JPH0714784A - Formation of thin crystal film controlled at unit of subatomic layer - Google Patents

Formation of thin crystal film controlled at unit of subatomic layer

Info

Publication number
JPH0714784A
JPH0714784A JP15567193A JP15567193A JPH0714784A JP H0714784 A JPH0714784 A JP H0714784A JP 15567193 A JP15567193 A JP 15567193A JP 15567193 A JP15567193 A JP 15567193A JP H0714784 A JPH0714784 A JP H0714784A
Authority
JP
Japan
Prior art keywords
atoms
molecules
substrate
atomic layer
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15567193A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Suda
良幸 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP15567193A priority Critical patent/JPH0714784A/en
Publication of JPH0714784A publication Critical patent/JPH0714784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a thin crystal film digitally with a growth unit of subatomic weight even it the saturated adsorption is less than a unit molecular weight by removing unnecessary atoms or molecules, adsorbing to the surface of a substrate, therefrom and shifting the surface atoms by thermal excitation thereby flattening the surface. CONSTITUTION:At least a part of material molecules is adsorbed onto a substrate and residual molecules are discharged. A surface exciting means removes unnecessary molecules or atoms, adsorbed to the surface of the substrate, therefrom while simultaneously or subsequently raising the surface temperature of the substrate to a level allowing desired migration of adsorbed atoms thus migrating the surface atoms through thermal excitation and flattening the surface. These steps constitute one cycle and a layer less than one atomic layer is formed every cycle. This method allows digital growth at a growth unit of subatomic layer even if the saturated adsorption is less than single molecular layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一原子層以下のサブ
原子層単位で任意の層数の結晶薄膜を成長させることの
できる新しい結晶薄膜の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for producing a crystal thin film, which allows a crystal thin film having an arbitrary number of layers to be grown in units of subatomic layers of one atomic layer or less.

【0002】[0002]

【従来の技術とその課題】近年の電子素子、特に半導体
素子の開発においては、性能の向上と新しい機能の発現
を求めて、超格子素子または量子井戸素子などの原子層
単位で組性や原子種を制御した素子の開発が注目されて
おり、様々なアプローチによってそのための方策が検討
されている。このような素子を実現するためには、原子
層単位で結晶成長を制御する必要があるが、このような
成長制御を可能とする方法として、Suntraにより提案さ
れた原子層エピタキシー(ALE:Atomic Layer Epita
xy)法が知られている。この方法では、原理的に一原子
層単位で任意の層数を成長できるので、原子スケールで
結晶成長する方法としては理想的な方法として着目さ
れ、この方法に関連する技術の開発が盛んである。そし
て、近年、このALE法は III−V族半導体などの二元
化合物半導体の成長法として応用されている。具体的に
は、二元化合物半導体の二種の原子の一方をそれぞれ含
む二種の分子を用い、それぞれの分子を交互に基板に照
射する。二種の原子間結合力は同種間よりも異種間で強
く、照射される分子は下地に吸着している異種の分子と
反応しやすく、下地に吸着した同種の分子とは反応し難
い。このため、一方の原料分子を照射したときは、その
同種の分子またはその分解種が一層吸着して飽和する。
原料分子に含まれる不要分子は前記の吸着過程で離脱す
る。このような飽和吸着は自己停止機能と呼ばれる。こ
の機能によって、一原子層単位で結晶を成長することが
できる。従って、このALE法は二種以上の原子で構成
された化合物半導体の作製法に適している。
2. Description of the Related Art In recent years in the development of electronic devices, especially semiconductor devices, in order to improve performance and develop new functions, it is necessary to improve the performance of the atomic layer unit such as superlattice device or quantum well device. Attention has been focused on the development of seed-controlled devices, and various approaches have been taken to investigate the measures. In order to realize such a device, it is necessary to control the crystal growth on an atomic layer basis. As a method for enabling such growth control, the atomic layer epitaxy (ALE: Atomic Layer) proposed by Suntra is proposed. Epita
xy) method is known. With this method, in principle, any number of layers can be grown in units of one atomic layer, so this method is attracting attention as an ideal method for growing crystals on an atomic scale, and the development of technologies related to this method is active. . In recent years, the ALE method has been applied as a growth method for binary compound semiconductors such as III-V semiconductors. Specifically, two kinds of molecules each containing one of the two kinds of atoms of the binary compound semiconductor are used, and the molecules are alternately irradiated to the substrate. The bond strength between the two types of atoms is stronger between different types than between the same types, and the irradiated molecule easily reacts with different types of molecules adsorbed on the base, and does not easily react with the same types of molecules adsorbed on the base. Therefore, when one of the raw material molecules is irradiated, the molecule of the same kind or its decomposed species is further adsorbed and saturated.
Unwanted molecules contained in the raw material molecules are released during the adsorption process. Such saturated adsorption is called a self-stop function. With this function, crystals can be grown in units of one atomic layer. Therefore, this ALE method is suitable for a method of manufacturing a compound semiconductor composed of two or more kinds of atoms.

