JPS5838845A - Concave crystal type x ray spectroscope - Google Patents

Concave crystal type x ray spectroscope

Info

Publication number
JPS5838845A
JPS5838845A JP56137387A JP13738781A JPS5838845A JP S5838845 A JPS5838845 A JP S5838845A JP 56137387 A JP56137387 A JP 56137387A JP 13738781 A JP13738781 A JP 13738781A JP S5838845 A JPS5838845 A JP S5838845A
Authority
JP
Japan
Prior art keywords
crystal
ray
slit
spectroscopic
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56137387A
Other languages
Japanese (ja)
Other versions
JPH0132940B2 (en
Inventor
Ryoichi Shimizu
良一 清水
Hidenobu Ishida
石田 秀信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56137387A priority Critical patent/JPS5838845A/en
Publication of JPS5838845A publication Critical patent/JPS5838845A/en
Publication of JPH0132940B2 publication Critical patent/JPH0132940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

PURPOSE:To elevate the accuracy by computer-control of a positional relation- ship between an X-ray incidence slit, a spectroscopic crystal and an X-rays detection slit with the driving of the spectroscopic crystal and the X-rays detection slit along a mutually independent and linear guide. CONSTITUTION:A crystal base 5 is provided to slide on a guide 4 extended parallel to the X axis and a spectroscopic concave crystal 2 mounted on the base 5 in such a manner as to be rotatable on the axis (passing the X axis) set vertical to the plane of the drawing. A Rowland circule R runs through an X- rays slit 1, a spectroscopic crystal 2, and an X-rays detection slit 10. As the spectroscopic crystal 2 is moved on the X axis along the guide 4, the Rowland circle R shifts in the position and hence, the coordinate (x, y) of the position of the X-rays detection slit can be obtained by calculation by determining the radius of the Rowland circle. Therefore, a higher accuracy can be achieved by performing this calculation with a microcomputer in a control circuit 20.

Description

【発明の詳細な説明】 本発明は彎曲結晶を用いた分光結晶直進型のX線分光器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a straight X-ray spectrometer using a curved crystal.

彎曲結晶型X線分光器は従来、X線入射スリットと分光
結晶とX線検出スリットの三者をローランド円の円周上
に位置するように相互に機構的に連結して王者連動的に
駆動する構造になっていた。
Conventionally, a curved crystal type X-ray spectrometer mechanically connects an X-ray entrance slit, a spectroscopic crystal, and an X-ray detection slit to each other so that they are located on the circumference of a Rowland circle, and drives them in conjunction with each other. The structure was such that

この構造によると機構に不可避の遊びと機構要素の剛性
からX線入射スリット、分光結晶、X線検出スリット王
者の位置関係の精度が決り充分な波長測定精度、波長分
解能を得ることが困難であった。特にローランド円の直
径を大きくすれば理論上の分解能が向上するのでローラ
ンド円の大きなX線分光器が造られるようになってきた
が、ローランド円を大きくすると機構要素の寸法が長く
なり、剛性が低下するため却って安定した測定が困難に
なりローランド円を大きくする方向には限界があった。
With this structure, the precision of the positional relationship between the X-ray entrance slit, the spectroscopic crystal, and the X-ray detection slit is determined due to the inevitable play in the mechanism and the rigidity of the mechanical elements, making it difficult to obtain sufficient wavelength measurement accuracy and wavelength resolution. Ta. In particular, increasing the diameter of the Rowland circle improves the theoretical resolution, so X-ray spectrometers with large Rowland circles have been built, but increasing the Rowland circle increases the dimensions of the mechanical elements and increases the rigidity. This actually made stable measurement difficult, and there was a limit to the direction in which the Rowland circle could be made larger.

本発明はX線入射スリット、分光結晶、X線検出スリッ
トの三者間の機構的な連結を廃し、分光結晶とX線検出
スリットとを相互独立にかつ直線的なガイドに沿って駆
動し、上記王者の位置関係をコンピュータによって与え
られた半径のローランド円の円周上に位置するように制
御するようにしたX線分光器を提供することによシ高精
度、高分解能のX線分光を可能にしようとするものであ
る。即ちX線入射スリット、分光結晶、X線検出スリッ
トの王者を連結する機構を廃したので機構の要素間の遊
び及び機構要素の剛性の不足による測定精度1分解能の
限界を克服したもので、機構要素の剛性の問題がないか
ら任意に大きな直径のローランド円5を有するX線分光
器を得ることが可能となる。以下実施例によって本発明
を説明する。
The present invention eliminates the mechanical connection between the X-ray entrance slit, the spectroscopic crystal, and the X-ray detection slit, and drives the spectroscopic crystal and the X-ray detection slit independently of each other along a linear guide. By providing an X-ray spectrometer that controls the positional relationship of the above-mentioned champion so that it is located on the circumference of a Roland circle with a radius given by a computer, high-precision, high-resolution X-ray spectroscopy can be achieved. It attempts to make it possible. In other words, by eliminating the mechanism that connects the X-ray entrance slit, spectroscopic crystal, and X-ray detection slit, it overcomes the limit of measurement accuracy of 1 resolution due to play between the elements of the mechanism and lack of rigidity of the mechanism elements. Since there are no problems with the rigidity of the elements, it is possible to obtain an X-ray spectrometer with a Rowland circle 5 of arbitrarily large diameter. The present invention will be explained below with reference to Examples.

図面は本発明の一実施例を示す。1はX線入射スリット
でその位置は分光器フレーム(不図示)に固定されてい
る。X線入対スリツ)1を通ってX軸、y軸を想定する
。X軸はX#の入射方向であり、分光結晶2がこのX軸
に沿って動くようになっている。即ち4はX軸動平行に
延びたガイドで、このガイド上を結晶台5が摺動するよ
うになっており、この台5上に図の紙面に垂直の方向に
立てた軸(X軸を通る)を中心に回動可能に分光用彎曲
結晶2が取付けられる。7は台5を動かす送シねじでパ
ルスモータ8によって回転せしめられ台5従って分光結
晶2がX軸に漬って移動せしめられる。9は分光結晶2
を図の紙面に垂直な軸の周りに回動させるパルスモータ
で、分光結晶2がその時どきのX軸上の位置に対応した
方向即ちその時どきのローランド円の中心にむかう向き
を採るように分光結晶の方向を制御する。10はX−Y
移動ステージでその上にX線検出スリット11及びX線
検出器12が設置されている。13はX軸と平行に延び
た直線ガイドであり、このガイド上を摺動するようにy
軸と平行な方向に延びた直線ガイド14があってX−Y
移動ステージ10はこの直線ガイド14上を摺動する。
The drawing shows an embodiment of the invention. Reference numeral 1 denotes an X-ray entrance slit whose position is fixed to a spectrometer frame (not shown). Assume that the X-axis and y-axis pass through X-ray input pair slit) 1. The X-axis is the incident direction of X#, and the spectroscopic crystal 2 is designed to move along this X-axis. That is, reference numeral 4 denotes a guide extending parallel to the X-axis motion, on which the crystal table 5 slides. A curved spectroscopic crystal 2 is attached so as to be rotatable around the center (through which it passes). Reference numeral 7 denotes a feed screw for moving the table 5, which is rotated by a pulse motor 8 to move the table 5 and hence the spectroscopic crystal 2 along the X axis. 9 is spectroscopic crystal 2
A pulse motor rotates the spectral crystal 2 around an axis perpendicular to the plane of the figure, so that the spectroscopic crystal 2 takes the direction corresponding to the current position on the X-axis, that is, the direction toward the center of the Rowland circle at that time. Control the crystal orientation. 10 is X-Y
An X-ray detection slit 11 and an X-ray detector 12 are installed on a moving stage. 13 is a linear guide extending parallel to the X axis, and the y axis slides on this guide.
There is a linear guide 14 extending in a direction parallel to the axis, and
The moving stage 10 slides on this linear guide 14.

15.16は夫々X軸方向、y軸方向の送りねじ、17
,18はこれらのねじを回動させるパルスモータである
15.16 are feed screws in the X-axis direction and y-axis direction, respectively; 17
, 18 are pulse motors that rotate these screws.

X線検出スリット11及びX線検出器12は常に分光結
晶2の方を向いている必要がある。このためX−Y移動
ステージ10上に図の紙面に垂直方向の軸の周りに回転
可能に台10’を取付け、この台に方向棒19を貫通さ
せ、この棒の一端を台5において分光結晶2の回転軸に
枢着しである。
The X-ray detection slit 11 and the X-ray detector 12 must always face the spectroscopic crystal 2. For this purpose, a stand 10' is mounted on the X-Y moving stage 10 so as to be rotatable around an axis perpendicular to the paper plane of the figure, a direction rod 19 is passed through this stand, and one end of this rod is attached to the stand 5 for the spectroscopic crystal. It is pivotally attached to the rotation shaft of No. 2.

X線検出スリット11及び検出器12は台10+上で方
向棒19の貫通方向に並べて固定しであるのf、X−Y
移動ステージ10がどこにあってモX線検出スリット及
び検出器12は分光結晶2の方を向いている。
The X-ray detection slit 11 and the detector 12 are arranged and fixed on the table 10+ in the penetrating direction of the direction rod 19.
Wherever the moving stage 10 is located, the X-ray detection slit and detector 12 are facing toward the spectroscopic crystal 2.

図゛でRは想定されたローランド円でX線入対スリット
12分光結晶2.  X線検出スリット10を連ねるよ
うになっている。分光結晶2をガイド4に沿いX軸上を
動かすとローランド円Rは位置を変え、それに伴ってX
線検出スリット10のあるべき位置も変り、分光結晶2
のX軸上の位置に対するX線検出スリットの位置の座標
(x、7)は分光結晶2のX軸上の位置の関数であり、
ローランド円の半径を決めると計算で求められる。同様
に分光結晶の方位角ψも分光結晶2の位置の関数でロー
ランド円の半径を決めると計算で求まる。
In the figure, R is the assumed Rowland circle, and X-ray entrance pair slit 12 spectroscopic crystal 2. X-ray detection slits 10 are arranged in series. When the spectroscopic crystal 2 is moved along the guide 4 on the X axis, the Rowland circle R changes its position, and the X
The position where the line detection slit 10 should be also changed, and the spectroscopic crystal 2
The coordinates (x, 7) of the position of the X-ray detection slit with respect to the position on the X-axis of is a function of the position of the spectroscopic crystal 2 on the X-axis,
Once the radius of the Rowland circle is determined, it can be calculated. Similarly, the azimuth angle ψ of the spectroscopic crystal can be calculated by determining the radius of the Rowland circle as a function of the position of the spectroscopic crystal 2.

制御回路20はマイクロコンピュータで上の計算ヲ行い
、パルスモータ8. 9.  ’lマ、 18に必要個
数のパルスを送って分光結晶の位置及び方向とX線検出
スリットの位置を制御する。
The control circuit 20 performs the above calculations using a microcomputer, and controls the pulse motor 8. 9. The required number of pulses are sent to the laser beam 18 to control the position and direction of the spectroscopic crystal and the position of the X-ray detection slit.

上述実施例ではX線検出スリット11及びX線検出器1
2の方向は機構的に規制されるようにしであるが、これ
も分光結晶2の方向制御と同様モータを用い制御回路2
0で制御するようにするこよいから上述実施例に示すよ
うな機構的方法で充分である。反対に分光結晶2の方向
規制を機構的に行うようにすることも可能である。更に
X線検出スリットの移動軌跡はX線入射スリットを通1
、り分光結晶の直進方向に対し45°の方向線の方向に
長く同方向線に関して左右対称の形であるから、X−Y
移動ステージのX方向ガイドをこの方向線方向に固定し
、X方向ガイドと直交するY方向ガイドをX方向ガイド
に漬って摺動させるようにすると、Y方向ガイドのスパ
ンが比較的短かくてすむ利点があり、特にローランド円
半径を犬きくするときに適している。
In the above embodiment, the X-ray detection slit 11 and the X-ray detector 1
The direction of the spectroscopic crystal 2 is controlled mechanically, but this also uses a motor to control the direction of the spectroscopic crystal 2.
Since it is preferable to control at 0, a mechanical method as shown in the above embodiment is sufficient. On the contrary, it is also possible to mechanically control the direction of the spectroscopic crystal 2. Furthermore, the movement trajectory of the X-ray detection slit passes through the X-ray entrance slit.
, is long in the direction of the direction line at 45° with respect to the straight direction of the spectroscopic crystal, and is symmetrical with respect to the same direction line, so X-Y
If the X-direction guide of the moving stage is fixed in this direction, and the Y-direction guide perpendicular to the X-direction guide is immersed in the X-direction guide and slides, the span of the Y-direction guide is relatively short. It has the advantage of being flexible, and is particularly suitable for narrowing the Roland radius.

本発明彎曲結晶型X線分光器は上述したような構成で、
分光結晶とX線検出スリットとを連動させるのに機構的
な方法を用いていないので機構の遊び2機構要素の剛性
に基く精度限界が克服され、同じ理由でローランド円の
大きいX線分光器の製作が容易となり、軽量でしかも高
精度、高分解能のX線分光器が得られ、X線検出スリッ
トの位置のデータの算出の際設定する係数を変えるだけ
でローランド円の半径を変更できるので異る曲率半径の
分光結晶を用いてもX線分光器として即応できると云う
特徴を有する。
The curved crystal X-ray spectrometer of the present invention has the above-mentioned configuration,
Since no mechanical method is used to interlock the spectroscopic crystal and the X-ray detection slit, the accuracy limit due to the play of the mechanism and the rigidity of the mechanical elements is overcome, and for the same reason, the X-ray spectrometer with a large Rowland circle is It is easy to manufacture, provides a lightweight, highly accurate, and high-resolution X-ray spectrometer, and is unique because the radius of the Rowland circle can be changed simply by changing the coefficient set when calculating the position data of the X-ray detection slit. It has the characteristic that even if a spectroscopic crystal with a radius of curvature is used, it can be immediately used as an X-ray spectrometer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例X線分光器の平面図である。 1・・・X線入射スリット、2・・・彎曲分光結晶、1
1・・・X線検出スリット、12・・・X線検出器、1
0・・・X−Y移動ステージ、8,9,1フ、1B、、
、パルスモータ。 代理人 弁理士  林   浩  介。
The drawing is a plan view of an X-ray spectrometer according to an embodiment of the present invention. 1...X-ray entrance slit, 2...curved spectroscopic crystal, 1
1... X-ray detection slit, 12... X-ray detector, 1
0...X-Y moving stage, 8, 9, 1f, 1B,...
, pulse motor. Agent: Patent attorney Kosuke Hayashi.

Claims (1)

【特許請求の範囲】[Claims] X線入射スリットを通る一直線に沿って分光結晶を案内
する直線〕ガイドと、このガイドに治って分光結晶を駆
動するモータと、X−Y移動ステージ上に載置したX線
検出スリット及びX線検出器と、上記ステージをX方向
に駆動するモータと同ステージをY方向に駆動するモー
タと、分光結晶とX線検出スリットが上記X線入射スリ
ットを通る与えられた半径のローランド円の円周上に常
に位置しているように分光結晶駆動モータとX−Y移動
ステージをX方向に駆動するモータとY方向に駆動する
モータの三者を制御する制御回路とよりなる彎曲結晶型
X線分光器。
A linear guide that guides the spectroscopic crystal along a straight line passing through the X-ray entrance slit, a motor that is connected to this guide and drives the spectroscopic crystal, and an X-ray detection slit and X-rays placed on an X-Y moving stage. A detector, a motor that drives the stage in the X direction, a motor that drives the stage in the Y direction, a spectroscopic crystal, an X-ray detection slit, and the circumference of a Rowland circle of a given radius that passes through the X-ray entrance slit. A curved crystal type X-ray spectrometer consisting of a control circuit that controls the spectrometer crystal drive motor, a motor that drives the X-Y moving stage in the X direction, and a motor that drives the X-Y movement stage in the Y direction, so that it is always located above. vessel.
JP56137387A 1981-08-31 1981-08-31 Concave crystal type x ray spectroscope Granted JPS5838845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137387A JPS5838845A (en) 1981-08-31 1981-08-31 Concave crystal type x ray spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137387A JPS5838845A (en) 1981-08-31 1981-08-31 Concave crystal type x ray spectroscope

Publications (2)

Publication Number Publication Date
JPS5838845A true JPS5838845A (en) 1983-03-07
JPH0132940B2 JPH0132940B2 (en) 1989-07-11

Family

ID=15197492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137387A Granted JPS5838845A (en) 1981-08-31 1981-08-31 Concave crystal type x ray spectroscope

Country Status (1)

Country Link
JP (1) JPS5838845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118398U (en) * 1988-01-30 1989-08-10
JPH01214747A (en) * 1988-02-24 1989-08-29 Mc Sci:Kk X-ray diffraction apparatus
US7646848B2 (en) 2004-11-29 2010-01-12 Stresstech Oy Goniometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118398U (en) * 1988-01-30 1989-08-10
JPH01214747A (en) * 1988-02-24 1989-08-29 Mc Sci:Kk X-ray diffraction apparatus
US7646848B2 (en) 2004-11-29 2010-01-12 Stresstech Oy Goniometer

Also Published As

Publication number Publication date
JPH0132940B2 (en) 1989-07-11

Similar Documents

Publication Publication Date Title
JP2004294136A (en) X-ray diffraction device
JP2007010483A (en) X-ray beam treating device and x-ray analyzer
US4027975A (en) Scanning monochromator and concave reflecting grating employed therein
JPS59164944A (en) Supporter for optical element of analysis meter
JPS6040943A (en) X-ray analyzer
JP2006201167A (en) Positioning device
JPS5838845A (en) Concave crystal type x ray spectroscope
US3728541A (en) X-ray diffractometer
JP3245475B2 (en) EXAFS measurement device
JP2005121636A (en) X-ray diffraction analyzer and method for correcting measurement position of x-ray diffraction analyzer
US4236072A (en) Adjusting mechanism
JPH05126767A (en) Radiometric analysis device
US3345613A (en) X-ray diffractometer control system
JPS59153153A (en) Roentren-ray analyzer
JPH0334040B2 (en)
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JPH0714960Y2 (en) X-ray spectrometer
JP2000258366A (en) Minute part x-ray diffraction apparatus
JPS5957145A (en) X-ray analytical apparatus
JP2001033408A (en) X-ray spectrometer
EP0296192A1 (en) X-Y-$g(U)-Z POSITIONING STAGE
EP0137078B1 (en) X-ray examination apparatus
JPH02262086A (en) Sensitivity correction apparatus of ring ect apparatus
JPH06118031A (en) Exafs measuring device
JPH0666736A (en) X-ray spectroscope and exafs measuring instrument