JPH0714787A - Production of ii-vi compound semiconductor - Google Patents

Production of ii-vi compound semiconductor

Info

Publication number
JPH0714787A
JPH0714787A JP17483793A JP17483793A JPH0714787A JP H0714787 A JPH0714787 A JP H0714787A JP 17483793 A JP17483793 A JP 17483793A JP 17483793 A JP17483793 A JP 17483793A JP H0714787 A JPH0714787 A JP H0714787A
Authority
JP
Japan
Prior art keywords
group
growth
thin film
compound semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17483793A
Other languages
Japanese (ja)
Inventor
Kenji Shimoyama
謙司 下山
Toshinari Fujimori
俊成 藤森
Hideki Goto
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17483793A priority Critical patent/JPH0714787A/en
Priority to DE4421539A priority patent/DE4421539C2/en
Priority to GB9412364A priority patent/GB2280309B/en
Priority to TW083105676A priority patent/TW271497B/zh
Publication of JPH0714787A publication Critical patent/JPH0714787A/en
Priority to US08/876,228 priority patent/US5868834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To provide a method for producing a semiconductor excellent in element characteristics and the flatness of heterointerface is improved by repeating the step for introducing an organic metal of group II element and halide gas and/or halogen gas alternately into a growth chamber thereby forming a thin film. CONSTITUTION:In the CVD method for forming a thin film of II-VI compound semiconductor using an organic metal of group II element and a hydrogenated group 1 element as material, a step for introducing an organic metal of group II element and halide gas and/or halogen gas alternately into a growth chamber is repeated to grow a thin film. Duration of group II element supply is preferably set at 1min or less and more preferably set at 30sec or less. This method flattens the heterointerface, improves the flatness of surface morphology or facet surface, and allows high quality crystal growth because polycrystal is not deposited over a wide range on a mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はII−VI族化合物半導体薄
膜の成長により、化合物半導体層を形成する方法に係わ
り、特に成長層の平坦化及び選択成長用保護膜への堆積
を抑制するのに適した化合物半導体の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a compound semiconductor layer by growing a II-VI group compound semiconductor thin film, and more particularly to flattening the growth layer and suppressing deposition on the protective film for selective growth. The present invention relates to a method for producing a compound semiconductor suitable for.

【0002】[0002]

【従来の技術】II−VI族化合物半導体は、紫外から緑ま
での短波長領域と赤外の長波長領域をカバーすることが
できる。最近、GaAs基板に格子整合するII−VI族化
合物半導体を用いて、青色レーザーの発振に成功してい
る。この青色レーザーの発振には、量子井戸活性層の形
成、p型ドーピング技術の向上により達成されている。
しかしながら、横モードを制御するためには、AlGa
As系の半導体レーザーで通常用いられているような電
流狭窄構造が必要となる。電流を狭窄するためのブロッ
ク層の形成には、選択成長技術の応用が必要となる。
2. Description of the Related Art II-VI group compound semiconductors can cover a short wavelength region from ultraviolet to green and a long wavelength region of infrared. Recently, a blue laser has been successfully oscillated using a II-VI group compound semiconductor lattice-matched to a GaAs substrate. This blue laser oscillation has been achieved by forming a quantum well active layer and improving the p-type doping technique.
However, in order to control the transverse mode, AlGa
A current constriction structure that is normally used in an As-based semiconductor laser is required. The formation of the block layer for constricting the current requires application of the selective growth technique.

【0003】上記の量子井戸構造を作製するためには、
精密に成長速度を制御する必要があり、通常は分子線エ
ピタキシャル成長(MBE)法や有機金属気相成長(M
OVPE)法が用いられている。実際に、これらの成長
法を用いて、原子層レベルで急峻なヘテロ界面が形成さ
れている。これらの構造を素子に応用するとき、ヘテロ
界面の平坦性は素子特性に大きな影響を与える。II−VI
族化合物界面では、化合物分子のマイグレーション距離
が短いため、平坦性が悪くなるなどの問題がある。最近
さらに素子構造を最適化させるために選択成長が用いら
れているが、通常のMBE法では選択成長が非常に困難
であるために、従来はMOVPE法あるいはMOMBE
法で選択成長が行われている。選択成長の利点として
は、ダメージレス、比較的低温でのプロセスであるた
め、品質の高い選択成長領域を得ることができ、高性能
の素子が得られることにある。
In order to manufacture the above quantum well structure,
It is necessary to precisely control the growth rate, and usually the molecular beam epitaxial growth (MBE) method or the metal organic chemical vapor deposition (M
OVPE) method is used. In fact, a steep hetero interface is formed at the atomic layer level by using these growth methods. When these structures are applied to a device, the flatness of the hetero interface has a great influence on the device characteristics. II-VI
At the group compound interface, the migration distance of the compound molecules is short, so there is a problem such as poor flatness. Recently, selective growth has been used for further optimizing the device structure. However, since the selective growth is very difficult in the ordinary MBE method, the conventional MOVPE method or MONBE method has been used.
Selective growth is being done by law. The advantage of selective growth is that it is a damage-less process at a relatively low temperature, so that a high-quality selective growth region can be obtained and a high-performance element can be obtained.

【0004】[0004]

【発明が解決すべき課題】しかしながら、選択成長を行
うときに、保護膜上にポリを堆積させないようにするた
めに、成長条件、混晶比及びマスク幅等に大きな制約を
受ける。特にZnを含んだII−VI族化合物の場合、マス
ク幅が大きくなるほど、保護膜上に堆積しやすくなり、
望みの素子構造を得られなくなってしまうという課題が
生じていた。
However, in order to prevent poly from being deposited on the protective film during selective growth, the growth conditions, mixed crystal ratio, mask width, etc. are greatly restricted. Particularly in the case of a II-VI group compound containing Zn, the larger the mask width, the easier it is to deposit on the protective film,
There has been a problem that the desired device structure cannot be obtained.

【0005】[0005]

【課題を解決するための手段】そこで本発明者らは、か
かる課題を解決すべく鋭意検討の結果化合物半導体のヘ
テロ構造を形成したり、選択的に結晶を成長させるとき
に成長させる化合物の母体元素を含まないハライドガス
及び/またはハロゲンガスを加えることにより成長層表
面を平坦化させたり、広い範囲にわたりマスク上に多結
晶を堆積させずに高品質な結晶成長が可能となることを
見いだし本発明に到達した。すなわち本発明の目的は、
ヘテロ界面の平坦性が向上し、素子特性の優れた半導体
の製造方法を提供することにあり、そしてかかる目的
は、II族元素の有機金属と、VI族元素の水素化物を原料
とするII−VI族化合物半導体薄膜の気相成長による製造
方法において、II族元素の有機金属とハライドガス及び
/またはハロゲンガスを交互に成長室内に導入すること
を繰り返して薄膜を成長させることを特徴とするII−VI
族化合物半導体の製造方法により容易に達成される。
The inventors of the present invention have, as a result of diligent studies to solve the above problems, form a heterostructure of a compound semiconductor or a matrix of a compound to be grown when selectively growing crystals. It has been found that by adding a halide gas and / or a halogen gas containing no element, the growth layer surface is flattened, and high-quality crystal growth is possible without depositing polycrystals on a mask over a wide range. The invention was reached. That is, the object of the present invention is to
An object of the present invention is to provide a method for manufacturing a semiconductor having improved hetero interface flatness and excellent device characteristics, and an object thereof is to use an organic metal of Group II element and a hydride of Group VI element as a raw material II- A method for producing a Group VI compound semiconductor thin film by vapor phase growth, characterized in that the thin film is grown by repeatedly introducing an organometallic group II element and a halide gas and / or a halogen gas into the growth chamber alternately. -VI
This is easily achieved by the method for producing a group compound semiconductor.