【0003】一方、近年、Si/GeなどのIV族系半導
体が、ヘテロ接合バイポーラトランジスタや変調ドープ
電界効果トランジスタなどの高速トランジスタや、歪超
格子光素子への応用が期待され、原子層単位の結晶成長
が必要とされてきている。しかしながら、単元素の材料
では化合物半導体のALE法に見られる交互吸着の原理
が使えないため、単分子層を得る一般原理はなく、単分
子層の飽和吸着量を得るのは難しい。このため、単元素
材料のALE法では、原料分子を照射する吸着過程で、
原料分子またはその分解種が単分子層の吸着量で飽和す
ることを期待するしかない。もちろん、その後、飽和吸
着した単分子層に含まれる不要な分子は、加熱による熱
励起、または光照射による光励起で離脱させるか、他の
反応分子をさらに照射してその分子と一緒に離脱する方
法が採用される。これによって、不要分子が離脱した後
は所望の原子が一層成長したことになる。従って、単元
素材料のALE法の一般的手順は、(1)原料分子の照
射、(2)不要分子の除去、というサイクルを繰り返し
て、各サイクル毎に理想的には単原子層成長させること
になる。そしてこれまで、IV族半導体のALE法に関す
る研究として、Ge(C2 5 2 2 、Ge(C
3 2 2 を用いたGeのALE法に関する研究やS
iH2 Cl2 を用いたSiのALE法に関する研究が進
められてきており、その過程において、飽和吸着量がお
よそ単分子層であるという自己停止機能の発現が報告さ
れている。すなわち、これらの原料分子を用いた研究で
はおよそ単原子層を単位としたALE成長が実現されて
いる。しかしながら、この方法ではCやClの不純物が
微量に残留すると言う問題があり、このような原料分子
は結晶の純度の点で問題が残る。
On the other hand, in recent years, group IV semiconductors such as Si / Ge are expected to be applied to high speed transistors such as heterojunction bipolar transistors and modulation-doped field effect transistors, and strained superlattice optical devices. Crystal growth has been needed. However, since the principle of alternate adsorption found in the ALE method for compound semiconductors cannot be used with a single element material, there is no general principle for obtaining a monolayer, and it is difficult to obtain the saturated adsorption amount of a monolayer. Therefore, in the ALE method of a single element material, in the adsorption process of irradiating raw material molecules,
We can only expect that the raw material molecules or their decomposition species will be saturated by the adsorption amount of the monolayer. Of course, after that, unnecessary molecules contained in the monolayer saturated and adsorbed are removed by thermal excitation by heating or photoexcitation by light irradiation, or by irradiating other reactive molecules with the molecules and releasing them together. Is adopted. As a result, the desired atom grows further after the unwanted molecule is released. Therefore, the general procedure of the ALE method for a single element material is to repeat the cycle of (1) irradiation of raw material molecules, (2) removal of unnecessary molecules, and ideally perform monoatomic layer growth in each cycle. become. So far, Ge (C 2 H 5 ) 2 H 2 and Ge (C
Research on Ge ALE method using H 3 ) 2 H 2 and S
Research on the ALE method of Si using iH 2 Cl 2 has been advanced, and in the process, it has been reported that the saturated adsorption amount is about a monolayer, which is a self-terminating function. That is, in the research using these raw material molecules, ALE growth has been realized in units of a monoatomic layer. However, this method has a problem that a trace amount of impurities such as C and Cl remain, and such a raw material molecule has a problem in terms of crystal purity.

【0004】そこで、この発明の発明者は、このような
不純物の問題のない水素化合物分子に初めて着目し、原
子レベルの解析の結果、Si2 6 が、SiのALEの
原料分子として適用できる可能性があることJ. Vac. Sc
i. Technol. B7, 1171(1989)で発表した。そ
の後、Si2 6 を含め数多く水素化合物分子を用いた
ALEの研究が行われているが、吸着量が飽和するもの
の、その飽和吸着量が単分子層未満であることが問題と
なっている。また、最近、GeH4 を用いた研究が報告
され、およそ単分子で飽和吸着することが示された。し
かしながら、その成長条件範囲が狭いなどの問題が残っ
ている。このように、水素化合物分子を用いた場合は、
その多くが飽和吸着現象を示すが、その飽和吸着量が単
分子層未満であるため、原子を平坦に積んでいくことが
難しく、このため、不純物原子を含まないという利点が
あるにも拘わらず、ALE法の確立が困難になってい
る。
Therefore, the inventor of the present invention first focused on a hydrogen compound molecule free from such a problem of impurities, and as a result of atomic level analysis, Si 2 H 6 can be applied as a raw material molecule of Si ALE. Potential J. Vac. Sc
i. Technol. B7, 1171 (1989). After that, research on ALE using a large number of hydrogen compound molecules including Si 2 H 6 has been conducted. However, although the adsorption amount is saturated, the saturated adsorption amount is less than a monolayer, which is a problem. . In addition, recently, a study using GeH 4 has been reported, and it was shown that saturated adsorption occurs in about a single molecule. However, there still remain problems such as a narrow range of growth conditions. Thus, when a hydrogen compound molecule is used,
Most of them show a saturated adsorption phenomenon, but since the saturated adsorption amount is less than a monolayer, it is difficult to stack atoms flatly. Therefore, despite the advantage that impurity atoms are not included, , It is difficult to establish the ALE method.

【0005】この発明は、以上の通りの従来技術の状況
に鑑みてなされたものであって、飽和吸着量が単分子層
未満であってもその量(サブ原子層)を成長単位とし
て、ディジタル成長することのできる、新しいサブ原子
層単位で制御した結晶薄膜の製造方法を提供することを
目的としている。
The present invention has been made in view of the situation of the prior art as described above, and even if the saturated adsorption amount is less than a monomolecular layer, the amount (sub-atomic layer) is used as a growth unit for a digital unit. It is an object of the present invention to provide a new method of manufacturing a crystal thin film that can be grown and is controlled in units of sub atomic layers.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、基板上に原料分子の少くとも一
部を吸着させる第一工程と、吸着しなかった残留分子を
排気する第二工程と、表面励起の手段により基板表面に
吸着した分子または原子のうちの不要な分子または原子
を基板表面から離脱させ、同時にまたは引き続いて、基
板表面の温度を所望の吸着原子が移動できる温度に高め
て熱励起して表面原子を移動させ、表面を平坦化する第
三の工程とが包含される複数の工程を1サイクルとし、
各サイクル毎に一原子層以下の層数を形成することを特
徴とするサブ原子層単位で制御した結晶薄膜の製造法を
提供する。
In order to solve the above problems, the present invention provides a first step of adsorbing at least a part of raw material molecules on a substrate, and exhausting residual molecules that have not been adsorbed. In two steps, unnecessary molecules or atoms of the molecules or atoms adsorbed on the substrate surface by means of surface excitation are released from the substrate surface, and at the same time or subsequently, the temperature of the substrate surface is a temperature at which the desired adsorbed atoms can move. A plurality of steps including a third step of planarizing the surface by thermally exciting the surface atoms to move the surface atoms,
Provided is a method for producing a crystalline thin film controlled in sub atomic layer units, which is characterized in that the number of layers of one atomic layer or less is formed in each cycle.

【0007】[0007]

【作用】すなわち、この発明に係わる結晶薄膜の製造法
について詳しく説明すると、上記の通り、まず(A)第
一工程としては、結晶薄膜を形成する基板上に原料分子
を一定量照射し、各原料分子の少なくとも一部を前記基
板上に吸着させる。(B)第二工程としては、吸着しな
かった残留分子を排気する。そして(C)第三工程とし
ては、たとえば熱励起などの表面励起の手段を用いて、
基板表面に吸着した分子または原子のうち、不要な分子
または原子を基板表面から離脱させ、かつ同時にまたは
引き続いて、基板表面の温度を所望の吸着原子が移動で
きる温度に高め、前記基板表面を一定時間、より好適に
は1msec以上の時間熱励起し、表面原子の移動によ
って表面を平坦化する。このような(A)(B)(C)
の三つの工程を包含する複数の工程を1サイクルとし、
各サイクル毎に一原子層以下の層数を形成する。
That is, the method for producing a crystal thin film according to the present invention will be described in detail. As described above, in the first step (A), a substrate on which the crystal thin film is formed is irradiated with a certain amount of raw material molecules, At least a part of the raw material molecules is adsorbed on the substrate. (B) In the second step, residual molecules that have not been adsorbed are exhausted. Then, as the (C) third step, for example, by means of surface excitation such as thermal excitation,
Of the molecules or atoms adsorbed on the substrate surface, unnecessary molecules or atoms are released from the substrate surface, and at the same time or subsequently, the temperature of the substrate surface is raised to a temperature at which the desired adsorbed atoms can move, and the substrate surface is kept constant. Thermal excitation is performed for a time, more preferably 1 msec or more, and the surface is flattened by the movement of surface atoms. Such (A) (B) (C)
Multiple steps including the three steps of
The number of layers of one atomic layer or less is formed in each cycle.

【0008】この場合、(C)第三の工程では、必ず加
熱による熱励起が含まれることが重要である。この熱励
起によって表面原子を移動させるからである。たとえ
ば、飽和吸着量が0.5原子層である場合、完全に平坦
な表面に第一工程で吸着させると、0.5原子層分の原
料分子が吸着する。第三工程で熱励起すると、不要原子
が離脱し、かつ、吸着原子が移動して集まり広いテラス
ができる。テラスの量は0.5原子層分に相当し、ま
だ、0.5原子層分の埋まっていないサイトができる。
次の第二サイクルの第一工程では原料分子がテラスの上
か第一サイクルで埋まっていない0.5原子層分のサイ
トに吸着する。第二サイクルの第三工程では、主に第二
サイクルでばらばらに吸着している原子が移動し、テラ
ス上の原子はテラスの上を移動し、テラスの端から落ち
て埋まっていないサイトに吸着する。このようにして熱
励起による原子の移動で最表面が平坦化され、飽和吸着
量が0.5原子層である場合は、2サイクルで平坦化さ
れた1原子層が成長する。
In this case, it is important that the third step (C) always includes thermal excitation by heating. This is because the surface atoms are moved by this thermal excitation. For example, when the saturated adsorption amount is 0.5 atomic layer, when the adsorption is performed on the completely flat surface in the first step, 0.5 atomic layer of the raw material molecules are adsorbed. When thermally excited in the third step, unnecessary atoms are released and adsorbed atoms move and gather to form a large terrace. The amount of terraces corresponds to 0.5 atomic layer, and there are still 0.5 atomic layer of unfilled sites.
In the following first step of the second cycle, the raw material molecules are adsorbed on the terrace or on the site of 0.5 atomic layer which is not filled in the first cycle. In the third step of the second cycle, atoms that are adsorbed in pieces in the second cycle mainly move, atoms on the terrace move on the terrace, and they fall from the edge of the terrace and are adsorbed on unfilled sites. To do. In this way, the outermost surface is flattened by the movement of atoms by thermal excitation, and when the saturated adsorption amount is 0.5 atomic layer, the flattened 1 atomic layer grows in two cycles.

【0009】このように平坦化する機構は基板にSi
(100)面、原料分子にSi2 6を用いた系でこの
発明の発明者によって実現された。反射型電子線回折に
より表面原子の周期を観察した結果、熱励起によって不
要原子である水素の離脱と同時に表面が平坦化できるこ
とを見いだした。具体的にはSi2 6 の飽和吸着量は
およそ0.45原子層であり、およそ2サイクルで1原
子層が成長する。
The mechanism for flattening as described above is based on Si on the substrate.
The (100) plane was realized by the inventor of the present invention in a system using Si 2 H 6 as a raw material molecule. As a result of observing the period of surface atoms by reflection electron diffraction, it was found that the surface can be planarized at the same time when hydrogen, which is an unnecessary atom, is released by thermal excitation. Specifically, the saturated adsorption amount of Si 2 H 6 is about 0.45 atomic layer, and one atomic layer grows in about 2 cycles.

