 塩基性触媒が第3級アミンである請求項
1に記載のメタクリル酸グリシジルの精製法。
2. The method for purifying glycidyl methacrylate according to claim 1, wherein the basic catalyst is a tertiary amine.
【請求項3】 第3級アミンがトリエチルアミンである
請求項1又は請求項2に記載のメタクリル酸グリシジル
の精製法。
3. The method for purifying glycidyl methacrylate according to claim 1 or 2, wherein the tertiary amine is triethylamine.
JP29705193A 1993-11-26 1993-11-26 Purification method of glycidyl methacrylate Expired - Fee Related JP3250200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29705193A JP3250200B2 (en) 1993-11-26 1993-11-26 Purification method of glycidyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29705193A JP3250200B2 (en) 1993-11-26 1993-11-26 Purification method of glycidyl methacrylate

Publications (2)

Publication Number Publication Date
JPH07149749A true JPH07149749A (en) 1995-06-13
JP3250200B2 JP3250200B2 (en) 2002-01-28

Family

ID=17841582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29705193A Expired - Fee Related JP3250200B2 (en) 1993-11-26 1993-11-26 Purification method of glycidyl methacrylate

Country Status (1)

Country Link
JP (1) JP3250200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738247A1 (en) * 1995-09-01 1997-03-07 Daicel Chem PROCESS FOR THE PREPARATION OF PURIFIED 3,4-EPOXYCYCLOHEXYLMETHYL (METH) ACRYLATE AND STABILIZED 3,4-EPOXYCYCLOHEXYLMETHYLE (METH) ACRYLATE OBTAINED THEREFROM
JP2014076959A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738247A1 (en) * 1995-09-01 1997-03-07 Daicel Chem PROCESS FOR THE PREPARATION OF PURIFIED 3,4-EPOXYCYCLOHEXYLMETHYL (METH) ACRYLATE AND STABILIZED 3,4-EPOXYCYCLOHEXYLMETHYLE (METH) ACRYLATE OBTAINED THEREFROM
JP2014076959A (en) * 2012-10-10 2014-05-01 Mitsubishi Gas Chemical Co Inc Method for producing glycidyl methacrylate

Also Published As

Publication number Publication date
JP3250200B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP4096427B2 (en) Method for producing hydroxyalkyl acrylate
JP3250200B2 (en) Purification method of glycidyl methacrylate
JP2960577B2 (en) Method for isolating carboxylic acids
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
JP4831715B2 (en) Monomer production method
JP3247778B2 (en) Purification method of glycidyl methacrylate
JP3247783B2 (en) Purification method of glycidyl methacrylate
JPH0530822B2 (en)
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
JP4247582B2 (en) Purification method and production method of glycidyl (meth) acrylate
JP2005060393A (en) Production method for high-purity (meth)acryloyloxyalykyl isocyanate
JPH09249657A (en) Purification of glycidyl (meth)acrilate
JPH0325427B2 (en)
JPH04235980A (en) Purification of glycidyl methacrylate
JP3336067B2 (en) Method for producing epoxidized (meth) acrylate compound
JP2000212177A (en) Purification of glycidyl (meth)acrylate
JP4651178B2 (en) Method for producing 2-glycidyloxyethyl (meth) acrylate
JP3081707B2 (en) Method for producing glycidyl methacrylate
JP2001172236A (en) Method for purifying dimethylaminoethyl acrylate
JPH07165619A (en) Decoloring of glycidyl methacrylate
JPS6357554A (en) Production of phenyl esters of acrylic acid or methacrylic acid
JP4656294B2 (en) Method for producing glycidyl methacrylate
JP2000344758A (en) Production of (meth)acrylic ester
JP2855782B2 (en) Method for purifying glycidyl acrylate or glycidyl methacrylate
EP4048661A1 (en) Process for preparing glycerol carbonate (meth)acrylate

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees