JP3824693B2 - Method for forming spheroidal graphite cast iron - Google Patents

Method for forming spheroidal graphite cast iron Download PDF

Info

Publication number
JP3824693B2
JP3824693B2 JP35387295A JP35387295A JP3824693B2 JP 3824693 B2 JP3824693 B2 JP 3824693B2 JP 35387295 A JP35387295 A JP 35387295A JP 35387295 A JP35387295 A JP 35387295A JP 3824693 B2 JP3824693 B2 JP 3824693B2
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
forming
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35387295A
Other languages
Japanese (ja)
Other versions
JPH09174227A (en
Inventor
進 西川
智章 牛込
幹雄 斎藤
学 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP35387295A priority Critical patent/JP3824693B2/en
Publication of JPH09174227A publication Critical patent/JPH09174227A/en
Application granted granted Critical
Publication of JP3824693B2 publication Critical patent/JP3824693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、球状黒鉛鋳鉄中の球状黒鉛の球状化率の劣化を招くことなく、良好な流動性を利用する、型成形、圧延、鍛造、押し出し等の成形方法に関する。
【0002】
【従来の技術】
球状黒鉛鋳鉄を得る方法としては、溶解状態にある成分調整した鋳鉄溶湯に黒鉛球状化処理を施し、鋳造する方法が一般的である。この方法によれば、溶解温度あるいは鋳造温度が非常に高温(通常1400°C程度)であり、型への熱負荷が大きいため、型の寿命の著しい低下を招く。また、凝固時の収縮により巣が発生する場合があり、できる限り低温で鋳造する必要があるが、時間とともに黒鉛球状化作用が消失するという問題があり、温度を低下させる時間的余裕がない。
一方、球状黒鉛鋳鉄を固相温度域、例えば1000°Cに加熱して、鍛造、圧延等により成形する方法がある。この方法によれば、固相成形であるため、成形荷重を高くする必要があり、また、固相の塑性流動により球状であるべき黒鉛が変形してしまう問題がある。黒鉛の変形は球状黒鉛鋳鉄の本来の強靱な性質の低下につながる。
【0003】
【発明が解決しようとする課題】
本発明は、前述した問題点に鑑みてなされたものであり、その目的とするところは、型への熱負荷を軽減でき、黒鉛が変形しない、球状黒鉛鋳鉄の成形方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、球状黒鉛鋳鉄を加熱して溶解した状態において優れた流動性を持ち、且つ球状黒鉛の球状化率が劣化しない温度範囲のあることを発見して完成に至ったものである。すなわち、本発明の手段は、球状黒鉛鋳鉄からなる素材を1150°C乃至1300°Cの温度範囲内に加熱して融解する過程と、その融解した球状黒鉛鋳鉄を球状黒鉛が残存している期間中に成形する過程とを含むことを特徴とする。
前記成形過程は、型を使用する、通常の型鋳造、押し込み加圧鋳造、吸引鋳造、型鍛造、また、長手方向断面形状が一様なものに加工するロールによる圧延、あるいはダイスを通して押し出す押し出し、等である。
【0005】
前記手段において、温度範囲を前記のように限定した理由は、1150°C未満では、未溶解の固相が多いため、流動性を確保できず、目的の形状に成形し難く、また温度が低くなるほど割れが発生する可能性が高くなるからである。そして、1300°Cを越えると、黒鉛球状化の効果が消失してしまい、すなわち温度が高くなるほど球状黒鉛が組織中に溶け出して球状でなくなり、また球状化率が低下するのであり、良質の球状黒鉛を含む組織が得られないからである。
