JPH0714960Y2 - X-ray spectrometer - Google Patents

X-ray spectrometer

Info

Publication number
JPH0714960Y2
JPH0714960Y2 JP1988011273U JP1127388U JPH0714960Y2 JP H0714960 Y2 JPH0714960 Y2 JP H0714960Y2 JP 1988011273 U JP1988011273 U JP 1988011273U JP 1127388 U JP1127388 U JP 1127388U JP H0714960 Y2 JPH0714960 Y2 JP H0714960Y2
Authority
JP
Japan
Prior art keywords
spectroscopic element
spectroscopic
drive
slit
ray emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988011273U
Other languages
Japanese (ja)
Other versions
JPH01118398U (en
Inventor
暉士 平居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1988011273U priority Critical patent/JPH0714960Y2/en
Publication of JPH01118398U publication Critical patent/JPH01118398U/ja
Application granted granted Critical
Publication of JPH0714960Y2 publication Critical patent/JPH0714960Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 イ.産業上の利用分野 本考案は、結晶直進式のX線分光器に関する。[Detailed Description of Device] a. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal straight advance type X-ray spectrometer.

ロ.従来の技術 電子線マイクロアナライザ等に用いられる結晶直進式の
X線分光器は、使用する分光素子の種類(分光結晶或は
回折格子)及び曲率によって、入出射両スリット及び分
光結晶の位置関係が或る関係状態を維持するように機構
的に連結された構造となっており、曲率の異なる分光素
子を交換して使用することができない。短波長域のX線
分光には分光結晶を用いた比較的小さなローランド円径
の分光器が採用されるが、軽元素分析用の長波長域X線
分光器は分光素子として回折格子を用いた大ローランド
円径の装置であり、広い波長域を一台の分光器でカバー
することはできず、試料の周囲にローランド円径の異な
る複数のX線分光器を配置することが行われている。
B. 2. Description of the Related Art A crystal linear X-ray spectroscope used in an electron beam microanalyzer or the like has a positional relationship between both the entrance and exit slits and the spectroscopic crystal depending on the type of spectroscopic element (spectroscopy crystal or diffraction grating) and curvature used. The structure is mechanically connected so as to maintain a certain relationship, and it is impossible to exchange and use spectroscopic elements having different curvatures. A relatively small Rowland diameter spectroscope using a dispersive crystal is used for X-ray spectroscopy in the short wavelength range, but a long wavelength X-ray spectroscope for light element analysis uses a diffraction grating as a spectroscopic element. It is a device with a large Roland diameter, and it is not possible to cover a wide wavelength range with one spectroscope, and a plurality of X-ray spectroscopes with different Roland circle diameters are arranged around the sample. .

ハ.考案が解決しようとする課題 本考案は、一台の分光器で曲率の異なる分光素子を用い
た波長走査を可能にすることにより、一つのの装置でカ
バーできる波長範囲を拡大することを目的とする。
C. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention aims to extend the wavelength range that can be covered by one device by enabling wavelength scanning using spectroscopic elements with different curvatures with one spectroscope. To do.