【0006】以下に本発明をより詳細に説明する。本発
明の製造方法に用いられるVI族元素の水素化物として
は、ハロゲン元素を含まないものが好ましく、セレン化
水素(H2 Se)、硫化水素(H2 S)等が用いられ
る。II族元素の有機金属としてはハロゲン元素を含まな
いものが好ましく、ジメチル亜鉛(DMZ)、ビスシク
ロペンジニエルマグネシウム(Cp2 Mg)、ジメチル
セレン(DMSe)等が用いられる。ハライドガス及び
/またはハロゲンガスとしては、特に限定されないが、
具体的には、ハライドガスとしてはHBr、HI、H
F、HCl、CCl2 2 等が挙げられ、ハロゲンガス
としてはCl2 、I2 、F2 、Br2 等及びこれらの混
合物が挙げられる。低温域でCl2 また高温域でHCl
を用いるのが好ましい。
The present invention will be described in more detail below. As the hydride of the Group VI element used in the production method of the present invention, those containing no halogen element are preferable, and hydrogen selenide (H 2 Se), hydrogen sulfide (H 2 S) and the like are used. As the organic metal of the Group II element, those containing no halogen element are preferable, and dimethyl zinc (DMZ), biscyclopentenyl magnesium (Cp 2 Mg), dimethyl selenium (DMSe) and the like are used. The halide gas and / or the halogen gas is not particularly limited,
Specifically, as the halide gas, HBr, HI, H
F, HCl, CCl 2 F 2 and the like can be mentioned, and as the halogen gas, Cl 2 , I 2 , F 2 , Br 2 and the like and a mixture thereof can be mentioned. Cl 2 at low temperature and HCl at high temperature
Is preferably used.

【0007】該ハライドガス及び/またはハロゲンガス
の使用量は、通常の半導体薄膜表面のエッチングを行う
より少ない量で好ましいが、特に限定されない。これら
の条件は、成長室の大きさ、成長温度等を勘案して設定
される。また流すガスの全圧は常圧以下が好ましい。成
長温度に関しては、一般にII−VI族化合物の気相成長に
用いられる温度条件であればよい。
The amount of the halide gas and / or the halogen gas used is preferably an amount smaller than that for etching the surface of a semiconductor thin film, but is not particularly limited. These conditions are set in consideration of the size of the growth chamber, the growth temperature, and the like. Further, the total pressure of the flowing gas is preferably normal pressure or lower. The growth temperature may be any temperature condition generally used for vapor phase growth of II-VI compounds.

【0008】本発明においてはII族原料と、ハライドガ
ス及び/またはハロゲンガスを交互に成長室内に導入す
るが、1回のII族原料の供給継続期間は、1分以下が好
ましく、より好ましくは30秒以下である。該継続時間
が1分を越えると成長表面の平坦化等の本発明の効果が
得られにくくなる。そしてII族原料の供給を停止し、今
度はハライドガス及び/またはハロゲンガスを供給す
る。ハライドガス及び/またはハロゲンガスの供給時間
もまた1分以下が好ましく、特に好ましくは30秒以下
である。両者の供給を切り換える際のII族原料もハライ
ドガス及び/またはハロゲンガスも流していない時間は
特に限定されないが、成長面上でII族原料とハライドガ
ス及び/またはハロゲンガスが混じらないようにするこ
とが好ましい。実用上はガス切り換え時間が、長時間に
なると作業性が悪くなるため、10秒以下が好ましく、
1〜10秒が好ましい。
In the present invention, the group II raw material and the halide gas and / or the halogen gas are alternately introduced into the growth chamber, but the supply duration of the group II raw material once is preferably 1 minute or less, more preferably. It is 30 seconds or less. If the duration exceeds 1 minute, it becomes difficult to obtain the effects of the present invention such as flattening the growth surface. Then, the supply of the Group II raw material is stopped, and this time, the halide gas and / or the halogen gas is supplied. The supply time of the halide gas and / or halogen gas is also preferably 1 minute or less, particularly preferably 30 seconds or less. The time when neither the group II raw material nor the halide gas and / or the halogen gas is flowing when switching the supply of the both is not particularly limited, but it is necessary to prevent the group II raw material and the halide gas and / or the halogen gas from mixing on the growth surface. It is preferable. Practically, the gas switching time becomes worse when the time is long, so 10 seconds or less is preferable.
1 to 10 seconds is preferable.

【0009】本発明の製造方法は通常のII−VI族化合物
半導体薄膜の成長に有効であるが、特に亜鉛を含むII−
VI族化合物半導体薄膜の成長に適している。亜鉛を含む
原料としては、成長法に応じて公知の種々の材料が使用
できるが、MOCVD法ではジアルキル亜鉛が好まし
い。またこの場合もハライドガス及び/またはハロゲン
ガスとしては、HClもしくはCl2 が好ましい。
The production method of the present invention is effective for the growth of ordinary II-VI group compound semiconductor thin films, but especially II-VI containing zinc is used.
Suitable for growing Group VI compound semiconductor thin films. As a raw material containing zinc, various known materials can be used depending on the growth method, but dialkylzinc is preferable in the MOCVD method. Also in this case, HCl or Cl 2 is preferable as the halide gas and / or the halogen gas.

【0010】通常II−VI族化合物半導体薄膜をドーピン
グする際、ハロゲンはVI族サイトに入るn型のドーパン
トとして用いられる。そこで、本発明のII族原料と、ハ
ライドガス及び/またはハロゲンガスを交互に成長室内
に導入する方法は、VI族サイトに入るハロゲンの混入を
防ぐときに、II族原料と、ハライドガス及び/またはハ
ロゲンガスを同時供給の場合に比べて、本発明の効果は
大きく現れる。
When doping a II-VI group compound semiconductor thin film, halogen is usually used as an n-type dopant which enters a VI group site. Therefore, the method of introducing the group II raw material and the halide gas and / or the halogen gas alternately into the growth chamber of the present invention is to prevent the mixing of the halogen entering the group VI site with the group II raw material, the halide gas and / or the halogen gas. Alternatively, the effect of the present invention is more significant than in the case where halogen gas is simultaneously supplied.

【0011】[0011]

【作用】II−VI族化合物半導体薄膜の成長において、II
族原料ガスと、ハライドガス及び/またはハロゲンガス
を少なくとも1回は交互に成長室内に導入することによ
り、従来のMOVPE法と殆ど変わらない成長条件で成
長させて、ヘテロ界面を平坦化させたり、表面モフォロ
ジーやファセット表面が平坦に改善され、また広い範囲
にわたりマスク上に多結晶を堆積させずに高品質な結晶
成長が可能となる。
[Function] In the growth of II-VI group compound semiconductor thin film, II
By introducing the group source gas and the halide gas and / or the halogen gas alternately into the growth chamber at least once, the hetero interface is flattened by growing under the growth conditions which are almost the same as those of the conventional MOVPE method. The surface morphology and facet surface are improved to be flat, and high-quality crystal growth is possible over a wide area without depositing polycrystals on the mask.

【0012】[0012]

【実施例】以下に本発明の実施例を用いて説明するが、
本発明はその要旨を越えない限り実施例に限定されるも
のではない。図1に示すように100μmおきに幅を変
えた(5μm〜200μm)SiNX 膜のストライプパ
ターンを形成したGaAs基板上に、MOVPE法で厚
み約1μmのZnSe層を成長させた。このとき、原料
ガスとしてジメチル亜鉛(DMZ)及びセレン化水素
(H2 Se)を用い、DMZ、H2 Seの供給モル数は
それぞれ2×10-5mol/min、4×10-5mol
/minとした。また、総流量は7.7SLM、成長温
度は650℃、圧力は76Torr、成長速度は約2μ
m/hとした。成長中にHClを0.5sccm添加し
たサンプル(A)とHClを添加しなかった(従来の成
長法)サンプル(B)について、成長後のウエハ表面の
光学顕微鏡写真を図2,3に示す。上記の成長条件でH
Clを1sccm添加したことによる成長速度の減少は
5%であった。図3のサンプル(B)では、ZnSe層
を成長させた場合、幅の狭いSiNX 膜(幅3μm)ス
トライプ上においてもSiNX 膜上一面に分厚いポリ
(多結晶)が堆積してしまった。図中では黒い部分がS
iNX 膜であり、その表面に多くの白点(ポリ)が見え
る。白い帯状に見える部分がZnSeであるが、この巾
は100μmである。SiNX 膜の巾がもっと狭い部分
では、一面にポリが生じ、ZnSe部分と写真では区別
がつきにくいためかなり巾の広い部分を取り上げてい
る。通常のMOVPE法では、Znを含んだ化合物のマ
イグレーションがかなり遅くかつ保護膜との反応性が高
いために、数10Torrの減圧成長を行ってもZnS
eの選択成長がかなり困難になると報告されており、こ
の場合も従来の成長法では同様な結果になってしまっ
た。一方、図2のサンプル(A)では、ZnSe層を成
長させた場合、幅200μmのSiNX 膜ストライプ上
においてもポリの堆積がみられなかった。このことか
ら、HCl添加によりZnを含んだ化合物のマイグレー
ションが促進され、選択成長が良好に行えたものと考え
られる。
[Examples] Examples of the present invention will be described below.
The present invention is not limited to the examples as long as the gist thereof is not exceeded. As shown in FIG. 1, a ZnSe layer having a thickness of about 1 μm was grown by the MOVPE method on a GaAs substrate on which a stripe pattern of a SiN x film having a width changed every 100 μm (5 μm to 200 μm) was formed. At this time, dimethylzinc (DMZ) and hydrogen selenide (H 2 Se) were used as source gases, and the supply mole numbers of DMZ and H 2 Se were 2 × 10 −5 mol / min and 4 × 10 −5 mol, respectively.
/ Min. The total flow rate is 7.7 SLM, the growth temperature is 650 ° C., the pressure is 76 Torr, and the growth rate is about 2 μm.
m / h. FIGS. 2 and 3 show optical microscope photographs of the wafer surface after growth for the sample (A) to which HCl was added at 0.5 sccm during growth and the sample (B) to which HCl was not added (conventional growth method). H under the above growth conditions
The decrease in growth rate due to the addition of 1 sccm of Cl was 5%. In the sample (B) in FIG. 3, when growing the ZnSe layer, thick poly (polycrystalline) on one side on the SiN X film even in a narrow SiN X film (width 3 [mu] m) on the stripe width is had deposited. In the figure, the black part is S
It is an iN X film, and many white spots (poly) are visible on its surface. The part that looks like a white band is ZnSe, but its width is 100 μm. In the portion where the width of the SiN x film is narrower, poly is generated on one surface, and it is difficult to distinguish between the ZnSe portion and the photograph. In the ordinary MOVPE method, the migration of the compound containing Zn is considerably slow and the reactivity with the protective film is high. Therefore, ZnS is grown even under reduced pressure of several tens Torr.
It has been reported that the selective growth of e becomes considerably difficult, and in this case, the same result was obtained by the conventional growth method. On the other hand, in the sample (A) of FIG. 2, when the ZnSe layer was grown, poly deposition was not observed even on the SiN x film stripe having a width of 200 μm. From this, it is considered that the addition of HCl promoted the migration of the compound containing Zn, and the selective growth was successfully performed.

【0013】[0013]

【発明の効果】以上詳述したように、本発明は化合物半
導体の成長中にHCl等のハライドガス及び/またはハ
ロゲンガスを微量添加することにより、ヘテロ界面を平
坦化させたり、広い範囲にわたりマスク上に多結晶を堆
積させずに高品質な結晶成長が可能となる。本発明で
は、成長速度は微量のHCl添加により多少減少する
が、従来の薄膜成長の再現性・制御性を充分に残してお
り、実用上有効な手法である。また実施例ではMOVP
Eについて説明を行ったが、特にMOVPEに限定され
るものではなく、MBE法などの他の気相成長法でも有
効である。
As described above in detail, according to the present invention, a hetero interface is flattened or masked over a wide range by adding a minute amount of a halide gas such as HCl and / or a halogen gas during the growth of a compound semiconductor. High quality crystal growth is possible without depositing polycrystals on top. In the present invention, the growth rate is slightly reduced by the addition of a slight amount of HCl, but the reproducibility and controllability of the conventional thin film growth remain sufficiently, which is a practically effective method. Also, in the embodiment, MOVP
Although E has been described, it is not particularly limited to MOVPE, and other vapor phase growth methods such as MBE method are also effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例に用いたストライプパ
ターンの説明図である。
FIG. 1 is an explanatory diagram of a stripe pattern used in an example of the present invention.

【図2】図2は、本発明の実施例の結果得られた、結晶
構造の電子顕微鏡写真である。
FIG. 2 is an electron micrograph of a crystal structure obtained as a result of an example of the present invention.

【図3】図3は、従来法の結果得られた結晶構造の電子
顕微鏡写真である。
FIG. 3 is an electron micrograph of a crystal structure obtained as a result of a conventional method.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 II族元素の有機金属と、VI族元素の水素
化物を原料とするII−VI族化合物半導体薄膜の気相成長
させる方法において、II族元素の有機金属と、ハライド
ガス及びまたはハロゲンガスを交互に成長室内に導入す
ることを繰り返して薄膜を成長させることを特徴とする
II−VI族化合物半導体の製造方法。
1. A method for vapor phase growth of a Group II element organometal and a II-VI group compound semiconductor thin film using a Group VI element hydride as a raw material, wherein the Group II element organometal, a halide gas and / or Characterized by repeatedly introducing alternating halogen gas into the growth chamber to grow a thin film
II-VI Group Compound Semiconductor Manufacturing Method.
【請求項2】 ハロゲン元素を含まない水素化物及びハ
ロゲン元素を含まない有機金属を成長用原料とする請求
項1記載の半導体の製造方法。
2. The method for producing a semiconductor according to claim 1, wherein a hydride containing no halogen element and an organic metal containing no halogen element are used as growth raw materials.
【請求項3】 成長方法が領域選択成長である請求項1
記載の半導体の製造方法。
3. The growth method is area selective growth.
A method for manufacturing the semiconductor described.
【請求項4】 1回の成長原料の供給時間が1分以下で
ある請求項1記載の半導体の製造方法。
4. The method for producing a semiconductor according to claim 1, wherein the supply time of the growth material once is 1 minute or less.
【請求項5】 Znを含んだ原料を用いてZnを含むII
−VI族化合物の成長を行う請求項1記載の半導体の製造
方法。
5. A Zn containing raw material is used to contain Zn containing II.
The method for manufacturing a semiconductor according to claim 1, wherein the group VI compound is grown.
JP17483793A 1993-06-22 1993-06-22 Production of ii-vi compound semiconductor Pending JPH0714787A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17483793A JPH0714787A (en) 1993-06-22 1993-06-22 Production of ii-vi compound semiconductor
DE4421539A DE4421539C2 (en) 1993-06-22 1994-06-20 Process for the preparation of a semiconductor from a group II-VI compound
GB9412364A GB2280309B (en) 1993-06-22 1994-06-20 Method of manufacturing a group II-VI compound semiconductor
TW083105676A TW271497B (en) 1993-06-22 1994-06-22
US08/876,228 US5868834A (en) 1993-06-22 1997-06-16 Method of manufacturing a group II-VI compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17483793A JPH0714787A (en) 1993-06-22 1993-06-22 Production of ii-vi compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0714787A true JPH0714787A (en) 1995-01-17

Family

ID=15985525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17483793A Pending JPH0714787A (en) 1993-06-22 1993-06-22 Production of ii-vi compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0714787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036771A (en) * 1997-09-30 2000-03-14 Nec Corporation Method of manufacturing optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036771A (en) * 1997-09-30 2000-03-14 Nec Corporation Method of manufacturing optical semiconductor device

Similar Documents

Publication Publication Date Title
US5990495A (en) Semiconductor light-emitting element and method for manufacturing the same
US4147571A (en) Method for vapor epitaxial deposition of III/V materials utilizing organometallic compounds and a halogen or halide in a hot wall system
JP3879173B2 (en) Compound semiconductor vapor deposition method
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
US5868834A (en) Method of manufacturing a group II-VI compound semiconductor
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
US6419742B1 (en) method of forming lattice matched layer over a surface of a silicon substrate
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
KR100262018B1 (en) Compound semiconductor and its fabrication
JPH0714787A (en) Production of ii-vi compound semiconductor
JPH05190903A (en) Semiconductor light-emitting element and manufacture thereof
US5827365A (en) Compound semiconductor and its fabrication
US5204283A (en) Method of growth II-VI semiconducting compounds
JP3479542B2 (en) Method for manufacturing II-VI compound semiconductor
JPH05190900A (en) Manufacture of semiconductor light-emitting device
JP3242571B2 (en) Vapor growth method
JP2002289538A (en) Method for fabricating semiconductor element and semiconductor element
JPH0463040B2 (en)
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JPH08264829A (en) Compound semiconductor structure and manufacture thereof
JPH1168235A (en) Crystal growth method of algaas compound semiconductor and manufacture of semiconductor laser
JP2754549B2 (en) Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal
AU615469B2 (en) Crystal growth method