素材の球状黒鉛鋳鉄を1150°C乃至1300°Cの範囲内に加熱した状態は、流動性を呈する半溶融状態であり、球状黒鉛はそのまま存在している。基礎的実験の結果を示すと、C3.5wt%、Si3.2wt%を含有する黒鉛球状化率86.8%の球状黒鉛鋳鉄を素材とし、この素材を坩堝に収容して1200°Cまで加熱し、この温度に5分間保持後、大気中で放冷して凝固させ、黒鉛球状化率を調査したところ、87.4%(実験結果1)であった。また、前記と同じ素材を1240°Cまで加熱して5分間保持後、同様に冷却して凝固させ、黒鉛球状化率を調査したところ、82.6%(実験結果2)であった。図5(a)は素材、(b)は実験結果1、(c)は実験結果2の夫々の鋳鉄の顕微鏡組織写真であり、(a)の球状黒鉛に対し(b)、(c)の球状黒鉛が殆ど変化していないことが認められる。その後の実験では、前記範囲内の所定温度に20分間保持してから凝固させても黒鉛の球状化率が殆ど変化しないことが確認されている。従って、このように球状黒鉛の球状が保たれている期間内に成形を終了するようにすれば、元の素材に対応する高品質の球状黒鉛鋳鉄の成形品を得ることが可能となる。前記20分という時間は成形に必要な時間として略満足できる期間である。
【0006】
また、前記温度範囲の最高値である1300°Cでも、通常の球状黒鉛鋳鉄の鋳込み温度である1400°Cと比べると100°C低いから、型やダイスへの熱負荷がそれだけ軽減され、金型やダイスの強度を確保しやすい。従って、吸引鋳造や押し込み加圧鋳造が可能となる。また、金型寿命も伸びる。前記温度範囲の最低値である1150°Cは、従来の球状黒鉛鋳鉄の鍛造や圧延、すなわち固相温度域(1000°C)の加熱での鍛造や圧延に比べて加熱温度が高いから、球状黒鉛は固相であるが他の大部分は液相であり、型鍛造やロール圧延に相当する成形加工を行っても球状黒鉛が変形しない。従って、元の素材に対応する品質の球状黒鉛鋳鉄の成形品を得ることが可能となり、更に成形過程で材料が加圧される場合には組織が緻密となるが流動性を有するため球状黒鉛の変形はなく、より品質が向上する。
【0007】
【発明の実施の形態】
第1の実施の形態は、加圧による型成形であり、図1に模式図として示すように、素材の球状黒鉛鋳鉄を1150°C乃至1300°Cの範囲内の所定温度に加熱して融解した融解物1をコンテナ2に収容し、ラム3を下方へ前進させることにより鋳型4の型空間に押し込み、凝固させて成形品として取り出す。図中5は高周波加熱コイル又は抵抗発熱体からなる加熱手段であり、必要に応じて使用する。なお、素材の融解から成形時の凝固開始までの前記温度範囲内にある時間は20分以下とするのがよい。また、この実施の形態に用いた装置では、上記使用方法の外にコンテナ2内に未融解の素材を収容し、始めから加熱手段5によって融解する使用方法が可能であり、このようにしてもよい。
得られる成形品は、素材と略同等の球状黒鉛鋳鉄であり、加圧成形されたものであるから組織がより緻密である。
【0008】
第2の実施の形態は、吸引鋳造であり、図2に模式図として示すように、素材の球状黒鉛鋳鉄を1150°C乃至1300°Cの範囲内の所定温度に加熱して融解した融解物6を鋳型7の型空間に、吸引し、凝固させて成形品として取り出す。図中8は保持炉、9は高周波加熱コイル又は抵抗発熱体からなる加熱手段、10は吸い込みノズル、11は吸引管である。なお、素材の融解から成形時の凝固開始までの前記温度範囲内にある時間は20分以下とするのがよい。
得られる成形品は、素材と略同等の球状黒鉛鋳鉄であり、吸引成形であるから吸引中に脱ガスされ、品質が向上する。
【0009】
第3の実施の形態は、押し出し成形であり、図3に模式図として示すように、素材の球状黒鉛鋳鉄を1150°C乃至1300°Cの範囲内の所定温度に加熱して融解した融解物12の所定量を、コンテナ13内に収容してラム14を前進させることによりダイス15を通して押し出し、所定断面形状の成形品16とする。なお、この場合ダイス15を出た直後は表面近くが凝固しているが中心部は未だ融解状態であり変形しやすい状態であるから、成形品ガイドを用いて直線状態に案内するのがよい。また、必要に応じてコンテナ13に図1に示したような加熱手段を設ける。なお、素材の融解から成形時の凝固開始までの前記温度範囲内にある時間は20分以下とするのがよい。また、この実施の形態に使用した装置も、加熱手段を設けた場合は、始めから未融解の素材をコンテナ13内に収容して融解するようにしてもよい。
得られる成形品は、素材と略同等の球状黒鉛鋳鉄である。
【0010】
第4の実施の形態は、ローラを用いた圧延加工に相当する成形であり、図4に模式図として示すように、素材の球状黒鉛鋳鉄を1150°C乃至1300°Cの範囲の所定温度に加熱して融解した融解物17を、冷却手段を備えた対をなす回転ローラ18、19の間に常にほぼ一定した量がローラ部上に溜まるように供給し、ローラ18、19の間から外表面が凝固して出てくる所定断面形状の連続した成形品20として得る。なお、素材の融解から成形時の凝固開始までの前記温度範囲内にある時間は20分以下とするのがよい。
得られる成形品は、素材と略同等の球状黒鉛鋳鉄である。第3、第4の実施の形態の成形品16、20は、断面形状が一様な、例えば、図4(b)、(c)に示す断面形状21、22のようなものである。なお、第3の実施の形態に関連して、マンドレルを使用する構成の装置を用いると球状黒鉛鋳鉄製の管、特に異形断面の管の成形も可能である。
【0011】
【実施例】
第1の実施の形態において、素材の球状黒鉛鋳鉄として、Cが3.5wt%、Siが3.2wt%を含有し、黒鉛球状化率86.8%のものを使用し、1180°Cに加熱したものを融解物1とし、外径50mm、内径44mm、高さ75mmのカップ型の成形品とした。その成形品の周壁の中間高さ位置の顕微鏡組織写真を図5(d)に示す。その成形品の黒鉛球状化率は数箇所の平均値で87.4%であった。この結果は黒鉛球状化率が素材と成形品とで略同じと判定できる。なお、一般には球状黒鉛鋳鉄の黒鉛球状化率は70%以上であれば、強度上の欠陥が起こらないと認識されている。従って、この成形品は十分に良質な球状黒鉛鋳鉄製品であるといえる。
【0012】
【発明の効果】
請求項1に記載の発明は、元の素材に対応する品質の球状黒鉛鋳鉄の成形品を得ることが可能であり、素材の球状黒鉛鋳鉄を所定の温度範囲内に再加熱して成形するから、必要なだけの素材を融解して小ロットの球状黒鉛鋳鉄成形品の生産に対応でき、素材をストックしておくことにより、少量の注文に応じて迅速に生産できる効果を奏する。また、融解温度範囲が従来の球状黒鉛鋳鉄の鋳造温度よりも低いから、巣の発生が少なくなり、更に成形において使用する型やダイスに対する熱負荷が軽減されるから、その寿命が長くなる効果を奏する。
請求項2に記載の発明は、加圧成形であるから、複雑な形状の高品質の球状黒鉛鋳鉄成形品を得ることができる効果を奏する。
請求項3に記載の発明は、吸引による鋳造であるから、脱ガスが行われて品質のよい球状黒鉛鋳鉄成形品が得られる効果を奏する。
請求項4に記載の発明は、押し出し成形であるから、ダイスの変更のみによって異なる球状黒鉛鋳鉄成形品に対応できる効果を奏する。
請求項5に記載の発明は、ローラによる圧延成形であるから、組織が緻密となり、品質の良い球状黒鉛鋳鉄成形品が得られる効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を、使用する加圧鋳造装置と共に模式的に示した縦断正面図である。
【図2】本発明の第2の実施の形態を、使用する吸引鋳造装置と共に模式的に示した縦断正面図である。
【図3】本発明の第3の実施の形態を、使用する押し出し成形装置と共に模式的に示した縦断正面図である。
【図4】(a)は本発明の第4の実施の形態を、使用する圧延装置と共に模式的に示した縦断正面図であり、(b)及び(c)は第3及び第4の実施の形態で得られる成形品の例を示す断面図である。
【図5】(a)は素材の球状黒鉛鋳鉄の顕微鏡組織写真、(b)及び(c)は素材を加熱融解して所定時間保持して凝固させた球状黒鉛鋳鉄の顕微鏡組織写真、(d)は実施例の球状黒鉛鋳鉄の顕微鏡組織写真である。
【符号の説明】
1 融解した素材
2 コンテナ
3 プランジャ
4 型
5 加熱装置
6 融解した素材
7 型
8 保持炉
9 加熱装置
10 吸引ノズル
11 吸引管
12 融解した素材
13 コンテナ
14 プランジャ
15 ダイス
16 成形品
17 融解した素材
18 ローラ
19 ローラ
20 成形品
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method such as die forming, rolling, forging, and extrusion that uses good fluidity without causing deterioration of the spheroidization rate of spheroidal graphite in spheroidal graphite cast iron.
[0002]
[Prior art]
As a method for obtaining spheroidal graphite cast iron, a method is generally employed in which a cast iron molten metal whose components are in a dissolved state is subjected to a graphite spheroidization treatment and cast. According to this method, the melting temperature or casting temperature is very high (usually about 1400 ° C.), and the heat load on the mold is large, so that the life of the mold is significantly reduced. In addition, a nest may be generated due to shrinkage during solidification, and it is necessary to cast at as low a temperature as possible. However, there is a problem that the spheroidizing action of the graphite disappears with time, and there is no time for reducing the temperature.
On the other hand, there is a method in which spheroidal graphite cast iron is heated to a solid phase temperature range, for example, 1000 ° C., and molded by forging, rolling, or the like. According to this method, since it is solid phase molding, it is necessary to increase the molding load, and there is a problem that graphite that should be spherical is deformed by the plastic flow of the solid phase. The deformation of graphite leads to a decrease in the original tough properties of spheroidal graphite cast iron.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for forming spheroidal graphite cast iron that can reduce the thermal load on the mold and does not deform the graphite. .
[0004]
[Means for Solving the Problems]
The present invention has been completed by discovering that there is a temperature range in which the spheroidal graphite cast iron has excellent fluidity when heated and melted and the spheroidizing rate of the spheroidal graphite does not deteriorate. That is, the means of the present invention includes a process in which a material made of spheroidal graphite cast iron is heated and melted within a temperature range of 1150 ° C. to 1300 ° C., and a period in which the spheroidal graphite remains in the melted spheroidal graphite cast iron. And a molding process.
The molding process uses a normal die casting using a die, indentation pressure casting, suction casting, die forging, rolling with a roll that has a uniform longitudinal cross-sectional shape, or extrusion through a die, Etc.
[0005]
In the above means, the reason why the temperature range is limited as described above is that if it is less than 1150 ° C., since there are many undissolved solid phases, fluidity cannot be ensured, it is difficult to form into the desired shape, and the temperature is low This is because the possibility of cracking increases. When the temperature exceeds 1300 ° C., the effect of spheroidizing graphite disappears, that is, the higher the temperature, the more spheroidized graphite dissolves into the structure and becomes non-spherical, and the spheroidizing rate decreases. This is because a structure containing spherical graphite cannot be obtained.
The state in which the raw spheroidal graphite cast iron is heated in the range of 1150 ° C. to 1300 ° C. is a semi-molten state exhibiting fluidity, and the spheroidal graphite is present as it is. The results of the basic experiment are as follows: Spheroidal graphite cast iron containing C3.5 wt% and Si3.2 wt% and having a graphite spheroidization ratio of 86.8% is used as a raw material, and the raw material is placed in a crucible and heated to 1200 ° C. Then, after being kept at this temperature for 5 minutes, it was allowed to cool in the atmosphere and solidified, and the graphite spheroidization ratio was examined. The result was 87.4% (Experimental result 1). The same material as above was heated to 1240 ° C. and held for 5 minutes, and then cooled and solidified in the same manner. When the graphite spheroidization ratio was examined, it was 82.6% (Experimental result 2). FIG. 5 (a) is a raw material, (b) is an experimental result 1 and (c) is a microstructural photograph of each cast iron of the experimental result 2, and (b) and (c) are compared with the spherical graphite of (a). It can be seen that the spherical graphite has hardly changed. In subsequent experiments, it has been confirmed that the spheroidization rate of graphite hardly changes even if the graphite is solidified after being held at a predetermined temperature within the above range for 20 minutes. Therefore, if the molding is completed within the period in which the spherical shape of the spheroidal graphite is maintained in this way, it becomes possible to obtain a molded product of high quality spheroidal graphite cast iron corresponding to the original material. The time of 20 minutes is a period that can be substantially satisfied as the time required for molding.
[0006]
In addition, even at 1300 ° C, which is the maximum value in the above temperature range, 100 ° C lower than the casting temperature of normal spheroidal graphite cast iron, which is 100 ° C, the heat load on the die and the die is reduced accordingly, It is easy to secure the strength of molds and dies. Therefore, suction casting and indentation pressure casting are possible. Also, the mold life is extended. The lowest temperature range of 1150 ° C is higher than the conventional forging and rolling of spheroidal graphite cast iron, ie, forging and rolling by heating in the solid phase temperature range (1000 ° C). Graphite is a solid phase, but most of the other is a liquid phase, and spherical graphite does not deform even when a forming process corresponding to die forging or roll rolling is performed. Therefore, it becomes possible to obtain a molded product of spheroidal graphite cast iron having a quality corresponding to the original material. Further, when the material is pressed during the molding process, the structure becomes dense but has fluidity, so There is no deformation and the quality is improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment, molding is performed by pressurization, and as shown in a schematic diagram in FIG. 1, the spheroidal graphite cast iron as a raw material is heated to a predetermined temperature within a range of 1150 ° C. to 1300 ° C. to be melted. The melt 1 is accommodated in the container 2, and the ram 3 is advanced downward to be pushed into the mold space of the mold 4 to be solidified and taken out as a molded product. In the figure, reference numeral 5 denotes a heating means comprising a high frequency heating coil or a resistance heating element, which is used as required. The time within the above temperature range from the melting of the material to the start of solidification at the time of molding is preferably 20 minutes or less. Further, in the apparatus used in this embodiment, in addition to the above usage method, an unmelted material can be accommodated in the container 2 and melted by the heating means 5 from the beginning. Good.
The obtained molded product is spheroidal graphite cast iron substantially the same as the raw material, and since it is pressure-molded, the structure is denser.
[0008]
The second embodiment is suction casting, and as shown in a schematic diagram in FIG. 2, a melt obtained by heating the raw spheroidal graphite cast iron to a predetermined temperature within the range of 1150 ° C. to 1300 ° C. 6 is sucked into the mold space of the mold 7 and solidified to be taken out as a molded product. In the figure, 8 is a holding furnace, 9 is a heating means comprising a high-frequency heating coil or a resistance heating element, 10 is a suction nozzle, and 11 is a suction pipe. The time within the above temperature range from the melting of the material to the start of solidification at the time of molding is preferably 20 minutes or less.
The obtained molded product is spheroidal graphite cast iron substantially the same as the raw material, and since it is suction molding, it is degassed during suction, and the quality is improved.
[0009]
The third embodiment is extrusion molding, and as shown in a schematic diagram in FIG. 3, a melted product obtained by heating the raw spheroidal graphite cast iron to a predetermined temperature within a range of 1150 ° C. to 1300 ° C. A predetermined amount of 12 is accommodated in the container 13 and pushed out through the die 15 by advancing the ram 14 to obtain a molded product 16 having a predetermined cross-sectional shape. In this case, immediately after exiting the die 15, the vicinity of the surface is solidified, but the central part is still in a molten state and is easily deformed, so it is preferable to guide it to a linear state using a molded product guide. Further, the container 13 is provided with heating means as shown in FIG. The time within the above temperature range from the melting of the material to the start of solidification at the time of molding is preferably 20 minutes or less. Further, the apparatus used in this embodiment may also be configured so that unmelted material is stored in the container 13 from the beginning and melted when the heating means is provided.
The obtained molded product is spheroidal graphite cast iron substantially the same as the raw material.
[0010]
The fourth embodiment is a molding corresponding to a rolling process using a roller. As shown in a schematic diagram in FIG. 4, the raw spheroidal graphite cast iron is brought to a predetermined temperature in the range of 1150 ° C. to 1300 ° C. The melt 17 melted by heating is supplied so that a substantially constant amount is always accumulated on the roller portion between the pair of rotating rollers 18 and 19 provided with a cooling means, and is removed from between the rollers 18 and 19. It is obtained as a continuous molded product 20 having a predetermined cross-sectional shape whose surface is solidified. The time within the above temperature range from the melting of the material to the start of solidification at the time of molding is preferably 20 minutes or less.
The obtained molded product is spheroidal graphite cast iron substantially the same as the raw material. The molded products 16 and 20 of the third and fourth embodiments have uniform cross-sectional shapes, for example, cross-sectional shapes 21 and 22 shown in FIGS. 4B and 4C. In connection with the third embodiment, when an apparatus using a mandrel is used, it is possible to form a spheroidal graphite cast iron pipe, particularly a pipe having a modified cross section.
[0011]
【Example】
In the first embodiment, as the material of spheroidal graphite cast iron, a material containing 3.5 wt% C, 3.2 wt% Si, and having a graphite spheroidization rate of 86.8% is used. The heated one was melt 1 and a cup-shaped molded product having an outer diameter of 50 mm, an inner diameter of 44 mm, and a height of 75 mm. A micrograph of the microstructure at the intermediate height position of the peripheral wall of the molded product is shown in FIG. The graphite spheroidization ratio of the molded product was 87.4% as an average value in several places. From this result, it can be determined that the graphite spheroidization rate is substantially the same between the material and the molded product. In general, it is recognized that defects in strength do not occur when the graphite spheroidization rate of spheroidal graphite cast iron is 70% or more. Therefore, it can be said that this molded article is a sufficiently high quality spheroidal graphite cast iron product.
[0012]
【The invention's effect】
According to the first aspect of the present invention, it is possible to obtain a molded product of spheroidal graphite cast iron having a quality corresponding to the original material, and reheat the spheroidal graphite cast iron of the material within a predetermined temperature range to form. It is possible to melt a necessary amount of raw material to cope with the production of a small lot of spheroidal graphite cast iron molded product. By stocking the raw material, it is possible to produce quickly according to a small amount of orders. In addition, since the melting temperature range is lower than the casting temperature of conventional spheroidal graphite cast iron, the occurrence of nests is reduced, and the thermal load on the mold and die used in molding is reduced, so that the service life is extended. Play.
Since invention of Claim 2 is pressure molding, there exists an effect which can obtain the high quality spheroidal graphite cast iron molded product of a complicated shape.
Since invention of Claim 3 is casting by suction, there exists an effect which degassing is performed and a quality spheroidal graphite cast iron molded article is obtained.
Since invention of Claim 4 is extrusion molding, there exists an effect which can respond to a spheroidal graphite cast iron molded product which changes only by change of dice | dies.
Since the invention according to claim 5 is rolling forming with a roller, the structure becomes dense, and an effect of obtaining a high quality spheroidal graphite cast iron molded product is obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view schematically showing a first embodiment of the present invention together with a pressure casting apparatus to be used.
FIG. 2 is a longitudinal sectional front view schematically showing a second embodiment of the present invention together with a suction casting apparatus to be used.
FIG. 3 is a longitudinal front view schematically showing a third embodiment of the present invention together with an extrusion molding apparatus to be used.
FIG. 4 (a) is a longitudinal front view schematically showing a fourth embodiment of the present invention together with a rolling apparatus to be used, and (b) and (c) are third and fourth embodiments. It is sectional drawing which shows the example of the molded article obtained with this form.
FIGS. 5A and 5B are micrographs of spheroidal graphite cast iron as a raw material, and FIGS. 5B and 5C are micrographs of spheroidal graphite cast iron obtained by heating and melting the raw material and solidifying by holding for a predetermined time. ) Is a micrograph of the spheroidal graphite cast iron of the example.
[Explanation of symbols]
1 Melted material 2 Container 3 Plunger 4 Mold 5 Heating device 6 Melted material 7 Mold 8 Holding furnace 9 Heating device 10 Suction nozzle 11 Suction tube 12 Melted material 13 Container 14 Plunger 15 Die 16 Molded product 17 Molten material 18 Roller 19 Roller 20 Molded product

Claims (5)

球状黒鉛鋳鉄からなる素材を1150°C乃至1300°Cの温度範囲内に加熱して融解する融解過程と、その融解した球状黒鉛鋳鉄を球状黒鉛が残存している期間中に成形する成形過程とを含むことを特徴とする球状黒鉛鋳鉄の成形方法。A melting process in which a material made of spheroidal graphite cast iron is heated and melted within a temperature range of 1150 ° C. to 1300 ° C., and a molding process in which the melted spheroidal graphite cast iron is molded during the period in which the spheroidal graphite remains. A method for forming spheroidal graphite cast iron, comprising: 請求項1に記載の球状黒鉛鋳鉄の成形方法において、前記成形過程が、前記融解した球状黒鉛鋳鉄を型に押し込んで加圧する型成形であることを特徴とする球状黒鉛鋳鉄の成形方法。2. The forming method of spheroidal graphite cast iron according to claim 1, wherein the forming step is mold forming in which the molten spheroidal graphite cast iron is pressed into a mold and pressed. 請求項1に記載の球状黒鉛鋳鉄の成形方法において、前記成形過程が、前記融解した球状黒鉛鋳鉄を型内に吸引する型成形であることを特徴とする球状黒鉛鋳鉄の成形方法。2. The forming method of spheroidal graphite cast iron according to claim 1, wherein the forming step is mold forming in which the molten spheroidal graphite cast iron is sucked into a mold. 請求項1に記載の球状黒鉛鋳鉄の成形方法において、前記成形過程が、前記融解した球状黒鉛鋳鉄をダイスを通して押し出す押し出し成形であることを特徴とする球状黒鉛鋳鉄の成形方法。2. The forming method of spheroidal graphite cast iron according to claim 1, wherein the forming step is extrusion forming in which the molten spheroidal graphite cast iron is extruded through a die. 請求項1に記載の球状黒鉛鋳鉄の成形方法において、前記成形過程が、前記融解した球状黒鉛鋳鉄を対をなすローラの間を通して圧延する圧延成形であることを特徴とする球状黒鉛鋳鉄の成形方法。2. The forming method of spheroidal graphite cast iron according to claim 1, wherein the forming step is rolling forming by rolling the molten spheroidal graphite cast iron through a pair of rollers. .
JP35387295A 1995-12-26 1995-12-26 Method for forming spheroidal graphite cast iron Expired - Fee Related JP3824693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35387295A JP3824693B2 (en) 1995-12-26 1995-12-26 Method for forming spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35387295A JP3824693B2 (en) 1995-12-26 1995-12-26 Method for forming spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPH09174227A JPH09174227A (en) 1997-07-08
JP3824693B2 true JP3824693B2 (en) 2006-09-20

Family

ID=18433796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35387295A Expired - Fee Related JP3824693B2 (en) 1995-12-26 1995-12-26 Method for forming spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP3824693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756643B2 (en) * 2011-01-31 2015-07-29 クロダイト工業株式会社 Low temperature casting method and low temperature casting apparatus for spheroidal graphite cast iron
JP6930738B2 (en) * 2018-08-03 2021-09-01 錦見鋳造株式会社 How to make cookware

Also Published As

Publication number Publication date
JPH09174227A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
TWI555595B (en) Method and device for producing a metal component by using a casting-and forming-tool
US5306463A (en) Process for producing structural member of amorphous alloy
JPH03253525A (en) Manufacture of amorphous alloy solidified material
US6079477A (en) Semi-solid metal forming process
JPS61276762A (en) Production of metallic product
JP2008073763A (en) Method of manufacturing vehicle wheel
CN105705271A (en) Methods and apparatus to produce high performance axisymmetric components
CN103121095A (en) Squeeze casting preparation technology of AZ91D rare earth magnesium alloy
JP3824693B2 (en) Method for forming spheroidal graphite cast iron
EP0904875B1 (en) Method of injection molding a light alloy
US5015439A (en) Extrusion of metals
JP5360040B2 (en) Wrought material and manufacturing method thereof
EP1011897B1 (en) Semi-solid metal forming process
KR101214409B1 (en) Method for making a basic material of alumium alloy can
JP2003126950A (en) Molding method of semi-molten metal
WO2005065866A1 (en) Method and apparatus for manufacturing forming material with spherical structure
JP2000263213A (en) Roll type semi-solid working method and working apparatus therefor
JP2002346710A (en) Continuous casting and rolling method
KR100407836B1 (en) Manufacturing apparatus for master-cylinder of automobile and its manufacturing method
US8047258B1 (en) Die casting method for semi-solid billets
JP3536559B2 (en) Method for forming semi-solid metal
JP3575600B2 (en) Method and apparatus for manufacturing thin metal products
JP7351470B1 (en) Method of forming semi-molten metal
JPH05305409A (en) Method for forming metal
JPH0313258A (en) Structure of metallic mold for half melt molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150707

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees