JPH07148565A - Casting method - Google Patents

Casting method

Info

Publication number
JPH07148565A
JPH07148565A JP5298435A JP29843593A JPH07148565A JP H07148565 A JPH07148565 A JP H07148565A JP 5298435 A JP5298435 A JP 5298435A JP 29843593 A JP29843593 A JP 29843593A JP H07148565 A JPH07148565 A JP H07148565A
Authority
JP
Japan
Prior art keywords
casting material
semi
solid
molten
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5298435A
Other languages
Japanese (ja)
Other versions
JP2582037B2 (en
Inventor
Haruo Shiina
治男 椎名
Nobuhiro Saito
信広 斉藤
Takeyoshi Nakamura
武義 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP5298435A priority Critical patent/JP2582037B2/en
Publication of JPH07148565A publication Critical patent/JPH07148565A/en
Application granted granted Critical
Publication of JP2582037B2 publication Critical patent/JP2582037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a casting method of using half-melted casting material having good formability as a material. CONSTITUTION:At the time of casting, a self-standing type short columnar solid casting material A-D is heated and the half-melted casting material having co-existing solid phase and liquid phase is produced and successively, this material A-D is set in a charging port in a mold 1 by holding and carrying this material A-D. Thereafter, the half-melted casting material is passed through a gate 5 connected to the charging port 6 and pressurize-filled up into a cavity for forming. The solid casting material A-D is constituted of an Al alloy. At the time of plotting the thickness (t) of a dendrite layer on the outer peripheral surface of the solid casting material along the X-axis and a vol. fraction Vf of the solid phase in the half melted casting material along the Y-axis, respectively, in the thickness (t) of the dendrite layer within the range of 0mm<=t<=10 mm, the vol. fraction Vf of the solid phase is set to (-3.125t+60)%<=Vf<=(-4.16t+95)%. By this method, the self-standing and the direct holding and carrying of the half-melted casting material can be carried out and this formability can be made good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋳造方法、特に、固相と
液相とが共存する半溶融鋳造材料を用いて鋳造を行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting method, and more particularly to a method of casting using a semi-molten casting material in which a solid phase and a liquid phase coexist.

【0002】このような半溶融鋳造材料を用いる理由
は、合金設計および形状に関する自由度が大きいことに
ある。
The reason for using such a semi-molten casting material is that it has a large degree of freedom regarding alloy design and shape.

【0003】[0003]

【従来の技術】従来、この種鋳造方法としては、自立す
る短柱状固体鋳造材料を誘導加熱して固相と液相とが共
存する半溶融鋳造材料を調製し、次いで半溶融鋳造材料
を把持して移送することにより鋳型の装入口内に設置
し、その後半溶融鋳造材料を、装入口に連なるゲートを
通過させて成形用キャビティ内に加圧充填する、といっ
た方法が知られている(特公平2−7748号公報参
照)。
2. Description of the Related Art Conventionally, as this type of casting method, a self-supporting short column solid casting material is induction-heated to prepare a semi-molten casting material in which a solid phase and a liquid phase coexist, and then the semi-molten casting material is gripped. A method is known in which it is installed in the inlet of the mold by transporting it and then the latter half of the molten casting material is pressurized and filled into the molding cavity through a gate connected to the inlet (special feature). (See Japanese Patent Publication No. 2-7748).

【0004】この場合、生産性向上の観点から、半溶融
鋳造材料を自立状態に維持し、またその鋳造材料を直接
把持して移送するようにしているので、半溶融鋳造材料
における固相の体積分率Vfは75〜90%と高く設定
され、また固体鋳造材料外周面にはデンドライト層が存
在する。
In this case, from the viewpoint of improving productivity, since the semi-molten casting material is maintained in a self-supporting state and the casting material is directly gripped and transferred, the volume of the solid phase in the semi-molten casting material is increased. The fraction Vf is set as high as 75 to 90%, and a dendrite layer exists on the outer peripheral surface of the solid casting material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
ように固相の体積分率Vfが高く、またデンドライト層
が存在する場合には、半溶融鋳造材料をキャビティ内に
加圧充填する際、液相が優先的にゲートを通過するた
め、装入口内に残留する半溶融鋳造材料において、その
固相の体積分率Vfは、デンドライト層の破砕片が混じ
ることもあって当初よりも一層高くなる。その結果、装
入口のゲート入口近傍において、半溶融鋳造材料の詰ま
りが発生して鋳物に欠けを生じたり、また液相の優先的
なゲート通過に伴いキャビティ内における半溶融鋳造材
料の充填圧力が変動するため鋳物に偏析を生じ易い、と
いった問題がある。
However, when the volume fraction Vf of the solid phase is high and the dendrite layer is present as described above, when the semi-molten casting material is pressure-filled into the cavity, the liquid Since the phases preferentially pass through the gate, the volume fraction Vf of the solid phase of the semi-molten casting material remaining in the charging port becomes higher than the initial value due to the inclusion of debris of the dendrite layer. . As a result, in the vicinity of the gate entrance of the charging port, clogging of the semi-molten casting material occurs and chipping occurs in the casting, and the filling pressure of the semi-molten casting material in the cavity due to the preferential passage of the liquid phase through the gate Since it fluctuates, there is a problem that segregation is likely to occur in the casting.

【0006】本発明は前記に鑑み、固体鋳造材料の材質
を特定すると共にその固体鋳造材料におけるデンドライ
ト層の厚さtと半溶融鋳造材料における固相の体積分率
Vfとの関係を特定することによって、半溶融鋳造材料
の自立および直接把持による移送を可能にし、またその
成形性を良好にした前記鋳造方法を提供することを目的
とする。
In view of the above, the present invention specifies the material of the solid casting material and the relationship between the thickness t of the dendrite layer in the solid casting material and the solid phase volume fraction Vf of the semi-molten casting material. It is an object of the present invention to provide the above-mentioned casting method that enables the semi-molten casting material to be self-supporting and can be transferred by direct gripping, and has good moldability.

【0007】また本発明は、半溶融鋳造材料における固
相の体積分率Vfを従来法に比べて大幅に低下し得るよ
うにして、その成形性を向上させ、また半溶融鋳造材料
の倒れを回避すると共にその把持による移送を可能にし
た前記鋳造方法を提供することを目的とする。
Further, according to the present invention, the volume fraction Vf of the solid phase in the semi-molten casting material can be significantly reduced as compared with the conventional method, the moldability thereof is improved, and the collapse of the semi-molten casting material is prevented. It is an object of the present invention to provide the above-mentioned casting method which avoids the above-mentioned problems and enables the transfer by gripping.

【0008】[0008]

【課題を解決するための手段】第1発明に係る鋳造方法
は、自立する短柱状固体鋳造材料を加熱して、固相と液
相とが共存する半溶融鋳造材料を調製し、次いで前記半
溶融鋳造材料を把持して移送することにより鋳型の装入
口内に設置し、その後前記半溶融鋳造材料を、前記装入
口に連なるゲートを通過させて成形用キャビティ内に加
圧充填するに当り、前記固体鋳造材料はAl合金より構
成され、その固体鋳造材料外周面のデンドライト層の厚
さtをX軸に、また前記半溶融鋳造材料における固相の
体積分率VfをY軸にそれぞれとったとき、前記デンド
ライト層の厚さtが0mm≦t≦10mmにおいて、前記固
相の体積分率Vfを(−3.125t+60)%≦Vf
≦(−4.16t+95)%に設定することを特徴とす
る。
In the casting method according to the first aspect of the present invention, a self-supporting short column solid casting material is heated to prepare a semi-molten casting material in which a solid phase and a liquid phase coexist, and then the semi-solid casting material is prepared. When the molten casting material is placed in the inlet of the mold by gripping and transferring it, the semi-molten casting material is then pressure-filled into the molding cavity by passing through the gate connected to the inlet, The solid casting material is composed of an Al alloy, and the thickness t of the dendrite layer on the outer peripheral surface of the solid casting material is on the X axis, and the volume fraction Vf of the solid phase in the semi-molten casting material is on the Y axis. When the thickness t of the dendrite layer is 0 mm ≦ t ≦ 10 mm, the volume fraction Vf of the solid phase is (−3.125t + 60)% ≦ Vf.
It is characterized by setting ≦ (−4.16t + 95)%.

【0009】また第2発明に係る鋳造方法は、短柱状固
体鋳造材料を筒状ホルダ内に収めて、それら固体鋳造材
料および筒状ホルダを自立させる工程と、その筒状ホル
ダ内の前記固体鋳造材料を加熱して、固相と液相とが共
存する半溶融鋳造材料を調製する工程と、前記筒状ホル
ダを把持して前記半溶融鋳造材料を鋳型の装入口近傍に
移送する工程と、前記筒状ホルダ内から半溶融鋳造材料
を離脱させて前記装入口内に設置する工程と、前記半溶
融鋳造材料を、前記装入口に連なるゲートを通過させて
成形用キャビティ内に加圧充填する工程とを用いること
を特徴とする。
Further, the casting method according to the second aspect of the present invention includes the steps of accommodating the short columnar solid casting material in a cylindrical holder and allowing the solid casting material and the cylindrical holder to stand on their own, and the solid casting in the cylindrical holder. Heating the material, preparing a semi-molten casting material in which a solid phase and a liquid phase coexist, and a step of gripping the tubular holder and transferring the semi-molten casting material to the vicinity of the inlet of the mold, A step of separating the semi-molten casting material from the inside of the cylindrical holder and setting it in the charging port; and pressure-filling the semi-molten casting material into the molding cavity through a gate connected to the charging port. And a process are used.

【0010】[0010]

【作用】第1発明において、デンドライト層の厚さtが
比較的厚い場合には固相の体積分率Vfは低く設定さ
れ、一方、デンドライト層の厚さtが比較的薄いか、ま
たはそのデンドライト層が無い場合には固相の体積分率
Vfは高く設定される。
In the first aspect of the invention, when the thickness t of the dendrite layer is relatively thick, the volume fraction Vf of the solid phase is set low, while the thickness t of the dendrite layer is relatively thin or the dendrite thereof is relatively thin. When there is no layer, the solid volume fraction Vf is set high.

【0011】したがって、前者においては、デンドライ
ト層の保形能により、また後者においては固相量の増加
に伴う保形能により半溶融鋳造材料の自立および直接把
持による移送が可能である。一方、成形性は、前者の場
合、固相の体積分率Vfが低く、また後者の場合、デン
ドライト層が薄いか、或は無いので、良好となる。
Therefore, in the former case, the shape-retaining ability of the dendrite layer, and in the latter case, the semi-molten casting material can be transferred by self-standing and by direct grasping due to the shape-retaining ability with the increase of the amount of solid phase. On the other hand, the moldability is good in the former case because the solid phase volume fraction Vf is low, and in the latter case because the dendrite layer is thin or absent.

【0012】デンドライト層の厚さt=0とは、固体鋳
造材料に切削加工を施してデンドライト層を除去した場
合に該当する。厚さtがt>10mmでは、デンドライト
層を破砕するために過大な加圧力を必要とするので、設
備コスト上好ましくない。
The thickness t = 0 of the dendrite layer corresponds to the case where the solid casting material is cut to remove the dendrite layer. When the thickness t is t> 10 mm, an excessive pressure is required to crush the dendrite layer, which is not preferable in terms of equipment cost.

【0013】また、固相の体積分率VfがVf<(−
3.125t+60)%では半溶融鋳造材料における液
相の溶け出し量が多くなるためその自立を維持すること
ができず、一方、Vf>(−4.16t+95)%では
成形性が悪化して装入口内で半溶融鋳造材料の詰まりが
発生する。
Further, the volume fraction Vf of the solid phase is Vf <(-
At 3.125t + 60)%, the amount of the liquid phase dissolved in the semi-molten casting material increases, so that the self-sustainability cannot be maintained. On the other hand, at Vf> (-4.16t + 95)%, the formability deteriorates, and Clogging of the semi-molten casting material occurs in the inlet.

【0014】第2発明において、固体鋳造材料を筒状ホ
ルダ内で加熱すると、半溶融鋳造材料における固相の体
積分率Vfを下げても、その液相の外部への漏出を防止
することができ、またその半溶融鋳造材料の倒れを阻止
することができる。これは、歩留りの向上および液相の
漏出による加熱装置の損傷防止をもたらす。
In the second invention, when the solid casting material is heated in the cylindrical holder, even if the volume fraction Vf of the solid phase in the semi-molten casting material is lowered, the leakage of the liquid phase to the outside can be prevented. It is also possible to prevent the semi-molten cast material from collapsing. This improves yield and prevents damage to the heating device due to leakage of the liquid phase.

【0015】また固相の体積分率Vfの低い半溶融鋳造
材料でも筒状ホルダを把持して、安定、且つ確実に移送
することが可能である。
Further, even a semi-molten cast material having a low solid phase volume fraction Vf can be stably and reliably transferred by gripping the cylindrical holder.

【0016】さらに、加熱および移送中において、筒状
ホルダによる保温効果が得られるので、半溶融鋳造材料
調製のための加熱時間の短縮および半溶融鋳造材料の均
熱度の向上が図られる。
Further, during heating and transfer, the heat-retaining effect of the cylindrical holder can be obtained, so that the heating time for preparing the semi-molten casting material can be shortened and the soaking degree of the semi-molten casting material can be improved.

【0017】その上、高温下での成形が可能であるか
ら、半溶融鋳造材料を連続的にゲートを通過させ、また
キャビティ内における半溶融鋳造材料の充填圧力を安定
させることが可能である等、半溶融鋳造材料の成形性を
向上させて欠け、偏析等のない高品質な鋳物を得ること
ができる。この高温下での成形は、鋳造材料の材質選定
幅を拡張する、といった効果をもたらす。
Moreover, since the molding can be performed at a high temperature, the semi-molten casting material can be continuously passed through the gate, and the filling pressure of the semi-molten casting material in the cavity can be stabilized. It is possible to improve the formability of the semi-molten casting material and obtain a high-quality casting without chipping or segregation. The molding under the high temperature brings an effect of expanding the material selection range of the casting material.

【0018】[0018]

【実施例】【Example】

〔実施例I〕図1は加圧鋳造装置の概略を示す。その加
圧鋳造装置の鋳型1は、水平な固定金型2と、それと対
向して上下方向に移動する可動金型3とよりなり、両型
2,3により断面円形の成形用キャビティ4およびその
一端に連通するゲート5が形成され、そのゲート5は固
定金型2の半溶融鋳造材料用装入口6に連通する。固定
金型2に、装入口6に連通するスリーブ7が設けられ、
そのスリーブ7に装入口6に挿脱される加圧プランジャ
8が摺動自在に嵌合される。
[Example I] FIG. 1 schematically shows a pressure casting apparatus. The mold 1 of the pressure casting apparatus is composed of a horizontal fixed mold 2 and a movable mold 3 that moves in a vertical direction facing the fixed mold 2. The molds 2 and 3 form a molding cavity 4 having a circular cross section and A gate 5 communicating with one end is formed, and the gate 5 communicates with a charging port 6 for semi-molten casting material of the fixed mold 2. The fixed mold 2 is provided with a sleeve 7 communicating with the loading port 6,
A pressure plunger 8 that is inserted into and removed from the charging port 6 is slidably fitted into the sleeve 7.

【0019】表1は、固体鋳造材料を構成するAl合金
の組成を示す。
Table 1 shows the composition of the Al alloy that constitutes the solid casting material.

【0020】[0020]

【表1】 [Table 1]

【0021】固体鋳造材料は、Al合金組成の溶湯を用
い、電磁攪拌連続鋳造法の適用下で製造された長尺材よ
り切出されたもので短柱状をなす。
The solid casting material is a molten alloy having an Al alloy composition and is cut out from a long material produced under the application of the electromagnetic stirring continuous casting method to form a short columnar shape.

【0022】表2は、各種固体鋳造材料A〜Dに関する
外周面のデンドライト層の厚さt、直径および長さを示
す。デンドライト層の厚さ変化は、その鋳造条件を変え
ることによってなされ、またデンドライト層よりも内側
の部分は等軸晶化されている。したがって、半溶融鋳造
材料における固相は球状をなす。
Table 2 shows the thickness t, the diameter and the length of the dendrite layer on the outer peripheral surface of various solid casting materials A to D. The change in thickness of the dendrite layer is made by changing the casting conditions, and the portion inside the dendrite layer is equiaxed. Therefore, the solid phase in the semi-molten cast material is spherical.

【0023】[0023]

【表2】 [Table 2]

【0024】デンドライト層の厚さtがt=0である固
体鋳造材料Dは、固体鋳造材料Cの外周面に切削加工を
施してデンドライト層を除去したものである。
The solid casting material D in which the thickness t of the dendrite layer is t = 0 is obtained by removing the dendrite layer by cutting the outer peripheral surface of the solid casting material C.

【0025】図2に示すように、加熱テストを行うべ
く、誘導加熱装置における昇降自在の支持台9上に固体
鋳造材料Aを立設し、その支持台9を上昇させて固体鋳
造材料Aを加熱コイル10内に設置した。次いで、固体
鋳造材料Aを周波数 1kHz、出力 37kWの条件
で加熱して半溶融鋳造材料A(固体鋳造材料と同一符号
を用いる。これは以下同じ)を調製し、その際、加熱温
度を568〜600℃の範囲で変化させて固相の体積分
率Vfを種々変化させた。また加熱時間は7分間(一
定)とし、半溶融鋳造材料Aの温度分布を±3℃の範囲
内に収めた。
As shown in FIG. 2, in order to perform a heating test, the solid casting material A is erected on a vertically movable support base 9 of the induction heating device, and the support base 9 is raised to raise the solid casting material A. It was installed in the heating coil 10. Then, the solid casting material A is heated under the conditions of a frequency of 1 kHz and an output of 37 kW to prepare a semi-molten casting material A (the same reference numeral as that of the solid casting material, which will be the same hereinafter) is prepared. The volume fraction Vf of the solid phase was variously changed by changing the temperature in the range of 600 ° C. The heating time was 7 minutes (constant), and the temperature distribution of the semi-molten casting material A was kept within the range of ± 3 ° C.

【0026】そして、各加熱温度毎に、半溶融鋳造材料
Aが自立状態を維持し得るか否かを観察し、また固相の
体積分率Vfを求めた。同様の加熱テストを、固体鋳造
材料B〜Dについても行った。
Then, at each heating temperature, it was observed whether or not the semi-molten casting material A could maintain the self-standing state, and the volume fraction Vf of the solid phase was determined. The same heating test was also performed on the solid casting materials B to D.

【0027】次に、成形テストを行うべく、前記同様の
固体鋳造材料A〜Dを用い、また前記同様の加熱処理を
行い、次いで、図3に示すように支持台9を下降させて
半溶融鋳造材料A〜Dを加熱コイル10外に出し、自立
状態を維持しているものを把持具11を介して、図1に
示すように、鋳型1の装入口6に装入し、加圧プランジ
ャ8の移動速度 0.07m/sec 、鋳型温度 250
℃、半溶融鋳造材料A〜Dのゲート通過速度 2m/se
c の条件で、半溶融鋳造材料A〜Dを加圧しつつゲート
5を通過させてキャビティ4内に高速層流逐次充填し
た。その後、加圧プランジャ8をストローク終端に保持
することによってキャビティ4内に充填された半溶融鋳
造材料A〜Dに加圧力を付与し、その加圧下で半溶融鋳
造材料A〜Dを凝固させて鋳物を得た。
Next, in order to perform a molding test, the same solid casting materials A to D as described above are used, and the same heat treatment as described above is carried out. Then, as shown in FIG. The casting materials A to D are taken out of the heating coil 10 and the one that maintains the self-supporting state is charged into the charging port 6 of the mold 1 through the gripping tool 11 as shown in FIG. 8 moving speed 0.07 m / sec, mold temperature 250
Gate-passing speed of semi-molten casting materials A to D, 2m / se
Under the condition of c, the semi-molten casting materials A to D were pressurized and passed through the gate 5 to successively fill the cavity 4 with a high-speed laminar flow. Then, by holding the pressure plunger 8 at the end of the stroke, a pressure is applied to the semi-molten casting materials A to D filled in the cavity 4, and the semi-molten casting materials A to D are solidified under the pressure. I got a casting.

【0028】表3は、前記加熱テストおよび成形テスト
結果を示す。表3において、「自立性」の欄は加熱テス
ト結果に該当し、「◎」印は半溶融鋳造材料において液
相の溶け出しが無く、その半溶融鋳造材料が自立状態を
確実に維持している場合を意味する。また「○」印は半
溶融鋳造材料において液相の溶け出しはあるが、その半
溶融鋳造材料が自立可能である場合を意味する。さらに
「×」印は半溶融鋳造材料において液相の溶け出し量が
多く、その半溶融鋳造材料が自立不可能であることを意
味する。
Table 3 shows the heating test and molding test results. In Table 3, the column of "self-supporting" corresponds to the heating test result, and the mark "◎" indicates that the semi-molten casting material has no melt-out of the liquid phase, and the semi-melting casting material surely maintains the self-supporting state. Means that Further, the mark "○" means that the semi-molten casting material is melted out, but the semi-molten casting material can stand on its own. Further, the mark "X" means that the semi-molten casting material has a large amount of liquid phase melted out, and the semi-molten casting material cannot stand on its own.

【0029】「成形性」の欄は、成形テスト結果に該当
し、「○」印は鋳造欠陥のない鋳物を得ることができる
場合を意味する。また「×」印は装入口6のゲート5入
口近傍において半溶融材料の詰まりが発生した場合を意
味する。さらに「−」印は、半溶融鋳造材料において液
相の溶け出し量が多いために把持具11による移送を行
うことができず、したがって成形作業を行うことができ
なかったことを意味する。
The column "moldability" corresponds to the result of the molding test, and the mark "○" means that a cast product without casting defects can be obtained. The symbol "x" means that the semi-molten material is clogged in the vicinity of the gate 5 inlet of the charging port 6. Further, the "-" mark means that the semi-molten cast material could not be transferred by the gripping tool 11 because the amount of the liquid phase melted out was large, and therefore the molding operation could not be performed.

【0030】[0030]

【表3】 [Table 3]

【0031】表3において、「自立性」の欄が「◎」印
または「○」印であり、且つ「成形性」の欄が「○」印
である場合が本実施例の範囲である。
In Table 3, the range of this example is that the column of "independence" is marked with "⊚" or "○" and the column of "moldability" is marked with "○".

【0032】前記同様の加熱テストおよび成形テスト
を、さらに他の固体鋳造材料を用いて行い、デンドライ
ト層の厚さtが0mm≦t≦10mmにおいて、半溶融鋳造
材料の自立性が前記「◎」印または「○」印の状態とな
り、また成形性が「○」印の状態となる固相の体積分率
Vfを求めたところ、図4の結果を得た。
The same heating test and molding test as described above were conducted using another solid casting material, and when the thickness t of the dendrite layer was 0 mm ≦ t ≦ 10 mm, the self-sustaining property of the semi-molten casting material was “◎”. When the volume fraction Vf of the solid phase in which the mark or the mark “◯” is obtained and the moldability is in the mark “◯” is obtained, the results shown in FIG. 4 are obtained.

【0033】即ち、図4において、固体鋳造材料外周面
のデンドライト層の厚さtをX軸に、また半溶融鋳造材
料における固相の体積分率VfをY軸にそれぞれとった
とき、デンドライト層の厚さtが0mm≦t≦10mmにお
いて、固相の体積分率Vfは(−3.125t+60)
%≦Vf≦(−4.16t+95)%に設定される。な
お、固相の体積分率VfがVf≧(−2.9t+75)
%において液相の溶け出しが無く、一方、Vf<(−
2.9t+75)%において、液相の溶け出しが発生す
る。図4には表3の各例を座標で示してある。
That is, in FIG. 4, when the thickness t of the dendrite layer on the outer peripheral surface of the solid casting material is plotted on the X axis and the volume fraction Vf of the solid phase in the semi-molten casting material is plotted on the Y axis, the dendrite layer is obtained. When the thickness t of the solid is 0 mm ≦ t ≦ 10 mm, the volume fraction Vf of the solid phase is (−3.125t + 60)
% ≦ Vf ≦ (−4.16t + 95)% is set. The volume fraction Vf of the solid phase is Vf ≧ (−2.9t + 75)
%, There was no dissolution of the liquid phase, while Vf <(-
At 2.9t + 75)%, dissolution of the liquid phase occurs. FIG. 4 shows each example of Table 3 by coordinates.

【0034】図4から明らかなように、デンドライト層
の厚さtが比較的厚い場合には固相の体積分率Vfは低
く設定され、一方、デンドライト層の厚さtが比較的薄
いか、またはそのデンドライト層が無い場合には固相の
体積分率Vfは高く設定される。
As is apparent from FIG. 4, when the thickness t of the dendrite layer is relatively thick, the volume fraction Vf of the solid phase is set low, while the thickness t of the dendrite layer is relatively thin, Alternatively, when the dendrite layer is not present, the solid phase volume fraction Vf is set high.

【0035】したがって、前者においては、デンドライ
ト層の保形能により、また後者においては固相量の増加
に伴う保形能により半溶融鋳造材料の自立および直接把
持による移送が可能である。一方、成形性は、前者の場
合、固相の体積分率Vfが低く、また後者の場合、デン
ドライト層が薄いか、或は無いので、良好となる。
Therefore, in the former case, the shape-retaining ability of the dendrite layer, and in the latter case, the shape-retaining ability with an increase in the amount of the solid phase enables the semi-molten cast material to be transferred by self-standing and direct grasping. On the other hand, the moldability is good in the former case because the solid phase volume fraction Vf is low, and in the latter case because the dendrite layer is thin or absent.

【0036】〔実施例II〕図5は加圧鋳造装置の概略を
示す。その加圧鋳造装置の鋳型1は、垂直な固定金型2
と、それと対向して左右方向に移動する可動金型3とよ
りなり、両型2,3により断面円形の成形用キャビティ
4およびその下端に連通するゲート5が形成され、その
ゲート5は固定金型2の水平な半溶融鋳造材料用装入口
6に連通する。固定金型2に、装入口6に連通するスリ
ーブ7が設けられ、そのスリーブ7に、装入口6に挿脱
される加圧プランジャ8が摺動自在に嵌合される。また
可動金型3に装入口6に臨むロッド挿通孔12が形成さ
れ、そのロッド挿通孔12に押出しロッド13が摺動自
在に嵌合される。
[Example II] FIG. 5 schematically shows a pressure casting apparatus. The mold 1 of the pressure casting device is a vertical fixed mold 2
And a movable mold 3 that moves in the left-right direction facing it, and a mold 5 having a circular cross section and a gate 5 communicating with the lower end thereof are formed by the molds 2 and 3, and the gate 5 is a fixed mold. It communicates with the horizontal semi-molten casting material inlet 6 of the mold 2. The fixed mold 2 is provided with a sleeve 7 that communicates with the loading port 6, and a pressure plunger 8 that is inserted into and removed from the loading port 6 is slidably fitted into the sleeve 7. Further, a rod insertion hole 12 that faces the loading port 6 is formed in the movable mold 3, and an extrusion rod 13 is slidably fitted in the rod insertion hole 12.