【0010】この発明では、このように表面の熱励起に
よって表面原子を泳動させることが重要であり、不要な
分子を光励起または電子線励起等で離脱させる場合は、
光照射または電子線照射等によって同時にまたは引き続
いて表面を加熱するか、第二の励起手段で同時にまたは
引き続いて表面を熱励起する必要がある。第一工程の飽
和吸着過程の表面温度は第三工程の表面温度よりも低い
温度で実施する。従って、吸着過程に適切な表面温度に
達してから第一工程を実施する場合は第四工程として表
面温度を制御する期間を設ける必要がある。熱励起で表
面原子を泳動させるためには表面近傍のみ励起されれば
よい。表面のみを効率的に励起するためには光や電子線
を表面に照射すればよい。特に、波長の短い光は吸収係
数が大きく、特に1μm以下の光は表面近傍で吸収さ
れ、表面近傍を加熱するのに適している。また、第三工
程で不要原子を離脱し、表面原子を泳動させるためには
適切な励起エネルギーを表面に与えて1msec以上の
時間励起を続けることが必要である。このためには、連
続発振できるレーザーなどを用い、照射時間を適切に調
整すればよい。光照射で加熱するには大きな光出力が必
要であり、この点でも、レーザーが適している。特にイ
オンレーザーは、大きな光出力を得ることが可能であ
り、連続発振で、かつ光波長も1μm以下であるため、
表面の熱励起に最適である。そしてまた、発明に拠れ
ば、飽和吸着量が単分子層未満でも、広い範囲の条件で
一定の飽和吸着量が得られれば、自己停止機能が同じ広
い範囲の条件で得られることになる。
In the present invention, it is important to migrate surface atoms by thermal excitation of the surface as described above, and when unnecessary molecules are released by photoexcitation or electron beam excitation,
It is necessary to simultaneously or subsequently heat the surface by light irradiation or electron beam irradiation, or to thermally excite the surface simultaneously or subsequently by the second excitation means. The surface temperature of the saturated adsorption process of the first step is lower than the surface temperature of the third step. Therefore, when the first step is performed after the surface temperature reaches an appropriate level in the adsorption process, it is necessary to provide a period for controlling the surface temperature as the fourth step. In order to migrate the surface atoms by thermal excitation, only the vicinity of the surface needs to be excited. In order to efficiently excite only the surface, the surface may be irradiated with light or an electron beam. In particular, light having a short wavelength has a large absorption coefficient, and particularly light having a wavelength of 1 μm or less is absorbed in the vicinity of the surface and is suitable for heating the vicinity of the surface. Further, in the third step, in order to remove unnecessary atoms and migrate surface atoms, it is necessary to apply appropriate excitation energy to the surface and continue excitation for 1 msec or more. For this purpose, a laser capable of continuous oscillation may be used and the irradiation time may be adjusted appropriately. A large light output is required for heating by light irradiation, and a laser is also suitable in this respect. In particular, an ion laser can obtain a large optical output, is continuous oscillation, and has a light wavelength of 1 μm or less.
Optimal for thermal excitation of the surface. Further, according to the invention, even if the saturated adsorption amount is less than the monolayer, if the constant saturated adsorption amount is obtained in a wide range of conditions, the self-stop function can be obtained in the same wide range of conditions.

【0011】以下、実施例を示し、さらに詳しくこの発
明の方法について説明する。
Examples will be shown below to describe the method of the present invention in more detail.

【0012】[0012]

【実施例】添付した図面の図1は、この発明の製造法に
用いた装置例を示したものである。この装置において、
Si(100)面を表面に持つ試料(1)を真空容器
(2)の中央に取付ける。真空容器(2)は常に排気ポ
ンプ(3)で排気される。第二工程の表面励起には、A
+ イオンレーザー(4)を用いた。出力光の主波長の
範囲は458〜515nmであり、この光を真空用の窓
(5)を通して試料(1)表面に照射する。原料分子に
はジシラン(Si2 6 )を用いた。ボンベ(6)を出
たジシランは減圧弁(7)でその圧力が制御され、ノズ
ル(8)から試料表面に照射される。ジシランを照射す
るか照射しないかはon/offバルブ(9)で制御し
た。サブ原子層結晶成長の手順は、(1)原料分子の照
射10秒(第一工程)、(2)不要ガスの排気10秒
(第二工程)、(3)レーザー照射10秒(第三工
程)、(4)冷却10秒(第四工程)、である。ただ
し、第一工程の照射過程での表面温度が300℃になる
ように、ヒータ(10)で常時試料を加熱した。また、
第三工程では表面温度が700℃になるようにレーザー
を照射した。第三工程での表面温度の設定値の理由につ
いては後述する。図2のaに840サイクル繰り返した
ときの膜厚分布を示す。図2のbに、比較のため、レー
ザーと原料分子を連続照射して成長した膜の膜厚分布を
示す。どちらの分布もピークの膜厚で規格化している。
bの分布はレーザーのパワー密度の分布に比例してお
り、ガウス分布の形をしている。aの分布には平坦な部
分があり、一定の飽和吸着量に飽和したための自己停止
機能が働いているのがわかる。平坦な部分の成長速度は
0.45原子層/サイクルであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 of the accompanying drawings shows an example of an apparatus used in the manufacturing method of the present invention. In this device,
A sample (1) having a Si (100) surface on its surface is attached to the center of a vacuum container (2). The vacuum container (2) is constantly evacuated by the exhaust pump (3). For surface excitation in the second step, A
An r + ion laser (4) was used. The main wavelength range of the output light is 458 to 515 nm, and this light is applied to the surface of the sample (1) through the vacuum window (5). Disilane (Si 2 H 6 ) was used as the raw material molecule. The pressure of the disilane discharged from the cylinder (6) is controlled by the pressure reducing valve (7), and the sample surface is irradiated with the disilane through the nozzle (8). Whether the disilane was irradiated or not was controlled by the on / off valve (9). The sub atomic layer crystal growth procedure is as follows: (1) irradiation of raw material molecules for 10 seconds (first step), (2) exhaust of unnecessary gas for 10 seconds (second step), (3) laser irradiation for 10 seconds (third step). ), (4) 10 seconds of cooling (4th process). However, the sample was constantly heated by the heater (10) so that the surface temperature in the irradiation process of the first step was 300 ° C. Also,
In the third step, laser irradiation was performed so that the surface temperature became 700 ° C. The reason for the set value of the surface temperature in the third step will be described later. FIG. 2A shows the film thickness distribution when 840 cycles are repeated. For comparison, FIG. 2B shows a film thickness distribution of a film grown by continuously irradiating a laser and raw material molecules. Both distributions are normalized by the peak film thickness.
The distribution of b is proportional to the distribution of the power density of the laser, and has a Gaussian distribution. There is a flat portion in the distribution of a, and it can be seen that the self-stop function works because it is saturated to a certain saturated adsorption amount. The growth rate of the flat portion was 0.45 atomic layer / cycle.

【0013】この実験に先だって、反射型高速電子線回
折と言う表面の周期構造を観察する方法でサブ原子層結
晶成長の過程を観察した。その結果、(1)飽和吸着面
を次第に高い温度で加熱していくと、700℃で水素が
離脱し、原子がテラス状に集合できるのがわかった。ま
た、(2)2サイクルでおよそ1原子層成長できるのが
わかった。この結果は、(ア)飽和吸着量がおよそ0.
5原子層であること、(イ)原子を表面泳動できるこ
と、(ウ)表面泳動の結果、飽和吸着量がおよそ0.5
原子層であっても、2サイクルで表面を平坦化できるこ
と、というこの発明の原理を具体的に示している。レー
ザーを用いたサブ原子層結晶成長の実験では、この発明
に基づいて、第三の工程での表面温度が700℃になる
ようにレーザーを照射した。この発明による実験結果で
も、1サイクルおよそ0.5原子層成長するという結果
が得られ、一定の飽和吸着量を840回繰り返したこと
がわかる。即ち、表面泳動による平坦化機能が働いたこ
とがわかる。
Prior to this experiment, the process of subatomic layer crystal growth was observed by a method of observing the periodic structure of the surface called reflection type high-energy electron diffraction. As a result, it was found that (1) when the saturated adsorption surface was heated at a gradually higher temperature, hydrogen was released at 700 ° C., and the atoms could gather in a terrace shape. It was also found that (2) approximately 1 atomic layer can be grown in 2 cycles. This result shows that (a) the saturated adsorption amount is about 0.
As a result of the 5 atomic layer, (a) the surface migration of the atoms, and (c) the surface migration, the saturated adsorption amount is about 0.5.
It shows concretely the principle of the present invention that the surface can be planarized in two cycles even with an atomic layer. In the experiment of sub-atomic layer crystal growth using a laser, the laser was irradiated such that the surface temperature in the third step was 700 ° C. based on the present invention. The experimental results according to the present invention also show that the growth of about 0.5 atomic layer per cycle is obtained, and it can be seen that the constant saturated adsorption amount was repeated 840 times. That is, it can be seen that the flattening function by surface migration worked.

【0014】[0014]

【発明の効果】この発明では、飽和吸着量が単原子層の
分数次に相当する量である場合、すなわち、飽和吸着量
が1/n原子層に相当する場合、その逆数のnサイクル
で単原子層成長する。従って、単原子層単位で結晶成長
を制御できるばかりでなく、この場合は、分数次層を単
位とするディジタル成長ができる。一般に飽和吸着量が
サブ原子層であれば、サブ原子層を単位とするディジタ
ル成長ができる。たとえば、飽和吸着量が0.3原子層
に相当する場合、3サイクルで0.9原子層成長し、次
の6サイクルで1.8原子層成長する。この場合は、単
原子層単位で成長できないが、単原子層に近い量を単位
として結晶成長ができ、原子層スケール成長への応用が
可能となる。このように、従来、飽和吸着量が単原子層
未満であったために、平坦に原子を積層することが不可
能であった系に対しても、原子層スケール結晶成長への
道が開かれたことになる。また、同時に、発振波長が6
00nm以下のAr+ イオンレーザーを用いたとき、発
明の概要で述べたように、最適に表面の熱励起が行われ
るが、発振光のビーム半径を光学的に絞れるため、狭い
範囲を選択的に描画し、微細な選択成長が可能である。
このため、従来は非常に困難であった、図3のような構
造の新しい超格子素子の作製も可能となる。このように
本発明によって、原子層スケール結晶薄膜成長技術の適
用範囲が広がる。
According to the present invention, when the saturated adsorption amount is an amount corresponding to the fractional degree of the monoatomic layer, that is, when the saturated adsorption amount corresponds to 1 / n atomic layer, the reciprocal of n cycles is used. Atomic layer grows. Therefore, not only the crystal growth can be controlled in the unit of a single atomic layer, but in this case, the digital growth can be performed in the unit of the fractional order layer. Generally, if the saturated adsorption amount is a sub-atomic layer, digital growth can be performed with the sub-atomic layer as a unit. For example, when the saturated adsorption amount corresponds to 0.3 atomic layer, 0.9 atomic layer is grown in 3 cycles, and 1.8 atomic layer is grown in the next 6 cycles. In this case, it is not possible to grow in a unit of a single atomic layer, but crystal growth can be performed in a unit close to the amount of a single atomic layer, and application to atomic layer scale growth becomes possible. In this way, even for systems where it was conventionally impossible to stack atoms flatly because the saturated adsorption amount was less than a monoatomic layer, the path to atomic layer scale crystal growth was opened. It will be. At the same time, the oscillation wavelength is 6
When an Ar + ion laser of 00 nm or less is used, thermal excitation of the surface is optimally performed as described in the summary of the invention, but the beam radius of the oscillation light can be optically narrowed, so that a narrow range can be selectively selected. It is possible to draw and finely grow selectively.
Therefore, it is possible to fabricate a new superlattice element having a structure as shown in FIG. 3, which was very difficult in the past. As described above, according to the present invention, the applicable range of the atomic layer scale crystal thin film growth technique is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に使用した装置の構成例を示した概要図
である。
FIG. 1 is a schematic diagram showing a configuration example of an apparatus used in an example.

【図2】実施例としての膜厚分布図である。FIG. 2 is a film thickness distribution diagram as an example.

【図3】この発明による超格子素子を例示した斜視図で
ある。
FIG. 3 is a perspective view illustrating a superlattice element according to the present invention.

【符号の説明】[Explanation of symbols]

1 試料 2 真空容器 3 排気ポンプ 4 Ar+ イオンレーザー 5 窓 6 ボンベ 7 減圧弁 8 バルブ 9 ノズル 10 ヒータ1 sample 2 vacuum container 3 exhaust pump 4 Ar + ion laser 5 window 6 cylinder 7 pressure reducing valve 8 valve 9 nozzle 10 heater

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に原料分子の少なくとも一部を吸
着させる第一工程と、吸着しなかった残留分子を排気す
る第二工程と、表面励起の手段により基板表面に吸着し
た分子または原子のうちの不要な分子または原子を基板
表面から離脱させ、同時にまたは引き続いて、基板表面
の温度を所望の吸着原子が移動できる温度に高めて熱励
起して表面原子を移動させ、表面を平坦化する第三の工
程とが包含される複数の工程を1サイクルとし、各サイ
クル毎に一原子層以下の層数を形成することを特徴とす
るサブ原子層単位で制御した結晶薄膜の製造法。
1. A first step of adsorbing at least a part of raw material molecules on a substrate, a second step of exhausting unadsorbed residual molecules, and a step of adsorbing molecules or atoms adsorbed on the substrate surface by means of surface excitation. Unnecessary molecules or atoms are detached from the substrate surface, and simultaneously or subsequently, the temperature of the substrate surface is raised to a temperature at which desired adsorbed atoms can move and thermally excited to move the surface atoms to flatten the surface. A method for producing a crystal thin film controlled in sub-atomic layer units, wherein a plurality of steps including the third step are defined as one cycle, and the number of layers of one atomic layer or less is formed in each cycle.
【請求項2】 基板温度を下げる第四の工程を加える請
求項1の結晶薄膜の製造法。
2. The method for producing a crystalline thin film according to claim 1, wherein a fourth step of lowering the substrate temperature is added.
【請求項3】 励起手段として波長が1μm以下の光を
用いる請求項1または2の結晶薄膜の製造法。
3. The method for producing a crystal thin film according to claim 1, wherein light having a wavelength of 1 μm or less is used as the excitation means.
【請求項4】 励起手段として連続出力するレーザーを
用いる請求項1または2の結晶薄膜の製造法。
4. The method for producing a crystalline thin film according to claim 1, wherein a laser that continuously outputs is used as the exciting means.
【請求項5】 励起手段として電子線を用いる請求項1
または2の結晶薄膜の製造法。
5. An electron beam is used as the excitation means.
Alternatively, the method for producing a crystalline thin film according to item 2.
【請求項6】 原料分子にシラン(SiH4 )、ジシラ
ン(Si2 6 )、ゲルマン(GeH4 )を用いる請求
項1、2、3、4または5の結晶薄膜の製造法。
6. The method for producing a crystal thin film according to claim 1, wherein silane (SiH 4 ), disilane (Si 2 H 6 ), germane (GeH 4 ) is used as a raw material molecule.
JP15567193A 1993-06-25 1993-06-25 Formation of thin crystal film controlled at unit of subatomic layer Pending JPH0714784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15567193A JPH0714784A (en) 1993-06-25 1993-06-25 Formation of thin crystal film controlled at unit of subatomic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15567193A JPH0714784A (en) 1993-06-25 1993-06-25 Formation of thin crystal film controlled at unit of subatomic layer

Publications (1)

Publication Number Publication Date
JPH0714784A true JPH0714784A (en) 1995-01-17

Family

ID=15611044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15567193A Pending JPH0714784A (en) 1993-06-25 1993-06-25 Formation of thin crystal film controlled at unit of subatomic layer

Country Status (1)

Country Link
JP (1) JPH0714784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853598B4 (en) * 1998-08-07 2013-04-18 Samsung Electronics Co., Ltd. Thin Film Production Process with Atomic Layer Deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853598B4 (en) * 1998-08-07 2013-04-18 Samsung Electronics Co., Ltd. Thin Film Production Process with Atomic Layer Deposition

Similar Documents

Publication Publication Date Title
US5830538A (en) Method to form a polycrystalline film on a substrate
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
JPH0360171B2 (en)
JPH09102596A (en) Manufacture of quantum dot and quantum dot apparatus
US4877650A (en) Method for forming deposited film
Greene et al. The role of ion/surface interactions and photo-induced reactions during film growth from the vapor phase
JPH0714784A (en) Formation of thin crystal film controlled at unit of subatomic layer
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
JP4014700B2 (en) Crystal thin film manufacturing method
JPH05238880A (en) Method for epitaxial growth
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JP3182584B2 (en) Compound thin film forming method
JP2014009115A (en) Substrate manufacturing method
JPH04207020A (en) Device and method for manufacturing semiconductor
JPH0431391A (en) Epitaxial growth
JPS62150708A (en) Formation of surface optically pumped thin film
JPH03252392A (en) Molecular ray epitaxial growth of semiconductor
Yoshimoto et al. In-situ reflection high-energy electron diffraction observation of laser-triggered GaP growth in chemical beam epitaxy
JP2577543B2 (en) Single crystal thin film growth equipment
JP2005532180A (en) Metallic nanoobjects formed on a semiconductor surface and method for producing such nanoobjects
JPS62138390A (en) Molecular beam epitaxy
JPH04273120A (en) Region-selective crystal growth method
JPH0677184A (en) Etching method of semiconductor atomic layer
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JPH08139015A (en) Germanium thin film growth method