JPH07147454A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPH07147454A
JPH07147454A JP29630793A JP29630793A JPH07147454A JP H07147454 A JPH07147454 A JP H07147454A JP 29630793 A JP29630793 A JP 29630793A JP 29630793 A JP29630793 A JP 29630793A JP H07147454 A JPH07147454 A JP H07147454A
Authority
JP
Japan
Prior art keywords
strain
quantum well
layer
well
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29630793A
Other languages
Japanese (ja)
Inventor
Satohiko Oka
聡彦 岡
Akio Oishi
昭夫 大石
Yuichi Ono
佑一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29630793A priority Critical patent/JPH07147454A/en
Publication of JPH07147454A publication Critical patent/JPH07147454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve characteristic such as realization of a low threshold value of a semiconductor element by making the strain amount of a strain quantum well uniform. CONSTITUTION:The lattice constant difference of strain quantum wells 4, 5, 6, 7, 8 constituting a strain multiquantum well active layer 10 to a strain-free n-InP substrate 1 is made larger in the strain quantum wells 5, 6, 7 positioned inside compared to the strain quantum wells 4, 8 which are closest to a p-InP clad layer 12. Since relaxation of the strain of the strain quantum wells 4, 5, 6, 7, 8 positioned inside a multiple strain quantum well can be thereby ensured, the strain amount can be maximized in a range of a critical film thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多重歪量子井戸構造を
有する半導体レーザや、その他の半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser having a multiple strain quantum well structure and other semiconductor devices.

【0002】[0002]

【従来の技術】従来、半導体レーザの活性層を量子井戸
構造にすることにより、バルクの活性層に比べて低しき
い値,狭スペクトル線幅,高出力など多くの特性の改善
がなされている。また、最近ではこの量子井戸に基板の
格子定数と異なる材料を用いて量子井戸を歪ませるこ
と、すなわち、歪量子井戸を導入することにより、これ
らの特性がさらに改善されることが、理論的にも実験的
にも示されている。圧縮歪により低しきい値,狭スペク
トル線幅の特性が得られた量子井戸レーザの一例とし
て、エレクトロニクス レターズ(Electron.Lett.)2
7,1628(1991)が挙げられる。
2. Description of the Related Art Conventionally, by forming a quantum well structure in an active layer of a semiconductor laser, many characteristics such as low threshold, narrow spectral line width, and high output have been improved as compared with a bulk active layer. . Recently, it is theoretically possible to further improve these characteristics by distorting the quantum well by using a material different from the lattice constant of the substrate for the quantum well, that is, by introducing a strained quantum well. Is also shown experimentally. As an example of a quantum well laser that has characteristics of a low threshold and a narrow spectral line width due to compressive strain, an electronic letter (Electron. Lett.) 2
7, 1628 (1991).

【0003】[0003]

【発明が解決しようとする課題】上記特性改善は歪によ
って量子井戸層のバンド構造が変化することに起因して
いる。具体的にいえば、歪応力により、量子井戸を形成
する半導体結晶の価電子帯におけるヘビーホールとライ
トホールの分離の増大や、ホール有効質量の減少等のバ
ンド構造変化が生じた結果として、微分利得向上,オー
ジェ再結合や価電子帯間吸収による損失低減等の効果が
得られたためと考えられている。
The above characteristic improvement is caused by the change in the band structure of the quantum well layer due to strain. Specifically, strain stress causes an increase in separation of heavy holes and light holes in the valence band of a semiconductor crystal forming a quantum well, and a change in band structure such as a decrease in hole effective mass. It is thought that this was because the gain enhancement, Auger recombination, and loss reduction due to absorption between valence bands were obtained.

【0004】しかし、このような歪の効果を得るには、
1%以上の大きな歪量が必要である。歪量の増加に伴い
臨界膜厚が減少するため、結晶成長の制御性や、デバイ
ス設計の面で実用的な量子井戸幅の制約により、歪量は
制限される。また、多重歪量子井戸を、格子定数差がf
で、膜厚がh1,h2、剛性率がG1 ,G2 、格子定数が
1,a2の2種の薄膜が交互に積層された歪超格子と考
えると、この歪超格子の界面に平行な方向の格子定数a
は、数1,数2で与えられ、歪超格子の格子定数aは、
1とa2の中間の値を取る。
However, in order to obtain such a distortion effect,
A large strain amount of 1% or more is required. Since the critical film thickness decreases as the amount of strain increases, the amount of strain is limited by the controllability of crystal growth and the quantum well width constraint practical in terms of device design. In addition, the multi-strained quantum well has a lattice constant difference of f
In the case of a strained superlattice in which two types of thin films having film thicknesses h 1 and h 2 , rigidity factors G 1 and G 2 and lattice constants a 1 and a 2 are alternately laminated, Lattice constant a in the direction parallel to the interface of
Is given by Equations 1 and 2, and the lattice constant a of the strained superlattice is
Take an intermediate value between a 1 and a 2 .

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【数2】 [Equation 2]

【0007】従って、格子定数がa1のバリア層と、格
子定数がa2の井戸層から成る多重歪量子井戸が、バリ
ア層と同じ格子定数a1 の基板とクラッド層で挟まれた
構造において、井戸層の歪量は、基板あるいはクラッド
層と接する外側の井戸層では、|a2−a1|/a1であ
るが、多重歪量子井戸の中央では、|a2−a|/aと
なり、外側の井戸層に比べ小さくなる。つまり、この多
重歪量子井戸全体の歪量は、中央部に位置する量子井戸
層の歪量の緩和によって、格子定数差から予測される歪
量|a2−a1|/a1 より小さくなり、また、各井戸層
の歪量も不均一である。このため、発光スペクトル幅が
拡がるだけでなく、予測される歪の効果が十分に得られ
ないという問題があった。
Accordingly, a lattice constant of a 1 barrier layer, multiple strained quantum well lattice constant is made from the well layer of a 2 is, in interposed at the substrate and the cladding layer of identical lattice constants a 1 and a barrier layer , strain of the well layer, outside of the well layer in contact with the substrate or the cladding layer, | a 2 -a 1 | / a 1 a but, at the center of the multiple strained quantum well, | a 2 -a | / a Becomes smaller than the outer well layer. That is, the strain amount of the entire multi-strained quantum well becomes smaller than the strain amount | a 2 −a 1 | / a 1 predicted from the lattice constant difference due to the relaxation of the strain amount of the quantum well layer located in the central portion. Moreover, the strain amount of each well layer is also non-uniform. Therefore, there is a problem that not only the emission spectrum width is widened but also the expected effect of distortion cannot be obtained sufficiently.

【0008】本発明の目的は、多重歪量子井戸の各歪量
を均一にすることにより、臨界膜厚を一定に保ったま
ま、多重歪量子井戸の歪量を増加させ、多重歪量子井戸
を備えた半導体レーザや、受光素子などの半導体デバイ
スの特性の向上を図ることにある。
An object of the present invention is to increase the strain amount of the multi-strain quantum well while keeping the critical film thickness constant by making each strain amount of the multi-strain quantum well uniform. It is intended to improve the characteristics of the semiconductor laser provided, a semiconductor device such as a light receiving element, and the like.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
に、本発明は基板との格子定数差に関して、基板に最も
近接した井戸層よりも、これより基板から離れた井戸層
の方を大きくすることにより、各井戸層の歪量が一定に
なるような多重歪量子井戸構造とする。また、上記のよ
うに、クラッド層の格子定数が基板と同じ場合は、基板
との格子定数差は、クラッド層に最も近接した井戸層よ
りも、これよりクラッド層から離れた井戸層の方を大き
くとる。つまり、多重歪量子井戸の中央部の井戸層の方
を、外側の井戸層よりも、基板との格子定数差を大きく
することにより、各井戸層の歪量を均一化する。
In order to solve the above-mentioned problems, the present invention makes the well layer farther from the substrate larger than the well layer closest to the substrate with respect to the difference in lattice constant from the substrate. By doing so, the multi-strained quantum well structure is formed so that the strain amount of each well layer becomes constant. In addition, as described above, when the lattice constant of the clad layer is the same as that of the substrate, the lattice constant difference between the substrate and the well layer closest to the clad layer is larger than that of the well layer closest to the clad layer. Take big. That is, by making the central well layer of the multi-strained quantum well have a larger lattice constant difference from the substrate than the outer well layer, the strain amount of each well layer is made uniform.

【0010】以上のように各井戸層の格子定数を変える
ことは、InGaAsP系などの混晶半導体では、組成
を変えることによって行うが、この時、各井戸層の発光
遷移波長が等しくなるような組成とする。
As described above, the lattice constant of each well layer is changed by changing the composition of a mixed crystal semiconductor such as InGaAsP, but at this time, the emission transition wavelength of each well layer becomes equal. The composition.

【0011】[0011]

【作用】本発明によれば、多重歪量子井戸の各井戸層の
歪量が均一であるので、基板との格子定数差が一定の井
戸層から成る従来の多重歪量子井戸におけるような、中
央部の量子井戸の歪量の低下がない。このため、従来よ
り、多重歪量子井戸全体の歪量を大きくすることが可能
である。
According to the present invention, since the amount of strain in each well layer of the multi-strained quantum well is uniform, the center of the well-like multi-strained quantum well, which is composed of well layers having a constant lattice constant difference from the substrate, is used. There is no reduction in the amount of strain in the quantum wells of the part. Therefore, it is possible to increase the strain amount of the entire multi-strain quantum well as compared with the related art.

【0012】[0012]

【実施例】図1は、本発明の実施例を示す発振波長1.
3μm 帯半導体レーザの断面図である。本発明の特徴
は、n−InP基板1上に形成された多重歪量子井戸活
性層10の構造にある。多重歪量子井戸活性層10は、
n−InP基板1に最も近接した第一のInGaAsP
歪量子井戸4から、p−InPクラッド層12に最も近
接した第五のInGaAsP歪量子井戸8までの5個の
圧縮歪量子井戸(層厚はそれぞれ6nm)と、層厚10
nm,組成波長1.1μm のInGaAsP障壁層9
が、交互に積層された構造になっている。なお、InG
aAsP障壁層9は、n−InP基板1と、格子整合し
ている。
EXAMPLE FIG. 1 shows an oscillation wavelength of 1. Example of the present invention.
It is a sectional view of a 3 μm band semiconductor laser. The feature of the present invention resides in the structure of the multi-strained quantum well active layer 10 formed on the n-InP substrate 1. The multi-strained quantum well active layer 10 is
The first InGaAsP closest to the n-InP substrate 1
Five compressive strain quantum wells (each having a layer thickness of 6 nm) from the strain quantum well 4 to the fifth InGaAsP strain quantum well 8 closest to the p-InP cladding layer 12 and a layer thickness 10
nm, composition wavelength 1.1 μm InGaAsP barrier layer 9
However, it has a structure in which they are alternately laminated. InG
The aAsP barrier layer 9 is lattice-matched with the n-InP substrate 1.

【0013】上記5個の歪量子井戸は、圧縮歪であるた
め、n−InP基板1より、格子定数が大きく、その格
子定数差は、第一及び第五の歪量子井戸4及び8が1.
5%,第二及び第四の歪量子井戸5及び7が1.8%,
第三の歪量子井戸6が2.1%としている。このように
活性層の中央部に位置する歪量子井戸5及び6及び7
を、n−InP基板1または、p−InPクラッド層1
2に近接する歪量子井戸4及び8より格子定数差を大き
くすることにより、各歪量子井戸の歪量が約1.5%に
均一化させている。
Since the five strained quantum wells have compressive strain, the lattice constant is larger than that of the n-InP substrate 1, and the lattice constant difference is 1 in the first and fifth strained quantum wells 4 and 8. .
5%, the second and fourth strained quantum wells 5 and 7 are 1.8%,
The third strain quantum well 6 is set to 2.1%. Thus, the strained quantum wells 5 and 6 and 7 located in the central portion of the active layer are
The n-InP substrate 1 or the p-InP clad layer 1
The strain amount of each strained quantum well is made uniform to about 1.5% by making the lattice constant difference larger than that of the strained quantum wells 4 and 8 which are close to 2.

【0014】以上の特徴を有する半導体レーザの発振し
きい電流密度を測定したところ、格子定数差がすべて
1.5% の5個の歪量子井戸を有する半導体レーザに比
べ、30%程度低減されていることが判明し、本発明の
有効性を確認した。
When the oscillation threshold current density of the semiconductor laser having the above characteristics is measured, it is reduced by about 30% as compared with the semiconductor laser having five strained quantum wells in which the lattice constant differences are all 1.5%. Therefore, the effectiveness of the present invention was confirmed.

【0015】この実施例では、各歪量子井戸の格子定数
差分布が、図2に示すように、活性層10の中央に近い
ところに位置する歪量子井戸に向かって、段々に大きく
なっているが、図3に示すように、活性層の中央部に位
置する歪量子井戸5及び6及び7が一定であってもよ
い。また、いずれの実施例においても、各歪量子井戸の
発光遷移波長が1.3μm になるように、組成を設定し
ている。
In this embodiment, the lattice constant difference distribution of each strained quantum well gradually increases toward the strained quantum well located near the center of the active layer 10, as shown in FIG. However, as shown in FIG. 3, the strained quantum wells 5, 6 and 7 located in the central portion of the active layer may be constant. In addition, in each of the examples, the composition is set so that the emission transition wavelength of each strained quantum well is 1.3 μm.

【0016】以上、圧縮歪を有するInP系多重量子井
戸半導体レーザの例について説明してきたが、引張り歪
の場合でも、またGaAs系などの材料系が異なる半導
体素子についても、本発明を適用することが可能であ
る。
Although an example of an InP-based multiple quantum well semiconductor laser having a compressive strain has been described above, the present invention can be applied to the case of tensile strain and also to a semiconductor element having a different material system such as GaAs. Is possible.

【0017】[0017]

【発明の効果】本発明によれば、多重歪量子井戸の歪量
を各量子井戸の臨界膜厚の範囲内で最大限にできる。こ
のため、歪の効果を利用する半導体素子の特性改善,特
に半導体レーザの低しきい値化,狭スペクトル線幅化,
高出力化に大きな効果がある。
According to the present invention, the strain amount of the multi-strained quantum well can be maximized within the range of the critical film thickness of each quantum well. Therefore, the characteristics of the semiconductor element are improved by utilizing the effect of strain, particularly, the threshold value of the semiconductor laser is reduced, the spectral line width is narrowed,
It has a great effect on high output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す半導体素子の断面図。FIG. 1 is a sectional view of a semiconductor device showing an embodiment of the present invention.

【図2】本発明の実施例の素子における量子井戸を形成
する各層の格子定数の配列を示すグラフ。
FIG. 2 is a graph showing an array of lattice constants of each layer forming a quantum well in an element of an example of the present invention.

【図3】本発明の他の実施例の素子における量子井戸を
形成する各層の格子定数の配列を示すグラフ。
FIG. 3 is a graph showing an array of lattice constants of respective layers forming a quantum well in a device of another example of the present invention.

【符号の説明】[Explanation of symbols]

1…n−InP基板、2…n−InPバッファ層、3…
n−InGaAsPガイド層、4…第一のInGaAs
P歪量子井戸層、5…第二のInGaAsP歪量子井戸
層、6…第三のInGaAsP歪量子井戸層、7…第四
のInGaAsP 歪量子井戸層、8…第五のInGaAsP歪
量子井戸層、9…InGaAsP障壁層、10…多重歪
量子井戸活性層、11…p−InGaAsPガイド層、
12…p−InPクラッド層、13…n電極、14…p
電極。
1 ... n-InP substrate, 2 ... n-InP buffer layer, 3 ...
n-InGaAsP guide layer, 4 ... First InGaAs
P ... 9 ... InGaAsP barrier layer, 10 ... Multi-strained quantum well active layer, 11 ... p-InGaAsP guide layer,
12 ... p-InP clad layer, 13 ... n electrode, 14 ... p
electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に複数の歪量子井戸とバリア
層が交互に積層された多重歪量子井戸構造を有し、前記
多重量子井戸構造の上に積層されたクラッド層を有する
半導体素子において、前記歪量子井戸の歪のない状態で
の前記半導体基板との格子定数差が、前記半導体基板ま
たは、前記クラッド層に最も近接した量子井戸に比べ、
前記半導体基板または、前記クラッド層から離れた所に
位置する量子井戸ほど、大きいことを特徴とする半導体
素子。
1. A semiconductor device having a multi-strained quantum well structure in which a plurality of strained quantum wells and barrier layers are alternately stacked on a semiconductor substrate, and having a clad layer stacked on the multiple quantum well structure. , The lattice constant difference with the semiconductor substrate in the strain-free state of the strained quantum well, the semiconductor substrate, or, as compared to the quantum well closest to the cladding layer,
A semiconductor element characterized in that the quantum well located farther from the semiconductor substrate or the cladding layer is larger.
【請求項2】請求項1において、前記各歪量子井戸にお
ける発光遷移波長が全てほぼ同一である半導体素子。
2. The semiconductor device according to claim 1, wherein the emission transition wavelengths in the strained quantum wells are all substantially the same.
JP29630793A 1993-11-26 1993-11-26 Semiconductor element Pending JPH07147454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29630793A JPH07147454A (en) 1993-11-26 1993-11-26 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29630793A JPH07147454A (en) 1993-11-26 1993-11-26 Semiconductor element

Publications (1)

Publication Number Publication Date
JPH07147454A true JPH07147454A (en) 1995-06-06

Family

ID=17831858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29630793A Pending JPH07147454A (en) 1993-11-26 1993-11-26 Semiconductor element

Country Status (1)

Country Link
JP (1) JPH07147454A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
KR20190009794A (en) 2016-06-30 2019-01-29 도와 일렉트로닉스 가부시키가이샤 Method for manufacturing semiconductor optical device and semiconductor optical device
KR20190089915A (en) 2016-12-20 2019-07-31 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
KR20200127252A (en) 2018-04-19 2020-11-10 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and its manufacturing method
DE112019006575T5 (en) 2019-01-07 2021-09-30 Dowa Electronics Materials Co., Ltd. Semiconductor light emitting element and method of manufacturing a semiconductor light emitting element
JP7038913B1 (en) * 2020-12-23 2022-03-18 三菱電機株式会社 Semiconductor laser device
US11637220B1 (en) 2018-04-19 2023-04-25 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting element

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
US7646009B2 (en) 2000-07-07 2010-01-12 Nichia Corporation Nitride semiconductor device
US7750337B2 (en) 2000-07-07 2010-07-06 Nichia Corporation Nitride semiconductor device
US8309948B2 (en) 2000-07-07 2012-11-13 Nichia Corporation Nitride semiconductor device
US8698126B2 (en) 2000-07-07 2014-04-15 Nichia Corporation Nitride semiconductor device
US9130121B2 (en) 2000-07-07 2015-09-08 Nichia Corporation Nitride semiconductor device
US9444011B2 (en) 2000-07-07 2016-09-13 Nichia Corporation Nitride semiconductor device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US7667226B2 (en) 2001-11-05 2010-02-23 Nichia Corporation Semiconductor device
DE112017003307T5 (en) 2016-06-30 2019-04-04 Dowa Electronics Materials Co., Ltd A method of manufacturing a semiconductor optical device and an optical semiconductor device
KR20190009794A (en) 2016-06-30 2019-01-29 도와 일렉트로닉스 가부시키가이샤 Method for manufacturing semiconductor optical device and semiconductor optical device
US11417793B2 (en) 2016-06-30 2022-08-16 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and semiconductor optical device
KR20190089915A (en) 2016-12-20 2019-07-31 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
DE112017006428T5 (en) 2016-12-20 2019-09-05 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting device and method for its production
US11205739B2 (en) 2016-12-20 2021-12-21 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting device and method of manufacturing the same
KR20200127252A (en) 2018-04-19 2020-11-10 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and its manufacturing method
US11515448B2 (en) 2018-04-19 2022-11-29 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting element and method of manufacturing the same
US11637220B1 (en) 2018-04-19 2023-04-25 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting element
DE112019002037B4 (en) 2018-04-19 2024-05-08 Dowa Electronics Materials Co., Ltd. Light-emitting semiconductor elements and methods for their manufacture
DE112019006575T5 (en) 2019-01-07 2021-09-30 Dowa Electronics Materials Co., Ltd. Semiconductor light emitting element and method of manufacturing a semiconductor light emitting element
US11888090B2 (en) 2019-01-07 2024-01-30 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting element and method of producing semiconductor light-emitting element
JP7038913B1 (en) * 2020-12-23 2022-03-18 三菱電機株式会社 Semiconductor laser device

Similar Documents

Publication Publication Date Title
US5671242A (en) Strained quantum well structure
US5606176A (en) Strained quantum well structure having variable polarization dependence and optical device including the strained quantum well structure
JP3362356B2 (en) Optical semiconductor device
JPH0422185A (en) Semiconductor optical element
US7456422B2 (en) Semiconductor device
US5929462A (en) Semiconductor optical device having a strained quantum well structure
JP4554526B2 (en) Semiconductor light emitting device
EP2526594B1 (en) Semiconductor device
JPH07147454A (en) Semiconductor element
US6310719B1 (en) Semi conductor optical amplifier
EP1363368B1 (en) Gain-coupled semiconductor laser device lowering blue shift
JP3145718B2 (en) Semiconductor laser
US6730944B1 (en) InP based high temperature lasers with InAsP quantum well layers and barrier layers of Gax(ALIn)1-xP
JPH06196797A (en) Optical modulator integrating light source element and manufacture thereof
CA2068339C (en) Quantum well semiconductor laser device
JP2706411B2 (en) Strained quantum well semiconductor laser
JP4117778B2 (en) Semiconductor optical device
US4611328A (en) Polarization stabilized InGaAsP/InP lasers
JP3497290B2 (en) Semiconductor crystal structure, semiconductor laser and method of manufacturing the same
JP2748838B2 (en) Quantum well semiconductor laser device
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JPH09148682A (en) Semiconductor optical device
JPH1197790A (en) Semiconductor laser
KR100240641B1 (en) Semiconductor laser
JPS6045087A (en) Semiconductor laser device