ニ.課題を解決するための手段 X線分光器において、分光素子を直進させる分光素子駆
動装置と、分光器のX線出射スリットと検出器の一体物
をX軸方向およびY軸方向各独立に移動させるX,Y駆動
装置と、分光素子およびX線出射スリットの方向を規制
する規制手段と、ローランド円径の異なる複数の分光素
子を所定の回転軸を中心とする所定径上に配置し、これ
らを回転駆動することによってローランド円径の異なる
分光素子に交換するための交換手段と、交換された分光
素子の曲率に対応するローランド円上で検出波長に応じ
て前記分光素子、X線出射スリットと検出器の一体物の
位置、及び前記分光素子およびX線出射スリットの方向
を駆動制御するよう前記分光素子駆動装置、前記X,Y駆
動装置、及び前記規制手段に指示を与える駆動制御装置
とを備えたことを特徴とする。
D. Means for Solving the Problems In an X-ray spectroscope, a spectroscopic element driving device that moves a spectroscopic element straight, and an integrated unit of an X-ray emission slit of the spectroscope and a detector are independently moved in the X-axis direction and the Y-axis direction. An X, Y drive device, a regulating means for regulating the directions of the spectroscopic element and the X-ray emission slit, and a plurality of spectroscopic elements having different Rowland circle diameters are arranged on a predetermined diameter about a predetermined rotation axis, and these are arranged. Exchange means for exchanging a spectroscopic element having a different Rowland circle diameter by rotationally driving, and the spectroscopic element, the X-ray emission slit, and the detection according to the detection wavelength on the Roland circle corresponding to the curvature of the exchanged spectroscopic element. Drive for giving instructions to the spectroscopic element driving device, the X, Y driving device, and the regulating means so as to drive and control the position of the integrated body of the vessel and the directions of the spectroscopic element and the X-ray emission slit. And a device.

ホ.作用 分光素子の種類又は分光素子の曲率によって、分光素子
の波長駆動の機構を変更する必要があるが、本発明は、
励起線の検出方向に摺動可能で先端に分光素子の回転駆
動装置を備えた摺動装置によって分光素子の回転位置と
設置位置を制御するようにすると共に、出射スリットと
検出器を一体的に回転制御する回転駆動装置を任意の位
置にXY駆動装置で移動制御する装置を備え、分析に用い
る分光素子に基づいて、各波長位置に対応する分光素子
と検出器との配置をコンピユータで予め求めて記憶し、
その記憶されたデータによって波長走査を行おうとする
ものである。
E. The wavelength driving mechanism of the spectroscopic element needs to be changed depending on the type of spectroscopic element or the curvature of the spectroscopic element.
The rotation position and installation position of the spectroscopic element can be controlled by a sliding device that is slidable in the detection direction of the excitation line and equipped with a rotation drive device for the spectroscopic element at the tip, and the exit slit and the detector are integrated. Equipped with a device that controls movement of the rotation drive device that controls rotation with an XY drive device to an arbitrary position.Based on the spectroscopic element used for analysis, the arrangement of the spectroscopic element and detector corresponding to each wavelength position is obtained in advance by a computer. Remember
The wavelength scanning is to be performed based on the stored data.

各波長位置に対応する分光素子と検出との配置に関して
は、関数計算による方法でも、波長位置に対応する各制
御要素の制御テーブルを作成しておく方法でもどちらで
も良い。対応テーブルを複数個用意しておくことで、夫
々の分光結晶に応じた波長走査を一台の駆動装置で行う
ことができるようになった。
Regarding the arrangement of the spectroscopic element and detection corresponding to each wavelength position, either a method by function calculation or a method of creating a control table of each control element corresponding to the wavelength position may be used. By preparing a plurality of correspondence tables, it becomes possible to perform wavelength scanning according to each dispersive crystal with one driving device.

ヘ.実施例 第1図に本考案の一実施例を示す。第1図において、S
は試料、1は分光素子で電子線で励起された試料Sから
放射されるX線を分光する。2は出口スリット、3はX
線検出器でスリット2を透過したX線を検出する。5は
分光素子1を矢印L方向(波長走査方向)に駆動するL
方向駆動装置である。M1はL方向駆動装置5を駆動する
パルスモータである。M2は分光素子1を分光素子の中心
を通り、分光素子表面に沿う中心線(分光中心)を軸と
して回転させるパルスモータである。6はスリット2と
検出器3を一体的に保持している保持台で、モータM5の
減速軸に取付けられており、モータM5によって入射方向
を制御される。モータM5はY駆動軸7にY方向に移動可
能に保持された台6上に取付けられており、モータM4に
よってY軸方向に駆動される。Y駆動軸7は両端を夫々
X駆動軸8に移動可能に連結されている。X駆動軸8は
モータM3と連結しモータM3の回転によってY駆動軸7を
X方向に移動させる。上記駆動軸はネジ軸であり連結部
のメネジと螺着連結しており、駆動軸の回転によって連
結部が駆動軸に沿って移動する構造である。また、X駆
動軸8はY駆動軸7と垂直に2本設けられてあり、2本
のX駆動軸8はタイミングベルト(不図示)で同時に同
方向に回転するように連結するか、モータM3で回転され
る駆動軸の連結部をネジ連結とし他方の駆動軸との連結
を摺動可能な嵌合連結とし、どちらか一方の連結部を軸
方向に長めの連結にすることにより、Y軸駆動軸7をX
方向に駆動する際にY駆動軸7の軸方向がY方向からず
れて、駆動歪みが発生しないような構造とする。即ち、
分光素子1はモータM1によってL方向に、M2によって入
射角θを制御され、スリット2と検出器3はモータM3
によってX方向に、モータM4によってY方向に駆動され
て、図の紙面内で任意の軌道を画かせることができ、モ
ータM5によって検出方向を制御されるから、任意の位置
で任意の検出方向に設定が可能となっている。制御装置
4は分光素子1の種類によって分光素子の各波長位置に
対応する分光素子の向きおよびスリット2の位置と向き
を与える各モータM1〜M5の回転量をテーブルにして記憶
し、分光素子1の種類の入力によって、波長位置に対応
する各モータM1〜M5の回転位置をテーブルから読み取
り、波長走査による波長位置にスリット,分光素子,検
出器が位置するように各モータM1〜M5の制御を行う。
F. Embodiment FIG. 1 shows an embodiment of the present invention. In FIG. 1, S
Is a sample, and 1 is a spectroscopic element that disperses X-rays emitted from a sample S excited by an electron beam. 2 is exit slit, 3 is X
The X-ray transmitted through the slit 2 is detected by the line detector. Reference numeral 5 is an L for driving the spectroscopic element 1 in the arrow L direction (wavelength scanning direction).
It is a direction drive device. M1 is a pulse motor that drives the L-direction drive device 5. M2 is a pulse motor that rotates the spectroscopic element 1 around the center line (spectral center) passing through the center of the spectroscopic element and along the surface of the spectroscopic element. Reference numeral 6 denotes a holding table that integrally holds the slit 2 and the detector 3, which is attached to the deceleration shaft of the motor M5, and the incident direction is controlled by the motor M5. The motor M5 is mounted on a table 6 which is held on a Y drive shaft 7 so as to be movable in the Y direction, and is driven by the motor M4 in the Y axis direction. Both ends of the Y drive shaft 7 are movably connected to the X drive shaft 8. The X drive shaft 8 is connected to the motor M3, and the Y drive shaft 7 is moved in the X direction by the rotation of the motor M3. The drive shaft is a screw shaft and is screwed and connected to the female screw of the connecting portion, and the connecting portion moves along the drive shaft due to the rotation of the drive shaft. Further, two X drive shafts 8 are provided perpendicularly to the Y drive shaft 7. The two X drive shafts 8 are connected by a timing belt (not shown) so as to rotate in the same direction at the same time, or the motor M3 is used. By connecting the connecting part of the drive shaft rotated by the screw connection and connecting with the other drive shaft by slidable fitting connection, and by making either one of the connecting parts longer in the axial direction, the Y-axis X drive shaft 7
The structure is such that the drive direction is not displaced when the Y drive shaft 7 is driven in the direction, and the axial direction of the Y drive shaft 7 deviates from the Y direction. That is,
The spectroscopic element 1 is controlled by the motor M1 in the L direction and the incident angle θ 1 is controlled by M2, and the slit 2 and the detector 3 are controlled by the motor M3.
Driven in the X direction by the motor M4 in the Y direction, an arbitrary trajectory can be drawn in the plane of the drawing, and the detection direction is controlled by the motor M5. It can be set. The control device 4 stores, as a table, the orientations of the spectroscopic elements corresponding to the respective wavelength positions of the spectroscopic elements and the positions and the orientations of the slits 2 of the motors M1 to M5 depending on the type of the spectroscopic element 1, and stores them in a table. The rotation position of each motor M1 to M5 corresponding to the wavelength position is read from the table by inputting the type of, and the control of each motor M1 to M5 is performed so that the slit, the spectroscopic element, and the detector are positioned at the wavelength position by wavelength scanning. To do.

試料Sから放射されるX線を分光結晶で分光する場合、
第3図に示すように電子線照射点Oと分光結晶1の分光
中心Qと出射スリット2中心点Kと分光結晶1の曲率中
心O″が一つの円周(ローランド円R)上に位置するよ
うに、また入射角と出射角が同値になるようにして分光
素子1とスリット2(検出器3を含む)を移動させなけ
ればならない。このような配置状態を維持するよう、各
モータM1〜M5を制御しなければならない。そこで波長位
置に対する分光素子1とスリット2の位置を次のように
して予め求めて波長対応テーブルを作成しておく。
When the X-rays emitted from the sample S are separated by a dispersive crystal,
As shown in FIG. 3, the electron beam irradiation point O, the spectral center Q of the dispersive crystal 1, the exit slit 2 central point K, and the curvature center O ″ of the dispersive crystal 1 are located on one circumference (Roland circle R). In addition, the spectroscopic element 1 and the slit 2 (including the detector 3) must be moved so that the incident angle and the outgoing angle have the same value. M5 must be controlled, so the positions of the spectroscopic element 1 and the slit 2 with respect to the wavelength position are obtained in advance as follows and a wavelength correspondence table is created.

第3図において、照射点Oを中心として半径が分光素子
の曲率半径2Rを半径とする円Wを描く、放射角はL方向
に決まっているから、L方向に対して入射角θ=αの
角度でO点から線を引き、円Wとの交点Pを求め、OPを
直径とする円Rを引き、円Rと直線Lとの交点をQと
し、∠OQK=2αとなる線QKを引き円Rとの交点を点K
とすると、Qが分光素子1の分光中心となり、Kがスリ
ット2の中心となる。分光素子を直線Lに沿って動かし
たとき、このようにして決まるスリット2の位置の軌跡
は直線Lと45度の直線が円Wと交わる点dとO点を結ぶ
Cのようなカーブで、直線L上の分光結晶中心位置を表
す変数t及び分光素子曲率半径2Rをパラメータとして、
x=f(t,R),y=g(t,R)の形で表される。f
(t),g(t)の数式的表現は複雑であるが、使用する
幾つかの分光素子の曲率について、tとx,yとの関係テ
ーブルは予め作っておくことができる。テーブル上tの
値は飛び飛びであるが、CPUに補間演算のプログラムを
設定しておくことにより、tの連続的な変化に対するx,
yを決定することができる。以上の方法によって分光素
子1とスリット2の位置関係を求める。
In FIG. 3, a circle W whose center is the irradiation point O and whose radius is the radius of curvature 2R of the spectroscopic element is drawn. Since the radiation angle is determined in the L direction, the incident angle θ 1 = α with respect to the L direction. Draw a line from the O point at the angle of, find the intersection point P with the circle W, draw the circle R whose diameter is OP, and let the intersection point between the circle R and the straight line L be Q, and obtain the line QK with ∠OQK = 2α. Point K at the intersection with the pulling circle R
Then, Q becomes the spectral center of the spectroscopic element 1, and K becomes the center of the slit 2. When the spectroscopic element is moved along the straight line L, the locus of the position of the slit 2 determined in this way is a curve like C connecting the point d and the point O where the straight line L and the 45 ° straight line intersect the circle W, Using the variable t representing the center position of the dispersive crystal on the straight line L and the radius of curvature 2R of the dispersive element as parameters,
It is expressed in the form of x = f (t, R) and y = g (t, R). f
Although the mathematical expression of (t) and g (t) is complicated, the relationship table between t and x, y can be created in advance for the curvatures of some spectroscopic elements used. The values of t on the table are discontinuous, but by setting the interpolation calculation program in the CPU, x, x
y can be determined. The positional relationship between the spectroscopic element 1 and the slit 2 is obtained by the above method.

第2図は、分光素子をローランド円径の異なる他の分光
素子に交換する場合の一例であり、分光素子設置台10に
複数の分光素子1,1′を切換え用モータM6の回転軸に関
して対称に設置し、切換え用モータM6を取付けるモータ
保持台9を分光素子の分光中心が波長駆動モータM2の軸
中心と一致するように波長駆動モータM2に連結すると、
切換え用モータM6の回転によって夫々の分光素子の分光
中心を波長駆動モータM2の回転中心に設置できるように
なり、分光素子を取り替える手間を必要としなくなるの
で更に能率的である。
FIG. 2 shows an example in which the spectroscopic element is replaced with another spectroscopic element having a different Roland circle diameter, and a plurality of spectroscopic elements 1, 1'are arranged on the spectroscopic element installation base 10 symmetrical with respect to the rotation axis of the switching motor M6. When the motor holding stand 9 for mounting the switching motor M6 is connected to the wavelength drive motor M2 so that the spectral center of the spectroscopic element coincides with the axial center of the wavelength drive motor M2,
By rotating the switching motor M6, the spectral centers of the respective spectral elements can be set at the rotational centers of the wavelength drive motor M2, which eliminates the need to replace the spectral elements, which is more efficient.

ト.考案の効果 従来、ローランド円径の異なる分光器を用いる場合、試
料の周囲にローランド円の異なる複数の分光器を配置す
る装置構成をとっていたので、一つの分光器についてみ
ると稼働率が低く、不経済であったが、本考案によれば
一つの分光器が異なるローランド円の分光器として使え
るので、稼働率が向上し、装置の価格対機能の値が著し
く向上する。
G. Effect of the Invention Conventionally, when using spectrometers with different Rowland circle diameters, the equipment configuration was such that multiple spectrometers with different Rowland circles were placed around the sample, so the utilization rate was low for one spectrometer. Although it is uneconomical, according to the present invention, one spectroscope can be used as a spectroscope for different Roland circles, so that the operating rate is improved and the price / function value of the device is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の構成図、第2図は第2実施
例の分光器駆動装置の構成図、第3図は分光素子と検出
器の配置説明図。 S……試料、M1〜M5……パルスモータ、1……分光素
子、2……スリット、3……検出器、4……制御装置、
5……L方向駆動装置、6……保持台、7……Y駆動
軸、8……X駆動軸。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram of a spectroscope driving device of the second embodiment, and FIG. 3 is an explanatory diagram of arrangement of a spectroscopic element and a detector. S ... Sample, M1-M5 ... Pulse motor, 1 ... Spectroscopic element, 2 ... Slit, 3 ... Detector, 4 ... Control device,
5 ... L-direction drive device, 6 ... holding base, 7 ... Y drive shaft, 8 ... X drive shaft.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】分光素子を直進させる分光素子駆動装置
と、分光器のX線出射スリットと検出器の一体物をX軸
方向およびY軸方向各独立に移動させるX、Y駆動装置
と、分光素子およびX線出射スリットの方向を規制する
規制手段と、ローランド円径の異なる複数の分光素子を
所定の回転軸を中心とする所定径上に配置し、これらを
回転駆動することによってローランド円径の異なる分光
素子に交換するための交換手段と、交換された分光素子
の曲率に対応するローランド円上で検出波長に応じて前
記分光素子、X線出射スリットと検出器の一体物の位
置、及び前記分光素子およびX線出射スリットの方向を
駆動制御するよう前記分光素子駆動装置、前記X,Y駆動
装置、及び前記規制手段に指示を与える駆動制御装置と
を備えたことを特徴とするX線分光器。
1. A spectroscopic element driving device for linearly moving a spectroscopic element, an X, Y driving device for independently moving an X-ray emission slit of a spectroscope and a detector independently in the X-axis direction and the Y-axis direction, and a spectroscopic device. A restricting means for restricting the direction of the element and the X-ray emission slit, and a plurality of spectroscopic elements having different Rowland circle diameters are arranged on a predetermined diameter around a predetermined rotation axis, and these are rotationally driven to rotate the Rowland circle diameter. Exchange means for exchanging a different spectroscopic element, a position of the spectroscopic element, an integrated unit of the X-ray emission slit and the detector according to the detection wavelength on the Rowland circle corresponding to the curvature of the exchanged spectroscopic element, and It is characterized by comprising: the spectroscopic element drive device, the X, Y drive device, and a drive control device for giving an instruction to the regulating means so as to drive and control the directions of the spectroscopic element and the X-ray emission slit. X-ray spectrometer.
JP1988011273U 1988-01-30 1988-01-30 X-ray spectrometer Expired - Lifetime JPH0714960Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988011273U JPH0714960Y2 (en) 1988-01-30 1988-01-30 X-ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988011273U JPH0714960Y2 (en) 1988-01-30 1988-01-30 X-ray spectrometer

Publications (2)

Publication Number Publication Date
JPH01118398U JPH01118398U (en) 1989-08-10
JPH0714960Y2 true JPH0714960Y2 (en) 1995-04-10

Family

ID=31219680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988011273U Expired - Lifetime JPH0714960Y2 (en) 1988-01-30 1988-01-30 X-ray spectrometer

Country Status (1)

Country Link
JP (1) JPH0714960Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320800Y2 (en) * 1988-02-12 1991-05-07
FR2953944B1 (en) * 2009-12-11 2012-05-04 Commissariat Energie Atomique RELATIVE POSITIONING DEVICE OF A FIRST OPTICAL MODULE IN RELATION TO A SECOND OPTICAL MODULE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838845A (en) * 1981-08-31 1983-03-07 Shimadzu Corp Concave crystal type x ray spectroscope

Also Published As

Publication number Publication date
JPH01118398U (en) 1989-08-10

Similar Documents

Publication Publication Date Title
US4469441A (en) Scanning monochromator system with direct coupled dispersing element-electromagnetic drive transducer assembly
US5285254A (en) Rapid-scanning monochromator with moving intermediate slit
US4027975A (en) Scanning monochromator and concave reflecting grating employed therein
JPH0714960Y2 (en) X-ray spectrometer
JP3245475B2 (en) EXAFS measurement device
JP4045696B2 (en) X-ray spectrometer
JPS5957145A (en) X-ray analytical apparatus
US5504576A (en) Monochromator
JPH0666741A (en) X-ray diffractometer
US3394255A (en) Diffraction mechanism in which a monochromator diffracts the X-ray beam in planes transverse to an axis of specimen rotation
JPS5838845A (en) Concave crystal type x ray spectroscope
US3636347A (en) Goniometric apparatus for an x-ray diffractometer
JPH0666736A (en) X-ray spectroscope and exafs measuring instrument
JP2951687B2 (en) Exafus equipment
JP3143293B2 (en) X-ray analyzer
JP2861736B2 (en) X-ray spectrometer
JP2697154B2 (en) Atomic absorption spectrophotometer
JPS59221647A (en) X-ray spectroscope
JP3952330B2 (en) Spectrometer
JP3222720B2 (en) Wavelength dispersion type X-ray detector
JP2001272500A (en) Device for positioning x-ray optical element and x-ray device
JPH01277727A (en) Diffraction grating spectroscope
JP2520576Y2 (en) Analysis equipment
RU57918U1 (en) TURNING MECHANISM FOR SPECTRAL INSTRUMENTS
JPH05312736A (en) Apparatus and method of x-ray measurement of single crystal orientation