【0037】実施例Iと同様の固体鋳造材料A〜D(表
2参照)と、内径 81mm、外径86mm、長さ 105
mmで、且つ両端面を開放された半溶融鋳造材料用筒状ホ
ルダ14を用意した。筒状ホルダ14は、半溶融鋳造材
料の付着を防止すべく窒化ホウ素(BN)より構成され
ている。
Solid casting materials A to D (see Table 2) similar to those in Example I, inner diameter 81 mm, outer diameter 86 mm, length 105
A cylindrical holder 14 for semi-molten casting material having a size of mm and having open both end surfaces was prepared. The cylindrical holder 14 is made of boron nitride (BN) to prevent the semi-molten casting material from adhering.

【0038】図6に示すように、加熱テストを行うべ
く、固体鋳造材料Aを筒状ホルダ14内に収めてそれら
A,14を、誘導加熱装置における昇降自在の支持台9
上に、固体鋳造材料A周りに等しい間隙が形成されるよ
うに立設し、その支持台9を上昇させて固体鋳造材料A
および筒状ホルダ14を加熱コイル10内に設置した。
支持台9は、保温性の良いアルミナより構成されてい
る。次いで、固体鋳造材料Aを周波数 1kHz、出力
37kWの条件で加熱して半溶融鋳造材料Aを調製
し、その際、加熱温度を568〜600℃の範囲で変化
させて、固相の体積分率Vfを種々変化させた。また加
熱時間は7分間(一定)とし、半溶融鋳造材料Aの温度
分布を±3℃の範囲内に収めた。
As shown in FIG. 6, in order to perform a heating test, the solid casting material A is housed in a cylindrical holder 14 and these A and 14 are moved up and down in an induction heating apparatus.
The solid casting material A is erected so that an equal gap is formed around the solid casting material A, and the supporting table 9 is raised to raise the solid casting material A.
And the cylindrical holder 14 was installed in the heating coil 10.
The support base 9 is made of alumina, which has a good heat retaining property. Then, the solid casting material A is heated under the conditions of a frequency of 1 kHz and an output of 37 kW to prepare a semi-molten casting material A. At that time, the heating temperature is changed in the range of 568 to 600 ° C., and the volume fraction of the solid phase is changed. Vf was variously changed. The heating time was 7 minutes (constant), and the temperature distribution of the semi-molten casting material A was kept within the range of ± 3 ° C.

【0039】そして、各加熱温度毎に、半溶融鋳造材料
Aにおける固相の体積分率Vfを求め、また室温まで空
冷後固体鋳造材料Aと筒状ホルダ14との接触状態を目
視観察した。固体鋳造材料Aの中には、図7に示すよう
に液相の溶け出し、または変形を生じて筒状ホルダ14
に接触しているものと、接触していないものとがあっ
た。同様の加熱テストを、固体鋳造材料B〜Dについて
も行った。
Then, for each heating temperature, the volume fraction Vf of the solid phase in the semi-molten casting material A was determined, and after air cooling to room temperature, the contact state between the solid casting material A and the cylindrical holder 14 was visually observed. In the solid casting material A, as shown in FIG.
There were those that were in contact with and those that were not. The same heating test was also performed on the solid casting materials B to D.

【0040】次に、成形テストを行うべく、前記同様の
固体鋳造材料A〜Dを用い、また前記同様の加熱処理を
行い、次いで、図8に示すように支持台9を下降させて
半溶融鋳造材料A〜Dおよび筒状ホルダ14を加熱コイ
ル10外に出し、自立状態を維持している筒状ホルダ1
4を把持具11により把持して90°回転させると共に
移送して、図9に示すように、筒状ホルダ14および半
溶融鋳造材料A〜Dの一部を鋳型1の装入口6口縁部に
装入した。この場合、固相の体積分率Vfの低い半溶融
鋳造材料でも筒状ホルダ14を把持して、安定、且つ確
実に移送することが可能である。
Next, in order to perform a molding test, the same solid casting materials A to D as described above are used, and the same heat treatment as described above is performed. Then, as shown in FIG. The cylindrical holder 1 in which the casting materials A to D and the cylindrical holder 14 are taken out of the heating coil 10 to maintain the self-standing state.
4 is grasped by the grasping tool 11 and rotated by 90 ° and transferred, and as shown in FIG. 9, the cylindrical holder 14 and a part of the semi-molten casting materials A to D are partially charged into the mold 1 at the inlet 6 edge portion. Charged into. In this case, even the semi-molten casting material having a low solid phase volume fraction Vf can be gripped by the cylindrical holder 14 and stably and reliably transferred.

【0041】図10に示すように、押出しロッド13を
前進させ、半溶融鋳造材料A〜Dを装入口6内に押出し
て筒状ホルダ14から離脱させ、次いで筒状ホルダ14
を両金型2,3間から移動させて両金型2,3を閉じ
た。
As shown in FIG. 10, the extruding rod 13 is moved forward to extrude the semi-molten casting materials A to D into the charging port 6 and separate them from the cylindrical holder 14, and then the cylindrical holder 14 is used.
Was moved from between the molds 2 and 3 to close the molds 2 and 3.

【0042】その後、図11に示すように加圧プランジ
ャ8の移動速度 0.5m/sec 、鋳型温度 200
℃、半溶融鋳造材料のゲート通過速度 2m/sec の条
件で、半溶融鋳造材料A〜Dを加圧しつつゲート5を通
過させてキャビティ4内に高速層流逐次充填した。その
後、加圧プランジャ8をストローク終端に保持すること
によってキャビティ4内に充填された半溶融鋳造材料A
〜Dに加圧力を付与し、その加圧下で半溶融鋳造材料A
〜Dを凝固させて鋳物を得た。
Then, as shown in FIG. 11, the moving speed of the pressure plunger 8 is 0.5 m / sec and the mold temperature is 200.
The semi-molten casting materials A to D were passed through the gate 5 while being pressurized, and the cavities 4 were successively filled with a high-speed laminar flow at a temperature of 2 ° C. at a gate passage speed of the semi-molten casting materials of 2 m / sec. Then, the semi-molten casting material A filled in the cavity 4 by holding the pressure plunger 8 at the end of the stroke.
To D are applied with pressure, and under the pressure, the semi-molten casting material A
~ D was solidified to obtain a casting.

【0043】この場合、半溶融鋳造材料A〜Dにおける
固相の体積分率Vfを低下させた高温下での成形が可能
であるから、半溶融鋳造材料A〜Dを連続的にゲート5
を通過させ、またキャビティ4内における半溶融鋳造材
料A〜Dの充填圧力を安定させることが可能である等、
半溶融鋳造材料A〜Dの成形性を向上させて欠け、偏析
等のない高品質な鋳物を得ることができる。
In this case, since it is possible to perform the molding at a high temperature in which the volume fraction Vf of the solid phase in the semi-molten casting materials A to D is reduced, the semi-molten casting materials A to D are continuously gated.
And it is possible to stabilize the filling pressure of the semi-molten casting materials A to D in the cavity 4, etc.
It is possible to improve the formability of the semi-molten casting materials A to D and obtain a high-quality casting without chipping or segregation.

【0044】表4は、前記加熱テストおよび成形テスト
結果を示す。
Table 4 shows the heating test and molding test results.

【0045】表4において、「自立性」の欄は加熱テス
ト結果に該当し、「○」印は半溶融鋳造材料において液
相の溶け出しまたは変形が無く、その半溶融鋳造材料が
筒状ホルダ14に接触していない場合を意味する。また
「×」印は半溶融鋳造材料において液相の溶け出しまた
は変形が生じて、その半溶融鋳造材料が、図7に示すよ
うに筒状ホルダ14に接触している場合を意味する。
In Table 4, the column of "independence" corresponds to the result of the heating test, and the mark "○" indicates that the semi-molten casting material does not melt or deform and the semi-molten casting material is a cylindrical holder. It means the case where it is not in contact with 14. Further, the mark "x" means that the liquid phase is melted out or deformed in the semi-molten casting material, and the semi-molten casting material is in contact with the cylindrical holder 14 as shown in FIG.

【0046】「成形性」の欄は成形テスト結果に該当
し、「○」印は鋳造欠陥のない鋳物を得ることができる
場合を意味する。また「×」印は装入口6のゲート5入
口近傍において半溶融材料の詰まりが発生した場合を意
味する。さらに「−」印は、半溶融鋳造材料において液
相の溶け出し量が多いために把持具11による移送を行
うことができないか、または移送を行えたとしても押出
しロッド13が半溶融鋳造材料内に刺さってしまい筒状
ホルダ14からの離脱を行うことができず、したがって
成形作業を行うことができなかったことを意味する。
The column of "formability" corresponds to the result of the forming test, and the mark "○" means that a cast product without casting defects can be obtained. The symbol "x" means that the semi-molten material is clogged in the vicinity of the gate 5 inlet of the charging port 6. Further, the "-" mark indicates that the amount of the liquid phase melted out in the semi-molten casting material cannot be transferred by the gripping tool 11, or even if the transfer can be performed, the extrusion rod 13 is in the semi-molten casting material. It means that it could not be detached from the cylindrical holder 14 because it was pierced by and the molding operation could not be performed.

【0047】[0047]

【表4】 [Table 4]

【0048】表4において、「自立性」の欄が「×」印
であり、且つ「成形性」の欄が「○」印である場合が本
実施例の範囲である。なお、表3と4とを比較すると、
例えば半溶融鋳造材料Aにおいて、加熱温度および固相
の体積分率Vfが同一であるにもかかわらず、「自立
性」に関するデータが異なるが、これは筒状ホルダ14
を使用しない場合と、筒状ホルダ14を使用してその保
温効果を受けた場合との差に起因する。
In Table 4, the range of this embodiment is that the column of "independence" is marked with "x" and the column of "moldability" is marked with "○". In addition, comparing Tables 3 and 4,
For example, in the semi-molten casting material A, although the heating temperature and the volume fraction Vf of the solid phase are the same, the data regarding "independence" are different.
This is due to the difference between the case where the cylinder holder is not used and the case where the cylindrical holder 14 is used to receive the heat retaining effect.

【0049】前記同様の加熱テストおよび成形テスト
を、さらに他の固体鋳造材料を用いて行い、デンドライ
ト層の厚さtが0mm≦t≦10mmにおいて、半溶融鋳造
材料の自立性が前記「×」印の状態となり、また成形性
が「○」印の状態となる固相の体積分率Vfを求めたと
ころ、図12の結果を得た。
The same heating test and molding test as described above were conducted using another solid casting material, and when the thickness t of the dendrite layer was 0 mm ≦ t ≦ 10 mm, the self-supporting property of the semi-molten casting material was the above-mentioned “x”. When the volume fraction Vf of the solid phase in which the solid state is marked and the moldability is marked with “◯” is obtained, the results shown in FIG. 12 are obtained.

【0050】即ち、図12において、固体鋳造材料外周
面のデンドライト層の厚さtをX軸に、また半溶融鋳造
材料における固相の体積分率VfをY軸にそれぞれとっ
たとき、デンドライト層の厚さtが0mm≦t≦10mmに
おいて、固相の体積分率Vfは25%≦Vf≦(−4.
16t+95)%に設定される。図12には表4の各例
を座標で示してある。
That is, in FIG. 12, when the thickness t of the dendrite layer on the outer peripheral surface of the solid casting material is taken as the X axis and the volume fraction Vf of the solid phase in the semi-molten casting material is taken as the Y axis, the dendrite layer is obtained. When the thickness t of the solid phase is 0 mm ≦ t ≦ 10 mm, the volume fraction Vf of the solid phase is 25% ≦ Vf ≦ (-4.
16t + 95)%. FIG. 12 shows each example of Table 4 by coordinates.

【0051】図12において、デンドライト層の厚さt
が0mm≦t≦10mmのとき、固相の体積分率Vfが(−
2.9t+75)%<Vf≦(−4.16t+95)%
の範囲に存する半溶融鋳造材料は液相の溶け出しまたは
変形を生じているものの、筒状ホルダ14を使用しなく
ても自立可能であるが、倒れを生じることもあるので、
筒状ホルダ14を使用した方が歩留りが向上する。
In FIG. 12, the thickness t of the dendrite layer is
Is 0 mm ≦ t ≦ 10 mm, the solid phase volume fraction Vf is (−
2.9t + 75)% <Vf ≦ (-4.16t + 95)%
Although the semi-molten casting material existing in the range of (1) has melted out or deformed the liquid phase, it can be self-supported without using the cylindrical holder 14, but it may collapse, so
The yield is improved when the tubular holder 14 is used.

【0052】また、固相の体積分率Vfが25%≦Vf
≦(−2.9t+75)%の範囲に存する半溶融鋳造材
料は筒状ホルダ14を使用しなければ倒れを生じる。
Further, the volume fraction Vf of the solid phase is 25% ≦ Vf
The semi-molten casting material in the range of ≦ (−2.9t + 75)% will fall unless the cylindrical holder 14 is used.

【0053】図4と図12とを比較すると明らかなよう
に、筒状ホルダ14を用いると、それを用いない場合に
比べて固相の体積分率Vfの低い範囲、即ちVf<(−
3.125t+60)%において、成形可能領域を拡張
することができる。
As is clear from a comparison between FIG. 4 and FIG. 12, when the cylindrical holder 14 is used, the volume fraction Vf of the solid phase is lower than when it is not used, that is, Vf <(-
At 3.125t + 60)%, the formable area can be expanded.

【0054】また半溶融鋳造材料における固相の体積分
率Vfを下げても、筒状ホルダ14により液相の外部へ
の漏出を防止することができると共にその半溶融鋳造材
料の倒れを阻止することができる。これは、液相の漏出
による加熱装置の損傷防止および歩留りの向上をもたら
す。
Even if the solid phase volume fraction Vf of the semi-molten casting material is lowered, the cylindrical holder 14 can prevent the liquid phase from leaking to the outside and prevent the semi-molten casting material from collapsing. be able to. This prevents damage to the heating device due to leakage of the liquid phase and improves yield.

【0055】次に、固体鋳造材料Cを用い、筒状ホルダ
14を使用した場合と、使用しなかった場合について固
相の体積分率VfがVf=50%の半溶融鋳造材料Cを
調製するために必要な加熱時間および入熱量を調べたと
ころ、表5の結果を得た。加熱前の固体鋳造材料Cの温
度は20℃であった。
Next, using the solid casting material C, a semi-molten casting material C having a solid phase volume fraction Vf of Vf = 50% is prepared for the case where the cylindrical holder 14 is used and the case where it is not used. When the heating time and heat input required for this purpose were investigated, the results shown in Table 5 were obtained. The temperature of the solid casting material C before heating was 20 ° C.

【0056】[0056]

【表5】 [Table 5]

【0057】表5から明らかなように、筒状ホルダ14
を使用すると、その筒状ホルダ14による保温効果が得
られるので、筒状ホルダ14を使用しない場合に比べて
半溶融鋳造材料調製のための加熱時間を短縮し、また入
熱量を低減することができ、その上、半溶融鋳造材料の
均熱度を向上させることができる。
As is clear from Table 5, the cylindrical holder 14
When using, the heat-retaining effect of the cylindrical holder 14 can be obtained, so that the heating time for preparing the semi-molten casting material can be shortened and the heat input amount can be reduced as compared with the case where the cylindrical holder 14 is not used. In addition, the soaking degree of the semi-molten casting material can be improved.

【0058】[0058]

【発明の効果】請求項1記載の発明によれば、固体鋳造
材料としてAl合金よりなるものを用いると共にその固
体鋳造材料におけるデンドライト層の厚さtと半溶融鋳
造材料における固相の体積分率Vfとの関係を前記のよ
うに特定することによって、鋳造品質の良好な鋳物を歩
留り良く量産することができる。
According to the first aspect of the present invention, the solid casting material made of Al alloy is used, and the thickness t of the dendrite layer in the solid casting material and the volume fraction of the solid phase in the semi-molten casting material. By specifying the relationship with Vf as described above, castings with good casting quality can be mass-produced with high yield.

【0059】請求項2記載の発明によれば、請求項1記
載の発明の効果に加え、固相の体積分率Vfの低い範囲
において成形可能領域を拡張することができる、といっ
た効果を有する。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, there is an effect that the moldable region can be expanded in a range where the volume fraction Vf of the solid phase is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】加圧鋳造装置の一例を示す縦断側面図である。FIG. 1 is a vertical side view showing an example of a pressure casting device.

【図2】固体鋳造材料の加熱方式の一例を示す要部縦断
側面図である。
FIG. 2 is a vertical sectional side view of an essential part showing an example of a heating method for a solid casting material.

【図3】半溶融鋳造材料の移送開始時の一例を示す要部
縦断側面図である。
FIG. 3 is a vertical cross-sectional side view of an essential part showing an example when the transfer of the semi-molten casting material is started.

【図4】一例におけるデンドライト層の厚さと固相の体
積分率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the thickness of the dendrite layer and the volume fraction of the solid phase in one example.

【図5】加圧鋳造装置の他例を示す縦断側面図である。FIG. 5 is a vertical sectional side view showing another example of the pressure casting apparatus.

【図6】固体鋳造材料の加熱方式の他例を示す要部縦断
側面図である。
FIG. 6 is a vertical sectional side view of a main part showing another example of a heating method for a solid casting material.

【図7】加熱冷却後の固体鋳造材料と筒状ホルダとの関
係を示す要部縦断側面図である。
FIG. 7 is a vertical cross-sectional side view of essential parts showing the relationship between the solid casting material after heating and cooling and the cylindrical holder.

【図8】半溶融鋳造材料の移送開始時の他例を示す要部
縦断側面図である。
FIG. 8 is a vertical cross-sectional side view of an essential part showing another example at the time of starting the transfer of the semi-molten casting material.

【図9】半溶融鋳造材料の移送終了時を示す縦断側面図
である。
FIG. 9 is a vertical sectional side view showing the end of transfer of the semi-molten casting material.

【図10】半溶融鋳造材料を鋳型の装入口に設置した状
態を示す縦断側面図である。
FIG. 10 is a vertical cross-sectional side view showing a state in which a semi-molten casting material is installed at a charging port of a mold.

【図11】半溶融鋳造材料をキャビティ内に充填する状
態を示す縦断側面図である。
FIG. 11 is a vertical cross-sectional side view showing a state in which a cavity is filled with a semi-molten casting material.

【図12】他例におけるデンドライト層の厚さと固相の
体積分率との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the thickness of the dendrite layer and the solid phase volume fraction in another example.

【符号の説明】[Explanation of symbols]

1 鋳型 4 キャビティ 5 ゲート 6 装入口 8 加圧プランジャ 11 把持具 13 押出しロッド 14 筒状ホルダ A〜D 固体鋳造材料、半溶融鋳造材料 DESCRIPTION OF SYMBOLS 1 Mold 4 Cavity 5 Gate 6 Loading port 8 Pressurizing plunger 11 Grip tool 13 Extrusion rod 14 Cylindrical holder A to D Solid casting material, semi-molten casting material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 1/02 503 J 21/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 1/02 503 J 21/02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 自立する短柱状固体鋳造材料(A〜D)
を加熱して、固相と液相とが共存する半溶融鋳造材料
(A〜D)を調製し、次いで前記半溶融鋳造材料(A〜
D)を把持して移送することにより鋳型(1)の装入口
(6)内に設置し、その後前記半溶融鋳造材料(A〜
D)を、前記装入口(6)に連なるゲート(5)を通過
させて成形用キャビティ(4)内に加圧充填するに当
り、前記固体鋳造材料(A〜D)はAl合金より構成さ
れ、その固体鋳造材料(A〜D)外周面のデンドライト
層の厚さtをX軸に、また前記半溶融鋳造材料(A〜
D)における固相の体積分率VfをY軸にそれぞれとっ
たとき、前記デンドライト層の厚さtが0mm≦t≦10
mmにおいて、前記固相の体積分率Vfを(−3.125
t+60)%≦Vf≦(−4.16t+95)%に設定
することを特徴とする鋳造方法。
1. A self-supporting short column solid casting material (A to D)
Are heated to prepare semi-molten casting materials (A to D) in which a solid phase and a liquid phase coexist, and then the semi-molten casting materials (A to D) are prepared.
It is installed in the charging port (6) of the mold (1) by gripping and transferring D), and then the semi-molten casting material (A to
When D) is passed through the gate (5) connected to the charging port (6) and pressure-filled in the molding cavity (4), the solid casting materials (A to D) are made of Al alloy. , The thickness t of the dendrite layer on the outer peripheral surface of the solid casting material (A to D) on the X axis, and the semi-molten casting material (A to D).
When the volume fraction Vf of the solid phase in D) is taken along the Y axis, the thickness t of the dendrite layer is 0 mm ≦ t ≦ 10.
In mm, the volume fraction Vf of the solid phase is (-3.125
A casting method characterized by setting t + 60)% ≦ Vf ≦ (−4.16t + 95)%.
【請求項2】 短柱状固体鋳造材料(A〜D)を筒状ホ
ルダ(14)内に収めて、それら固体鋳造材料(A〜
D)および筒状ホルダ(14)を自立させる工程と、そ
の筒状ホルダ(14)内の前記固体鋳造材料(A〜D)
を加熱して、固相と液相とが共存する半溶融鋳造材料
(A〜D)を調製する工程と、前記筒状ホルダ(14)
を把持して前記半溶融鋳造材料(A〜D)を鋳型(1)
の装入口(6)近傍に移送する工程と、前記筒状ホルダ
(14)内から半溶融鋳造材料(A〜D)を離脱させて
前記装入口(6)内に設置する工程と、前記半溶融鋳造
材料(A〜D)を、前記装入口(6)に連なるゲート
(5)を通過させて成形用キャビティ(4)内に加圧充
填する工程とを用いることを特徴とする鋳造方法。
2. A short columnar solid casting material (A to D) is housed in a cylindrical holder (14) to obtain the solid casting material (A to D).
D) and the step of free-standing the cylindrical holder (14), and the solid casting material (A to D) in the cylindrical holder (14).
A semi-molten casting material (A to D) in which a solid phase and a liquid phase coexist, and the cylindrical holder (14)
Grasping the semi-molten casting material (A to D) to mold (1)
Of the semi-molten casting materials (A to D) from the inside of the cylindrical holder (14) and installing the semi-molten casting materials (A to D) inside the loading port (6); A step of casting the molten casting materials (A to D) into the molding cavity (4) through a gate (5) connected to the charging port (6) under pressure.
【請求項3】 前記固体鋳造材料(A〜D)はAl合金
より構成され、その固体鋳造材料(A〜D)外周面のデ
ンドライト層の厚さtをX軸に、また前記半溶融鋳造材
料(A〜D)における固相の体積分率VfをY軸にそれ
ぞれとったとき、前記デンドライト層の厚さtが0mm≦
t≦10mmにおいて、前記固相の体積分率Vfを25%
≦Vf≦(−4.16t+95)%に設定する、請求項
2記載の鋳造方法。
3. The solid casting material (A to D) is composed of an Al alloy, the thickness t of the dendrite layer on the outer peripheral surface of the solid casting material (A to D) is on the X axis, and the semi-molten casting material is When the volume fraction Vf of the solid phase in (A to D) is taken on the Y axis, the thickness t of the dendrite layer is 0 mm ≦.
When t ≦ 10 mm, the volume fraction Vf of the solid phase is 25%
The casting method according to claim 2, wherein ≦ Vf ≦ (−4.16t + 95)% is set.
【請求項4】 前記固体鋳造材料(A〜D)はAl合金
より構成され、その固体鋳造材料(A〜D)外周面のデ
ンドライト層の厚さtをX軸に、また前記半溶融鋳造材
料(A〜D)における固相の体積分率VfをY軸にそれ
ぞれとったとき、前記デンドライト層の厚さtが0mm≦
t≦10mmにおいて、前記固相の体積分率Vfを25%
≦Vf≦(−2.9t+75)%に設定する、請求項2
記載の鋳造方法。
4. The solid casting material (A to D) is composed of an Al alloy, the thickness t of the dendrite layer on the outer peripheral surface of the solid casting material (A to D) is on the X axis, and the semi-molten casting material is When the volume fraction Vf of the solid phase in (A to D) is taken on the Y axis, the thickness t of the dendrite layer is 0 mm ≦.
When t ≦ 10 mm, the volume fraction Vf of the solid phase is 25%
3. Setting to ≦ Vf ≦ (−2.9t + 75)%.
The casting method described.
JP5298435A 1993-11-29 1993-11-29 Casting method Expired - Fee Related JP2582037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5298435A JP2582037B2 (en) 1993-11-29 1993-11-29 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5298435A JP2582037B2 (en) 1993-11-29 1993-11-29 Casting method

Publications (2)

Publication Number Publication Date
JPH07148565A true JPH07148565A (en) 1995-06-13
JP2582037B2 JP2582037B2 (en) 1997-02-19

Family

ID=17859676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5298435A Expired - Fee Related JP2582037B2 (en) 1993-11-29 1993-11-29 Casting method

Country Status (1)

Country Link
JP (1) JP2582037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505251A (en) * 1999-07-26 2003-02-12 アルカン・インターナショナル・リミテッド Semi-solid thickening of metal alloy
CN107405682A (en) * 2014-08-20 2017-11-28 新加坡科技研究局 Metal forms equipment and the method for forming metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505251A (en) * 1999-07-26 2003-02-12 アルカン・インターナショナル・リミテッド Semi-solid thickening of metal alloy
JP5010080B2 (en) * 1999-07-26 2012-08-29 リオ ティント アルカン インターナショナル リミテッド Semi-solid thickening of metal alloys
CN107405682A (en) * 2014-08-20 2017-11-28 新加坡科技研究局 Metal forms equipment and the method for forming metal

Also Published As

Publication number Publication date
JP2582037B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
JP3882013B2 (en) Casting water heater
KR101203757B1 (en) Method for forming metallic glass
CN1876278B (en) Diecast machine and diecast mathod
GB2040196A (en) Hot chamber diecasting
MX2007011395A (en) Method and apparatus for improved heat extraction from aluminum castings for directional solidification.
JPH11285801A (en) Vacuum die casting method of amorphous alloy
EP2305399B1 (en) Semi-molten or semi-solidified molding method and molding apparatus
EP0778099A2 (en) Die casting process and die casting apparatus
JP2010179331A (en) Die casting device and die casting method
JP4195767B2 (en) Casting method, casting equipment, metal material manufacturing method and metal material manufacturing apparatus
JPH07148565A (en) Casting method
JP3638670B2 (en) Method and apparatus for continuous casting into a cast shape close to the finished size
JP2015188936A (en) Press forming method and press forming system of semi-solidified metal material
KR101642905B1 (en) Semi-continuous casting method of vettical type
JP3809630B2 (en) Bottle making method and bottle making apparatus
JP2001509085A (en) Semi-solid metal forming method
CA1186475A (en) Semicontinuous casting apparatus
JP2000301315A (en) Formation of semi-molten metal and apparatus thereof
JP2977374B2 (en) Vacuum vertical injection casting machine
JP4452778B2 (en) Semi-solid alloy processing method and apparatus
US8047258B1 (en) Die casting method for semi-solid billets
JP7351470B1 (en) Method of forming semi-molten metal
JP2015066595A (en) Aluminum die casting method and thin film thermal insulator for use in the same
CN217121657U (en) Metal target casting device
JP2001047215A (en) Gravity casting apparatus and metallic mold for casting

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees