JPH07147446A - Ld driving circuit of optical fiber module - Google Patents

Ld driving circuit of optical fiber module

Info

Publication number
JPH07147446A
JPH07147446A JP5295274A JP29527493A JPH07147446A JP H07147446 A JPH07147446 A JP H07147446A JP 5295274 A JP5295274 A JP 5295274A JP 29527493 A JP29527493 A JP 29527493A JP H07147446 A JPH07147446 A JP H07147446A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser element
bias current
light receiving
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5295274A
Other languages
Japanese (ja)
Other versions
JP3541407B2 (en
Inventor
Tomiya Miyazaki
富弥 宮崎
Toshio Mitsuyasu
利夫 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29527493A priority Critical patent/JP3541407B2/en
Publication of JPH07147446A publication Critical patent/JPH07147446A/en
Application granted granted Critical
Publication of JP3541407B2 publication Critical patent/JP3541407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To hold the level of light output constant by controlling the bias current of a semiconductor laser element. CONSTITUTION:A light receiving power detection means 4 detects the detection output of a photodetector element 1B which detects the light output of a semiconductor laser element 1A. A bias current control means 7 controls a bias current 1b for laser oscillation of the semiconductor laser element 1A. Two or more points of values of the bias current 1b of the semiconductor laser element 1A are changed, light emission power of the semiconductor laser element 1A is detected by a light receiving power detection means 4, and change, etc., of quantum efficiency and a threshold current value of the semiconductor laser element 1A are detected. Thereby, the d.c. bias current 1b of the semiconductor laser element 1A is set to a bias current control means 7. Thereby, the level of light output can be held constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバー通信など
の分野で利用される光ファイバーモジュールの半導体レ
ーザ駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser driving circuit for an optical fiber module used in the field of optical fiber communication.

【0002】[0002]

【従来の技術】半導体レーザ素子の電流−光出力特性は
図8に示すように、閾値流値Ith以下で半導体レーザ
素子は発光しない。このために、従来の半導体レーザ駆
動回路では通常、半導体レーザ素子に閾値電流値Ith
付近の値まで直流バイアス電流Ibを流し、この直流バ
イアス電流Ibに重畳したかたちでパルス電流Ipを流
すことにより、半導体レーザ素子を発光させるようにし
ている。
2. Description of the Related Art As shown in FIG. 8, the current-light output characteristic of a semiconductor laser device is such that the semiconductor laser device does not emit light below a threshold flow value Ith. Therefore, in the conventional semiconductor laser drive circuit, the threshold current value Ith is usually applied to the semiconductor laser device.
The semiconductor laser device is made to emit light by causing the DC bias current Ib to flow to a value in the vicinity thereof and causing the pulse current Ip to flow in the form of being superimposed on this DC bias current Ib.

【0003】さらに、半導体レーザ素子の光出力を一定
化する手段として、自動出力調整手段(以下APC回路
と記す)が用いられている。従来のAPC回路を図7に
示す。図7において、1は半導体レーザ、1Aは半導体
レーザ1の半導体レーザ素子、1Bは受光素子で、半導
体レーザ1の半導体レーザ素子1Aの光出力のレベルを
検出する。2はAPC回路で、半導体レーザ素子1Aの
光出力を一定にするために受光素子1Bの出力を用いて
フィードバックする。3はパルス電流変調手段で、半導
体レーザ素子1Aをパルス駆動する回路である。即ち、
半導体レーザ素子1Aの出力光を受光素子1Bの直流バ
イアス電流Ibを可変し、一定の光出力を得るように構
成されていた。さらに、半導体レーザ素子1Aと受光素
子1Bが個々にバラツキがあるために、個々の半導体レ
ーザ1に対して、初期に直流バイアス電流Ibとパルス
電流Ipを可変抵等で調整する必要があった。
Further, automatic output adjusting means (hereinafter referred to as an APC circuit) is used as a means for making the light output of the semiconductor laser device constant. A conventional APC circuit is shown in FIG. In FIG. 7, 1 is a semiconductor laser, 1A is a semiconductor laser element of the semiconductor laser 1, and 1B is a light receiving element, and detects the optical output level of the semiconductor laser element 1A of the semiconductor laser 1. Reference numeral 2 denotes an APC circuit, which feeds back using the output of the light receiving element 1B in order to make the optical output of the semiconductor laser element 1A constant. Reference numeral 3 denotes a pulse current modulation means, which is a circuit for pulse-driving the semiconductor laser element 1A. That is,
The output light of the semiconductor laser device 1A is configured to change the DC bias current Ib of the light receiving device 1B to obtain a constant light output. Further, since the semiconductor laser device 1A and the light receiving device 1B have individual variations, it is necessary to initially adjust the DC bias current Ib and the pulse current Ip for each semiconductor laser 1 with variable resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たように従来のAPC回路を備えた半導体レーザ駆動回
路では、温度や経年変化等により半導体レーザ素子の閾
値電流値Ithが変化した場合には、その変化に応じて
直流バイアス電流Ibが変化するように動作する。即
ち、半導体レーザ素子の変換効率が低下したときには直
流バイアス電流を増加させ、光出力のレベルを一定化さ
せるように動作する。従って図7に示すように、半導体
レーザ素子の入力されるパルス変調信号が論理0のレベ
ルにある時点においてもΔPに相当する分だけ発光する
場合が生じ、消光比の劣化を招き信号の品質を低下させ
る問題点と、ピークパワーが増加することで半導体レー
ザ素子の寿命を低下する問題点とを有していた。また、
半導体レーザ素子と受光素子が個々にバラツキがあるた
めに、個々の半導体レーザ1に対して、初期に直流バイ
アス電流Ibとパルス電流Ipを可変抵抗等で調整する
必要があるために調整作業が必要となり、高価になると
いう問題点があった。
However, in the semiconductor laser drive circuit having the conventional APC circuit as described above, when the threshold current value Ith of the semiconductor laser element changes due to temperature, aging, etc. It operates so that the DC bias current Ib changes according to the change. That is, when the conversion efficiency of the semiconductor laser device is lowered, the DC bias current is increased to make the optical output level constant. Therefore, as shown in FIG. 7, even when the pulse-modulated signal input to the semiconductor laser element is at the level of logic 0, light may be emitted by the amount corresponding to ΔP, which causes deterioration of the extinction ratio and reduces signal quality. There is a problem of decreasing the life and a problem of decreasing the life of the semiconductor laser device by increasing the peak power. Also,
Since the semiconductor laser element and the light receiving element have individual variations, it is necessary to adjust the DC bias current Ib and the pulse current Ip for each semiconductor laser 1 in the initial stage with a variable resistor or the like, which requires adjustment work. Therefore, there is a problem that it becomes expensive.

【0005】本発明は上記のような問題点を解決するも
ので、光出力のレベルを一定に保持するために、バイア
ス電流とパルス電流をコントロールし、直流バイアス電
流とパルス電流の調整をする必要のない光ファイバーモ
ジュールのLD駆動回路を提供することを目的とする。
The present invention solves the above problems and it is necessary to control the bias current and the pulse current and adjust the DC bias current and the pulse current in order to keep the optical output level constant. It is an object of the present invention to provide an LD drive circuit for an optical fiber module that does not have the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1発明〜第4発明では、半導体レーザ素
子の光出力を一定に調整する回路を備えた半導体レーザ
駆動回路にあって、半導体レーザ素子の光出力を検出す
る受光素子と、半導体レーザ素子にパルス電流を供給す
るパルス電流変調手段と、パルス電流変調手段のパルス
電流値をコントロールするパルス電流制御手段と、受光
素子の検出出力を検出する受光パワー検出手段と、半導
体レーザ素子を発光するバイアス電流をコントロールす
るバイアス電流制御手段を有して、半導体レーザ素子の
バイアス電流値を2点以上変化させて、半導体レーザ素
子の発光パワーを受光パワー検出手段によって検出し、
半導体レーザ素子の閾値電流値と量子効率の変化等を検
出することで、半導体レーザ素子の直流バイアス電流を
バイアス電流制御手段に設定し、また、量子効率の変化
等に対応したパルス電流をパルス電流制御手段に設定す
るようにした。
In order to achieve the above object, the first to fourth inventions of the present invention provide a semiconductor laser drive circuit having a circuit for adjusting the optical output of a semiconductor laser device to a constant level. A light receiving element for detecting a light output of the semiconductor laser element, a pulse current modulating means for supplying a pulse current to the semiconductor laser element, a pulse current controlling means for controlling a pulse current value of the pulse current modulating means, and a light receiving element detection The semiconductor laser device has a light-receiving power detection unit for detecting an output and a bias current control unit for controlling a bias current for emitting light from the semiconductor laser device, and changes the bias current value of the semiconductor laser device by two or more points to emit light from the semiconductor laser device. The power is detected by the received light power detection means,
By detecting changes in the threshold current value and quantum efficiency of the semiconductor laser element, the DC bias current of the semiconductor laser element is set in the bias current control means, and the pulse current corresponding to the change in quantum efficiency is set as the pulse current. The control means is set.

【0007】[0007]

【作用】本発明は上記のように構成し、半導体レーザ素
子のバイアス電流値を2点以上変化させて、半導体レー
ザ素子の発光パワーを受光パワー検出手段によって検出
し、半導体レーザ素子の閾値電流値と量子効率の変化等
を検出することで、半導体レーザ素子の直流バイアス電
流をバイアス電流制御手段に設定し、また、量子効率の
変化等に対応したパルス電流をパルス電流制御手段に設
定することで光出力のレベルを一定に保持することが可
能となる。
According to the present invention, the bias current value of the semiconductor laser device is changed by two or more points, and the light emission power of the semiconductor laser device is detected by the light receiving power detection means. And a change in quantum efficiency, the DC bias current of the semiconductor laser device is set in the bias current control means, and the pulse current corresponding to the change in quantum efficiency is set in the pulse current control means. It is possible to keep the optical output level constant.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の第1の実施例の光ファイバーモ
ジュールのLD駆動回路の構成図である。なお、図1に
おいて、1は半導体レーザ、1Aは半導体レーザ1の半
導体レーザ素子、1Bは受光素子で、半導体レーザ素子
1Aの光出力のレベルを検出する。4は受光パワー検出
手段としてのパワーモニター回路で、半導体レーザ素子
1Aの光出力を検出する受光素子1Bの出力を検出す
る。5はA/D変換器で、パワーモニター回路4のアナ
ログ信号をデジタル信号に変換する。6はマイクロコン
ピュータ(以下マイコンと記す)で、全体の制御及び後
述する半導体レーザ素子1Aの閾値電流を計算する。7
はバイアス電流制御手段で、半導体レーザ素子1Aにバ
イアス電流Ibを流す回路である。8はD/A変換器A
で、バイアス電流制御回路7のバイアス電流Ibの電流
値をマイコン6の指令値のデジタル信号をアナログ信号
に変換する。9はパルス電流変調手段で、半導体レーザ
素子1Aに直流バイアス電流Ibに重畳したかたちでパ
ルス変調Ipを流すことにより半導体レーザ素子1Aを
パルス駆動する回路である。10はパルス電流制御手段
で、パルス電流変調回路9の動作のON,OFFとパル
ス電流を制御する回路である。11は信号セレクト回路
で、マイコン6の指令であるACTIVE信号の指令に
応じて半導体レーザ素子1Aを変調する入力信号を選択
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an LD drive circuit of an optical fiber module according to a first embodiment of the present invention. In FIG. 1, 1 is a semiconductor laser, 1A is a semiconductor laser element of the semiconductor laser 1, and 1B is a light receiving element, and detects the optical output level of the semiconductor laser element 1A. Reference numeral 4 denotes a power monitor circuit as a received light power detecting means, which detects the output of the light receiving element 1B which detects the optical output of the semiconductor laser element 1A. An A / D converter 5 converts an analog signal of the power monitor circuit 4 into a digital signal. Reference numeral 6 denotes a microcomputer (hereinafter referred to as a microcomputer), which controls the entire system and calculates a threshold current of the semiconductor laser device 1A described later. 7
Is a bias current control means, which is a circuit for supplying a bias current Ib to the semiconductor laser device 1A. 8 is a D / A converter A
Then, the current value of the bias current Ib of the bias current control circuit 7 is converted into a digital signal of the command value of the microcomputer 6 into an analog signal. Reference numeral 9 denotes a pulse current modulation means, which is a circuit for pulse-driving the semiconductor laser element 1A by causing the pulse modulation Ip to flow in the semiconductor laser element 1A in the form of being superimposed on the DC bias current Ib. Reference numeral 10 is a pulse current control means, which is a circuit for controlling ON / OFF of the operation of the pulse current modulation circuit 9 and the pulse current. A signal select circuit 11 selects an input signal for modulating the semiconductor laser element 1A according to the command of the ACTIVE signal which is the command of the microcomputer 6.

【0009】通常の半導体レーザ素子1Aを変調する場
合の動作は、マイコン6はACTIVE信号をON、上
位のシステムに動作モードであるDISABLE信号を
OFFにし、パルス電流制御回路10を動作モード、バ
イアス電流Ibの値をD/A変換器A8に設定すること
で、入力信号に応じたパルス駆動を行うことで半導体レ
ーザ素子1Aを変調する。
In the normal operation of modulating the semiconductor laser device 1A, the microcomputer 6 turns on the ACTIVE signal, turns off the DISABLE signal which is the operation mode for the host system, sets the pulse current control circuit 10 to the operation mode and the bias current. By setting the value of Ib in the D / A converter A8, the semiconductor laser element 1A is modulated by performing pulse driving according to the input signal.

【0010】次に、バイアス電流の設定方法について、
図1、図2を用いて説明する。図2は、半導体レーザ素
子1Aに流すバイアス電流Ibと受光素子1Bの検出す
る受光パワーの関係を示した図である。半導体レーザ素
子1Aを駆動するバイアス電流Iと受光パワーの関係
は、閾値電流値Ith以上の領域においては比例関係に
にあり、式(1)の関係の一次式で表される。
Next, regarding the method of setting the bias current,
This will be described with reference to FIGS. 1 and 2. FIG. 2 is a diagram showing the relationship between the bias current Ib flowing through the semiconductor laser device 1A and the light receiving power detected by the light receiving device 1B. The relationship between the bias current I for driving the semiconductor laser device 1A and the received light power is in a proportional relationship in the region of the threshold current value Ith or more, and is represented by a linear expression of the relationship of the expression (1).

【0011】 P=AI+Z (I>th)……………式(1) また、閾値電流値Ithは受光パワーP=0の値から、
式(2)より求めることが可能である。 Ith=−Z/A ……………式(2) そこで、電源ON時、一定周期、又は、システムエラー
等が発生した場合に、マイコン6は、信号セレクト回路
11のACTIVE信号をOFFし、上位のシステムに
非動作モードであるDISABLE信号をONにし、パ
ルス電流制御回路10を非動作モードにすることで半導
体レーザ素子1Aのパルス電流変調回路9を非動作モー
ドにし、パルス駆動を停止する。次に、マイコン6は、
D/A変換器A8に、閾値電流値Ith以上のバイアス
電流Ibの値がI1に相当する値をD/A変換器A8に
設定することで、半導体レーザ素子1AをDC発光させ
る。
P = AI + Z (I> th) ... Formula (1) Further, the threshold current value Ith is calculated from the value of the received light power P = 0.
It can be obtained from the equation (2). Ith = -Z / A (2) When the power is turned on, the microcomputer 6 turns off the ACTIVE signal of the signal select circuit 11 when a constant cycle or a system error occurs. The DISABLE signal, which is the non-operation mode, is turned on to the higher-level system, and the pulse current control circuit 10 is set to the non-operation mode to set the pulse current modulation circuit 9 of the semiconductor laser element 1A to the non-operation mode and stop the pulse driving. Next, the microcomputer 6
The semiconductor laser element 1A is caused to emit DC light by setting the D / A converter A8 to a value corresponding to the bias current Ib equal to or more than the threshold current value Ith corresponding to I1 in the D / A converter A8.

【0012】その時の半導体レーザ素子1Aの発光パワ
ーを受光素子1Bにて受光し、パワーモニター回路4、
A/D変換器5を介してマイコン6は受光パワーP1を
検出する。さらに、マイコン6は、D/A変換器A8
に、I1以上のバイアス電流Ibの値がI2に相当する
値をD/A変換器A8に設定することで、半導体レーザ
素子1AをDC発光させる。その時の半導体レーザ素子
1Aの発光パワーを受光素子1Bにて受光し、パワーモ
ニター回路4、D/A変換器5を介してマイコン6は受
光パワーP2を検出する。検出した受光パワーP1とP
2及びその時のバイアス電流I1とI2の値を式(1)
に代入し、演算することで、受光感度A及びオフセット
Zを算出する。次に、算出したA及びZの値を式(2)
に代入することで閾値電流値Ithが検出可能となる。
半導体レーザ素子1Aは閾値電流値Ith以下を含めて
パルス駆動した場合応答速度が遅くなるために、検出し
た閾値電流値Ithより若干高めのバイアス電流Ibを
D/A変換器A8に設定し、通常の動作モードを実施す
る。
The light emission power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the power monitor circuit 4,
The microcomputer 6 detects the received light power P1 via the A / D converter 5. Further, the microcomputer 6 uses the D / A converter A8
Then, the semiconductor laser device 1A is caused to emit DC light by setting the value corresponding to the value of the bias current Ib equal to or higher than I1 to I2 in the D / A converter A8. The light emitting power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the microcomputer 6 detects the light receiving power P2 via the power monitor circuit 4 and the D / A converter 5. Detected received light power P1 and P
2 and the values of the bias currents I1 and I2 at that time are given by the formula (1)
The light receiving sensitivity A and the offset Z are calculated. Next, the calculated values of A and Z are calculated by the equation (2).
By substituting into, the threshold current value Ith can be detected.
When the semiconductor laser element 1A is pulse-driven including the threshold current value Ith or less, the response speed becomes slow. Therefore, a bias current Ib slightly higher than the detected threshold current value Ith is set in the D / A converter A8, The operation mode of is executed.

【0013】次に、温度変化等により、半導体レーザ素
子1Aの閾値電流値Ithが変化した場合は、同様に、
マイコン6は、信号セレクト回路11のACTIVE信
号をOFFし、上位のシステムに非動作モードであるD
ISABLE信号をONにし、パルス電流制御回路10
を非動作モードにすることで半導体レーザ素子1Aのパ
ルス電流変調回路9を非動作モードにし、パルス駆動を
停止する。次に、マイコン6は、D/A変換器A8に、
閾値電流値Ith以上のバイアス電流Ibの値がI1に
相当する値をD/A変換器A8に設定することで、半導
体レーザ素子1AをDC発光させる。その時の半導体レ
ーザ素子1Aの発光パワーを受光素子1Bにて受光し、
パワーモニター回路4、A/D変換器5を介してマイコ
ン6は受光パワーP1’を検出する。さらに、マイコン
6は、D/A変換器A8に、I1以上のバイアス電流I
bの値がI2に相当する値をD/A変換器A8に設定す
ることで、半導体レーザ素子1AをDC発光させる。そ
の時の半導体レーザ素子1Aの発光パワーを受光素子1
Bにて受光し、パワーモニター回路4、A/D変換器5
を介してマイコン6は受光パワーP2’を検出する。検
出した受光パワーP1’とP2’及びその時のバイアス
電流I1とI2の値を式(1)に代入し、演算すること
で、受光感度A’及びオフセットZ’を算出する。次
に、算出したA’及びZ’の値を式(2)に代入するこ
とで閾値電流値Ith’が検出可能となる。半導体レー
ザ素子1Aは閾値電流値Ith’以下を含めてパルス駆
動した場合応答速度が遅くなるために、検出した閾値電
流値Ith’より若干高めのバイアス電流Ib’をD/
A変換器A8に設定し、通常の動作モードを実施するこ
とで、温度などの要因で、閾値電流値Ithが変化した
場合にも自動的に最適バイアス電流の設定が可能とな
る。
Next, when the threshold current value Ith of the semiconductor laser device 1A changes due to temperature change or the like, similarly,
The microcomputer 6 turns off the ACTIVE signal of the signal select circuit 11, and the host system is in the non-operation mode D.
The ISABLE signal is turned on, and the pulse current control circuit 10
Is set to the non-operation mode, the pulse current modulation circuit 9 of the semiconductor laser device 1A is set to the non-operation mode, and the pulse driving is stopped. Next, the microcomputer 6 causes the D / A converter A8 to
The semiconductor laser element 1A is caused to emit DC light by setting a value corresponding to I1 of the bias current Ib equal to or more than the threshold current value Ith in the D / A converter A8. The light emitting power of the semiconductor laser element 1A at that time is received by the light receiving element 1B,
The microcomputer 6 detects the received light power P1 ′ via the power monitor circuit 4 and the A / D converter 5. Further, the microcomputer 6 causes the D / A converter A8 to apply a bias current I of I1 or more.
The semiconductor laser element 1A is caused to emit DC light by setting the value corresponding to the value of b to I2 in the D / A converter A8. The light emission power of the semiconductor laser element 1A at that time is determined by the light receiving element 1
Light is received at B, power monitor circuit 4, A / D converter 5
The microcomputer 6 detects the received light power P2 'via the. The detected light receiving powers P1 ′ and P2 ′ and the values of the bias currents I1 and I2 at that time are substituted into the equation (1) and calculated to calculate the light receiving sensitivity A ′ and the offset Z ′. Next, by substituting the calculated values of A ′ and Z ′ into the equation (2), the threshold current value Ith ′ can be detected. When the semiconductor laser element 1A is pulse-driven including a threshold current value Ith ′ or less, the response speed becomes slower, so that the bias current Ib ′ slightly higher than the detected threshold current value Ith ′ is D /
By setting the A converter A8 and performing the normal operation mode, the optimum bias current can be automatically set even when the threshold current value Ith changes due to a factor such as temperature.

【0014】次に、本発明の第2の実施例について、図
3を用いて説明する。図3は、本発明の第2の実施例の
光ファイバーモジュールのLD駆動回路の構成図であ
る。図3において、図1と同一番号のものは同一機能の
ものを示す。図3において、12は、パルス電流制御回
路10のパルス電流Ipの電流値をマイコン6の指令値
であるデジタル信号をアナログ信号に変換するD/A変
換器Bであり、パルス電流制御回路10を介して、半導
体レーザ素子1Aに直流バイアス電流Ibに重畳したか
たちでパルス変調しパルス電流変調回路9のパルス電流
Ipを制御する。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of an LD drive circuit of an optical fiber module according to a second embodiment of the present invention. In FIG. 3, the same numbers as those in FIG. 1 indicate the same functions. In FIG. 3, reference numeral 12 denotes a D / A converter B for converting a digital signal, which is a command value of the microcomputer 6, into an analog signal from the current value of the pulse current Ip of the pulse current control circuit 10. The pulse current Ip of the pulse current modulation circuit 9 is controlled through pulse modulation in the form of being superimposed on the direct current bias current Ib in the semiconductor laser device 1A.

【0015】通常の半導体レーザ素子1Aを変調する場
合の動作は、マイコン6はACTIVE信号をON、上
位のシステムに動作モードであるDISABLE信号を
OFFにし、パルス電流Ipの値をD/A変換器B12
に設定し、バイアス電流Ibの値をD/A変換器A8に
設定することで、入力信号に応じたパルス駆動を行うこ
とで半導体レーザ素子1Aを変調する。
In the normal operation of modulating the semiconductor laser device 1A, the microcomputer 6 turns on the ACTIVE signal, turns off the DISABLE signal which is the operation mode of the host system, and sets the value of the pulse current Ip to the D / A converter. B12
And the value of the bias current Ib is set in the D / A converter A8, the semiconductor laser element 1A is modulated by performing pulse driving according to the input signal.

【0016】第1の実施例と同様に、電源ON時、一定
周期、又は、システムエラー等が発生した場合に、マイ
コン6は、信号セレクト回路11のACTIVE信号を
OFFし、上位のシステムに非動作モードであるDIS
ABLE信号をONにし、D/A変換器B12にゼロレ
ベルの信号を指令し、パルス電流制御回路10を非動作
モードにすることで半導体レーザ素子1Aのパルス電流
変調回路9を非動作モードにし、パルス駆動を停止す
る。次に、マイコン6は、D/A変換器A8に、閾値電
流値Ith以上のバイアス電流Ibの値がI1に相当す
る値をD/A変換器A8に設定することで、半導体レー
ザ素子1AをDC発光させる。
Similar to the first embodiment, the microcomputer 6 turns off the ACTIVE signal of the signal select circuit 11 when the power is turned on, a fixed period, or when a system error occurs, and the microcomputer 6 does not notify the host system. The operating mode, DIS
The pulse current modulation circuit 9 of the semiconductor laser device 1A is set to the non-operation mode by turning on the ABLE signal, instructing the D / A converter B12 to a zero-level signal, and setting the pulse current control circuit 10 to the non-operation mode. Stop pulse driving. Next, the microcomputer 6 sets the D / A converter A8 to the D / A converter A8 by setting a value corresponding to the bias current Ib of the threshold current value Ith or more corresponding to I1 to the semiconductor laser device 1A. DC light is emitted.

【0017】その時の半導体レーザ素子1Aの発光パワ
ーを受光素子1Bにて受光し、パワーモニター回路4、
A/D変換器5を介してマイコン6は受光パワーP1を
検出する。さらに、マイコン6は、D/A変換器A8
に、I1以上のバイアス電流Ibの値がI2に相当する
値をD/A変換器A8に設定することで、半導体レーザ
素子1AをDC発光させる。その時の半導体レーザ素子
1Aの発光パワーを受光素子1Bにて受光し、パワーモ
ニター回路4、A/D変換器5を介してマイコン6は受
光パワーP2を検出する。検出した受光パワーP1とP
2及びその時のバイアス電流I1とI2の値を式(1)
に代入し、演算することで、受光感度A及びオフセット
Zを算出する。次に、算出したA及びZの値を式(2)
に代入することで閾値電流値Ithが検出可能となる。
半導体レーザ素子1Aは閾値電流値Ith以下を含めて
パルス駆動した場合応答速度が遅くなるために、検出し
た閾値電流値Ithより若干高めのバイアス電流Ibを
D/A変換器A8に設定し、通常の動作モードを実施す
る。また、閾値電流値Ithが温度等によって変化する
場合は、第1の実施例で説明した内容と同一の方法で実
現できるので説明を省略する。
The light emission power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the power monitor circuit 4,
The microcomputer 6 detects the received light power P1 via the A / D converter 5. Further, the microcomputer 6 uses the D / A converter A8
In addition, the semiconductor laser element 1A is caused to emit DC light by setting the value of the bias current Ib equal to or greater than I1 corresponding to I2 in the D / A converter A8. The light emission power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the microcomputer 6 detects the light reception power P2 via the power monitor circuit 4 and the A / D converter 5. Detected received light power P1 and P
2 and the values of the bias currents I1 and I2 at that time are given by the formula (1)
The light receiving sensitivity A and the offset Z are calculated. Next, the calculated values of A and Z are calculated by the equation (2).
By substituting into, the threshold current value Ith can be detected.
When the semiconductor laser element 1A is pulse-driven including the threshold current value Ith or less, the response speed becomes slow. Therefore, a bias current Ib slightly higher than the detected threshold current value Ith is set in the D / A converter A8, The operation mode of is executed. Further, when the threshold current value Ith changes due to temperature or the like, it can be realized by the same method as the contents described in the first embodiment, and therefore the description thereof is omitted.

【0018】次に、半導体レーザ素子1Aの変換効率が
変化したり、受光素子1Bの感度及び回路の特性、さら
には、供給電源等が変化することで、半導体レーザ素子
1Aの駆動電流と受光パワーの感度が変化した場合につ
いて、図3、図4、図5及び図6を用いて説明する。電
源ON時、一定周期、又は、システムエラー等が発生し
た場合に、マイコン6は、信号セレクト回路11のAC
TIVE信号をOFFし、上位のシステムに非動作モー
ドであるDISABLE信号をONにし、D/A変換器
B12にゼロレベルの信号を指令し、パルス電流制御回
路10を非動作モードにすることで半導体レーザ素子1
Aのパルス電流変調回路9の非動作モードにし、パルス
駆動を停止する。次に、マイコン6は、D/A変換器A
8に、閾値電流値Ith以上のバイアス電流Ibの値が
I1に相当する値をD/A変換器A8に設定すること
で、半導体レーザ素子1AをDC発光させる。その時の
半導体レーザ素子1Aの発光パワーを受光素子1Bにて
受光し、パワーモニター回路4、A/D変換器5を介し
てマイコン6は受光パワーP1’を検出する。さらに、
マイコン6は、D/A変換器A8に、I1以上のバイア
ス電流Ibの値がI2に相当する値をD/A変換器A8
に設定することで、半導体レーザ素子1AをDC発光さ
せる。その時の半導体レーザ素子1Aの発光パワーを受
光素子1Bにて受光し、パワーモニター回路4、A/D
変換器5を介してマイコン6は受光パワーP2’を検出
する。検出した受光パワーP1’とP2’及びその時の
バイアス電流I1とI2の値を式(1)に代入し、演算
することで、受光感度A’及びオフセットZ’を算出す
る。次に、算出したA’及びZ’の値を式(2)に代入
することで閾値電流値Ithが検出可能となる。また、
前回算出した受光効率Aと新たに検出した受光効率A’
から半導体レーザ素子1Aの発光パワーを一定にするた
めには、式(3)の関係式が成り立つ。
Next, the conversion efficiency of the semiconductor laser element 1A changes, the sensitivity of the light receiving element 1B and the characteristics of the circuit, and the power supply and the like change, so that the driving current and the light receiving power of the semiconductor laser element 1A are changed. The case where the sensitivity of No. 1 is changed will be described with reference to FIGS. 3, 4, 5, and 6. When the power is turned on, a fixed period, or when a system error occurs, the microcomputer 6 operates the AC of the signal select circuit 11.
By turning off the TIVE signal, turning on the DISABLE signal which is the non-operation mode to the upper system, commanding the zero level signal to the D / A converter B12, and setting the pulse current control circuit 10 to the non-operation mode, the semiconductor Laser element 1
The pulse current modulation circuit 9 of A is set to the non-operation mode, and the pulse driving is stopped. Next, the microcomputer 6 uses the D / A converter A
8, the semiconductor laser device 1A is caused to emit DC light by setting the value corresponding to the bias current Ib equal to or more than the threshold current value Ith to I1 in the D / A converter A8. The light emitting power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the microcomputer 6 detects the light receiving power P1 ′ via the power monitor circuit 4 and the A / D converter 5. further,
The microcomputer 6 sends to the D / A converter A8 a value corresponding to the bias current Ib of I1 or more corresponding to I2.
The semiconductor laser device 1A is caused to emit DC light by setting to 1. The light emission power of the semiconductor laser element 1A at that time is received by the light receiving element 1B, and the power monitor circuit 4, A / D
The microcomputer 6 detects the received light power P2 ′ via the converter 5. The detected light receiving powers P1 ′ and P2 ′ and the values of the bias currents I1 and I2 at that time are substituted into the equation (1) and calculated to calculate the light receiving sensitivity A ′ and the offset Z ′. Next, the threshold current value Ith can be detected by substituting the calculated values of A ′ and Z ′ into the equation (2). Also,
Previously calculated light receiving efficiency A and newly detected light receiving efficiency A '
Therefore, in order to keep the light emission power of the semiconductor laser device 1A constant, the relational expression of Expression (3) is established.

【0019】 Ip’=A’/A*Ip ……………式(3) そこで、式(3)に代入することで、パルス駆動電流I
p’を設定可能となり、パルス駆動電流Ip’に相当す
るデジタル信号をD/A変換器B12に設定し、パルス
電流制御回路10の制御を行い半導体レーザ素子1Aを
Ip’でパルス駆動することで、一定の半導体レーザ素
子1Aの発光パワーを得ることが可能となる。
Ip ′ = A ′ / A * Ip Equation (3) Then, by substituting in Equation (3), the pulse drive current I
p'can be set, a digital signal corresponding to the pulse drive current Ip 'is set in the D / A converter B12, the pulse current control circuit 10 is controlled, and the semiconductor laser element 1A is pulse-driven by Ip'. Therefore, it becomes possible to obtain a constant emission power of the semiconductor laser device 1A.

【0020】図5は、受光感度がAの場合のパルス駆動
電流波形と半導体レーザ素子1Aの発光パワーの関係を
示した図である。図5において、半導体レーザ素子1A
のバイアス電流はIb、パルス電流はIpであり、入力
信号がゼロの時の発光パワーはPmin、入力信号が1
の時の発光パワーPmaxとなる。次に、図6は、受光
感度がA’の場合のパルス駆動電流波形と半導体レーザ
素子1Aの発光パワーの関係を示した図である。図6に
おいて、上述した手順を実施して、半導体レーザ素子1
Aのバイアス電流はIb’、パルス電流はIp’であ
り、入力信号がゼロの時の発光パワーはPmin、入力
信号が1の時の発光パワーPmaxとなり、上述の動作
を行うことで、常に同様の発光出力を得ることが可能と
なる。すなわち、閾値電流値Ith及び受光感度が変化
した場合にも自動的に最適バイアス電流と最適なパルス
電流の設定が可能となる。
FIG. 5 is a diagram showing the relationship between the pulse drive current waveform and the light emission power of the semiconductor laser element 1A when the light receiving sensitivity is A. In FIG. 5, the semiconductor laser device 1A
Has a bias current of Ib, a pulse current of Ip, an emission power of Pmin when the input signal is zero, and an input signal of 1
The light emission power Pmax at the time is. Next, FIG. 6 is a diagram showing the relationship between the pulse drive current waveform and the light emission power of the semiconductor laser device 1A when the light receiving sensitivity is A '. In FIG. 6, the semiconductor laser device 1 is manufactured by performing the procedure described above.
The bias current of A is Ib ′, the pulse current is Ip ′, the emission power when the input signal is zero is Pmin, and the emission power when the input signal is 1 is Pmax. It is possible to obtain the light emission output of. That is, even when the threshold current value Ith and the light receiving sensitivity are changed, the optimum bias current and the optimum pulse current can be automatically set.

【0021】尚、本実施例において、閾値電流値Ith
及び受光感度Aを検出するために、バイアス電流Ibを
2点変化させて検出しているが、バイアス電流Ibを3
点以上変化させて、例えば、最小2乗法を用いて、閾値
電流値Ith及び受光感度Aを検出可能なことは言うま
でもない。また、閾値電流値Ithおよび受光感度Aが
同時に変化した場合も上述の方法で検出可能である。さ
らに、本実施例において、マイコンを用いて実施してい
るが、ハードウェアで構成可能なことは言うまでもな
い。また、本発明において、閾値電流値Ith及び受光
感度Aを検出するために、パルス駆動を停止して実施し
ているが、一定のパターン(例えばデューティーが一
定)でパルス駆動を行い、バイアス電流を変化させても
検出可能である。また、一定時間毎に、検出を行ってい
るが、通常の動作においては、検出した閾値電流値It
hによるバイアス電流Ibの設定に基づいて、従来のA
PC回路に切り替える構成にしてもなんら問題はない。
In this embodiment, the threshold current value Ith
Also, in order to detect the photosensitivity A, the bias current Ib is detected by changing it at two points.
It is needless to say that the threshold current value Ith and the light receiving sensitivity A can be detected by changing the points or more and using, for example, the least square method. Further, even when the threshold current value Ith and the light receiving sensitivity A are changed at the same time, it can be detected by the above method. Further, in the present embodiment, the microcomputer is used for implementation, but it goes without saying that it can be configured by hardware. Further, in the present invention, in order to detect the threshold current value Ith and the light receiving sensitivity A, the pulse driving is stopped, but the pulse driving is performed in a fixed pattern (for example, the duty is constant) to change the bias current. It can be detected even if changed. Further, although the detection is performed at regular time intervals, in the normal operation, the detected threshold current value It
Based on the setting of the bias current Ib by h, the conventional A
There is no problem even if the configuration is switched to the PC circuit.

【0022】[0022]

【発明の効果】上記のように本発明によれば、半導体レ
ーザ素子のバイアス電流値を2点以上変化させて、半導
体レーザ素子の発光パワーを受光パワー検出手段によっ
て検出し、半導体レーザ素子の閾値電流値と量子効率等
の変化を検出することで、半導体レーザ素子の直流バイ
アス電流をバイアス電流制御手段に設定し、また、量子
効率等の変化に対応したパルス電流にパルス電流制御手
段に設定することで光出力のレベルを一定に保持するこ
とが可能となり、信頼性が向上し、更には、バイアス電
流とパルス電流をコントロールし、半導体レーザの駆動
電流の調整を不用にすることで安価な光ファイバーモジ
ュールが提供可能となる。
As described above, according to the present invention, the bias current value of the semiconductor laser device is changed by two points or more, and the light emission power of the semiconductor laser device is detected by the light receiving power detecting means, and the threshold value of the semiconductor laser device is detected. By detecting the change in the current value and the quantum efficiency, the DC bias current of the semiconductor laser device is set in the bias current control means, and the pulse current corresponding to the change in the quantum efficiency is set in the pulse current control means. This makes it possible to maintain the optical output level at a constant level, improve reliability, and further control the bias current and pulse current, making it unnecessary to adjust the drive current of the semiconductor laser, making it an inexpensive optical fiber. Modules can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の光ファイバーモジュールのLD駆動回
路の第1の実施例の動作説明図
FIG. 2 is an operation explanatory diagram of the first embodiment of the LD drive circuit of the optical fiber module of the present invention.

【図3】本発明の第2の実施例を示す構成図FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】本発明の光ファイバーモジュールのLD駆動回
路の第2の実施例の動作説明図
FIG. 4 is an operation explanatory diagram of a second embodiment of the LD drive circuit of the optical fiber module of the present invention.

【図5】本発明の光ファイバーモジュールのLD駆動回
路の第2の実施例のパルス電流の一動作説明図
FIG. 5 is an operation explanatory diagram of the pulse current of the second embodiment of the LD drive circuit of the optical fiber module of the present invention.

【図6】本発明の光ファイバーモジュールのLD駆動回
路の第2の実施例のパルス電流の他の動作説明図
FIG. 6 is another operation explanatory diagram of the pulse current of the second embodiment of the LD drive circuit of the optical fiber module of the present invention.

【図7】従来の半導体レーザ駆動回路を示す構成図FIG. 7 is a configuration diagram showing a conventional semiconductor laser drive circuit.

【図8】半導体レーザ素子の電流−光出力特性とその入
出力関係の一例を示す特性図
FIG. 8 is a characteristic diagram showing an example of current-light output characteristics of a semiconductor laser device and its input / output relationship.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 1A 半導体レーザ素子 4 受光パワー検出手段 5 A/D変換器 6 マイコン 7 バイアス電流制御手段 8 D/A変換器A 9 パルス電流変調手段 10 パルス電流制御手段 11 信号セレクト回路 12 D/A変換器B 1 Semiconductor Laser 1A Semiconductor Laser Element 4 Receiving Power Detection Means 5 A / D Converter 6 Microcomputer 7 Bias Current Control Means 8 D / A Converter A 9 Pulse Current Modulation Means 10 Pulse Current Control Means 11 Signal Select Circuits 12 D / A Converter B

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザ素子の光出力を一定に調整
する回路を備えた半導体レーザ駆動回路にあって、半導
体レーザ素子の光出力を検出する受光素子と、半導体レ
ーザ素子にパルス電流を供給するパルス電流変調手段
と、前記受光素子の検出出力を検出する受光パワー検出
手段と、前記半導体レーザ素子を発光するバイアス電流
をコントロールするバイアス電流制御手段を有して、前
記半導体レーザ素子のバイアス電流値を2点以上変化さ
せて、前記半導体レーザ素子の発光パワーを前記受光パ
ワー検出手段によって検出し、前記半導体レーザ素子の
閾値電流値を検出することで、前記半導体レーザ素子の
直流バイアス電流を前記バイアス電流制御手段に設定す
ることを特徴とする光ファイバーモジュールのLD駆動
回路。
1. A semiconductor laser drive circuit comprising a circuit for adjusting the optical output of a semiconductor laser element to a constant value, wherein a light receiving element for detecting the optical output of the semiconductor laser element and a pulse current are supplied to the semiconductor laser element. The bias current value of the semiconductor laser device includes pulse current modulation means, light receiving power detection means for detecting the detection output of the light receiving element, and bias current control means for controlling the bias current for emitting light from the semiconductor laser element. By changing at least two points, the light emission power of the semiconductor laser element is detected by the light receiving power detection means, and the threshold current value of the semiconductor laser element is detected, whereby the DC bias current of the semiconductor laser element is changed to the bias voltage. An LD drive circuit for an optical fiber module, wherein the LD drive circuit is set in a current control means.
【請求項2】 半導体レーザ素子の光出力を一定に調整
する回路を備えた半導体レーザ駆動回路にあって、半導
体レーザ素子の光出力を検出する受光素子と、半導体レ
ーザ素子にパルス電流を供給するパルス電流変調手段
と、前記パルス電流変調手段のパルス電流値をコントロ
ールするパルス電流制御手段と、前記受光素子の検出出
力を検出する受光パワー検出手段と、前記半導体レーザ
素子を発光するバイアス電流をコントロールするバイア
ス電流制御手段を有して、前記半導体レーザ素子のバイ
アス電流値を2点以上変化させて、前記半導体レーザ素
子の発光パワーを前記受光パワー検出手段によって検出
し、前記半導体レーザ素子の閾値電流値と量子効率の変
化等を検出することで、前記半導体レーザ素子の直流バ
イアス電流を前記バイアス電流制御手段に設定し、ま
た、量子効率の変化等に対応したパルス電流を前記パル
ス電流制御手段に設定することを特徴とする光ファイバ
ーモジュールのLD駆動回路。
2. A semiconductor laser drive circuit comprising a circuit for adjusting the optical output of a semiconductor laser element to a constant value, wherein a light receiving element for detecting the optical output of the semiconductor laser element and a pulse current are supplied to the semiconductor laser element. Pulse current modulating means, pulse current controlling means for controlling the pulse current value of the pulse current modulating means, light receiving power detecting means for detecting the detection output of the light receiving element, and bias current for emitting light from the semiconductor laser element. Bias current control means for changing the bias current value of the semiconductor laser element by two or more points, and the light emission power of the semiconductor laser element is detected by the light reception power detection means, and the threshold current of the semiconductor laser element is detected. The DC bias current of the semiconductor laser device is detected by detecting the change in the value and the quantum efficiency. An LD drive circuit for an optical fiber module, characterized in that it is set in the as-current control means, and a pulse current corresponding to a change in quantum efficiency is set in the pulse current control means.
【請求項3】 半導体レーザ素子の光出力を一定に調整
する回路を備えた半導体レーザ駆動回路にあって、半導
体レーザ素子の光出力を検出する受光素子と、半導体レ
ーザ素子にパルス電流を供給するパルス電流変調手段
と、前記受光素子の検出出力を検出する受光パワー検出
手段と、前記半導体レーザ素子を発光するバイアス電流
をコントロールするバイアス電流制御手段と、設定され
たバイアス電流値と前記受光パワー検出手段と比較して
フィードバック制御を行う自動出力調整手段と、前記バ
イアス制御手段と前記自動出力調整手段を切り替える切
り替え手段を有して、前記半導体レーザ素子のバイアス
電流値を2点以上変化させて、前記半導体レーザ素子の
発光パワーを前記受光パワー検出手段によって検出し、
前記半導体レーザ素子の閾値電流値を検出し、前記半導
体レーザ素子の直流バイアス電流を前記バイアス電流制
御手段に設定し、前記切り替え手段を前記自動出力調整
手段に切り替えることを特徴とする光ファイバーモジュ
ールのLD駆動回路。
3. A semiconductor laser drive circuit comprising a circuit for adjusting the optical output of a semiconductor laser element to a constant value, wherein a light receiving element for detecting the optical output of the semiconductor laser element and a pulse current are supplied to the semiconductor laser element. Pulse current modulating means, light receiving power detecting means for detecting a detection output of the light receiving element, bias current control means for controlling a bias current for emitting light from the semiconductor laser element, set bias current value and light receiving power detection. Means for performing feedback control in comparison with the means, and switching means for switching between the bias control means and the automatic output adjusting means, and changing the bias current value of the semiconductor laser element by two or more points, The light emission power of the semiconductor laser device is detected by the light reception power detection means,
An LD of an optical fiber module, which detects a threshold current value of the semiconductor laser element, sets a DC bias current of the semiconductor laser element in the bias current control means, and switches the switching means to the automatic output adjusting means. Drive circuit.
【請求項4】 半導体レーザ素子の光出力を一定に調整
する回路を備えた半導体レーザ駆動回路にあって、半導
体レーザ素子の光出力を検出する受光素子と、半導体レ
ーザ素子にパルス電流を供給するパルス電流変調手段
と、前記パルス電流変調手段のパルス電流値をコントロ
ールするパルス電流制御手段と、前記受光素子の検出出
力を検出する受光パワー検出手段と、前記半導体レーザ
素子を発光するバイアス電流をコントロールするバイア
ス電流制御手段と、設定されたバイアス電流値と前記受
光パワー検出手段と比較してフィードバック制御を行う
自動出力調整手段と、前記バイアス制御手段と前記自動
出力調整手段を切り替える切り替え手段を有して、前記
半導体レーザ素子のバイアス電流値を2点以上変化させ
て、前記半導体レーザ素子の発光パワーを前記受光パワ
ー検出手段によって検出し、前記半導体レーザ素子の閾
値電流値と量子効率の変化等を検出することで、前記半
導体レーザ素子の直流バイアス電流を前記バイアス電流
制御手段に設定し、また、量子効率の変化等に対応した
パルス電流に前記パルス電流制御手段に設定し、前記切
り替え手段を前記自動出力調整手段に切り替えることを
特徴とする光ファイバーモジュールのLD駆動回路。
4. A semiconductor laser drive circuit comprising a circuit for adjusting the optical output of a semiconductor laser element to a constant value, wherein a light receiving element for detecting the optical output of the semiconductor laser element and a pulse current are supplied to the semiconductor laser element. Pulse current modulating means, pulse current controlling means for controlling the pulse current value of the pulse current modulating means, light receiving power detecting means for detecting the detection output of the light receiving element, and bias current for emitting light from the semiconductor laser element. Bias current control means, automatic output adjustment means for performing feedback control by comparing the set bias current value with the received light power detection means, and switching means for switching the bias control means and the automatic output adjustment means. By changing the bias current value of the semiconductor laser element by two or more points. The direct-current bias current of the semiconductor laser element is set in the bias current control means by detecting the light emission power of the element by the received light power detection means and detecting changes in the threshold current value and quantum efficiency of the semiconductor laser element. Further, the LD drive circuit of the optical fiber module, wherein the pulse current control means is set to a pulse current corresponding to a change in quantum efficiency, and the switching means is switched to the automatic output adjusting means.
【請求項5】 半導体レーザ素子の閾値流値Ithまた
は量子効率等の変化を検出するために、前記半導体レー
ザ素子のパルス電流手段を停止して、前記半導体レーザ
素子のバイアス電流を変化させることを特徴とする請求
項1、2、3又は4記載の光ファイバーモジュールのL
D駆動回路。
5. In order to detect a change in threshold current value Ith or quantum efficiency of the semiconductor laser device, the pulse current means of the semiconductor laser device is stopped to change the bias current of the semiconductor laser device. L of the optical fiber module according to claim 1, 2, 3 or 4.
D drive circuit.
【請求項6】 半導体レーザ素子の閾値流値Ithまた
は量子効率の変化等を検出するために、前記半導体レー
ザ素子のパルス電流手段に一定パターンのパルス駆動を
行い前記半導体レーザ素子のバイアス電流を変化させる
ことを特徴とする請求項1、2、3又は4記載の光ファ
イバーモジュールのLD駆動回路。
6. In order to detect a change in the threshold current value Ith or the quantum efficiency of the semiconductor laser device, the pulse current means of the semiconductor laser device is pulse-driven in a fixed pattern to change the bias current of the semiconductor laser device. The LD drive circuit for an optical fiber module according to claim 1, 2, 3, or 4.
【請求項7】 半導体レーザ素子の閾値流値Ithまた
は量子効率の変化等を検出するために、前記半導体レー
ザ素子の最大閾値電流値Ith以上のバイアス電流を変
化させることを特徴とする請求項1、2、3又は4記載
の光ファイバーモジュールのLD駆動回路。
7. A bias current equal to or greater than a maximum threshold current value Ith of the semiconductor laser device is changed in order to detect a change in threshold current value Ith or quantum efficiency of the semiconductor laser device. The LD drive circuit of the optical fiber module according to 2, 3, or 4.
【請求項8】 半導体レーザ素子の閾値流値Ithまた
は量子効率等を検出する場合に、上位のシステムに状態
を指令することを特徴とする請求項1、2、3又は4記
載の光ファイバーモジュールのLD駆動回路。
8. The optical fiber module according to claim 1, wherein the state is instructed to a host system when the threshold current value Ith or quantum efficiency of the semiconductor laser device is detected. LD drive circuit.
【請求項9】 電源ON、システム起動時、一定時間
毎、エラーが発生した場合の少なくともどれかの状態が
発生した場合に、半導体レーザ素子の閾値電流値Ith
または量子効率の変化等を検出することを特徴とする請
求項1、2、3又は4記載の光ファイバーモジュールの
LD駆動回路。
9. A threshold current value Ith of the semiconductor laser device when power is turned on, the system is started up, at regular time intervals, and at least any one of error occurrences occurs.
Alternatively, the LD drive circuit for the optical fiber module according to claim 1, wherein a change in quantum efficiency or the like is detected.
【請求項10】 半導体レーザ素子のバイアス電流を検
出した半導体レーザ素子の閾値電流値Ith以上に設定
することを特徴とする請求項1、2、3又は4記載の光
ファイバーモジュールのLD駆動回路。
10. The LD drive circuit for an optical fiber module according to claim 1, wherein the bias current of the semiconductor laser device is set to a threshold current value Ith of the detected semiconductor laser device or more.
JP29527493A 1993-11-25 1993-11-25 LD drive circuit for optical fiber module Expired - Fee Related JP3541407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29527493A JP3541407B2 (en) 1993-11-25 1993-11-25 LD drive circuit for optical fiber module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29527493A JP3541407B2 (en) 1993-11-25 1993-11-25 LD drive circuit for optical fiber module

Publications (2)

Publication Number Publication Date
JPH07147446A true JPH07147446A (en) 1995-06-06
JP3541407B2 JP3541407B2 (en) 2004-07-14

Family

ID=17818479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29527493A Expired - Fee Related JP3541407B2 (en) 1993-11-25 1993-11-25 LD drive circuit for optical fiber module

Country Status (1)

Country Link
JP (1) JP3541407B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139869A (en) * 1994-11-07 1996-05-31 Fuji Xerox Co Ltd Light amount controller for laser recorder
EP1328048A2 (en) * 2001-12-20 2003-07-16 Kabushiki Kaisha Toshiba Light-emitting element controller, optical transmitting apparatus, and method and computer program for determining driving current
US6683836B2 (en) 2000-02-09 2004-01-27 Matsushita Electric Industrial Co., Ltd. Laser control device
JP2004221587A (en) * 2003-01-10 2004-08-05 Agilent Technol Inc Method and system for controlling and calibrating laser system
JP2005129842A (en) * 2003-10-27 2005-05-19 Ricoh Co Ltd Semiconductor laser drive circuit
JP2006005212A (en) * 2004-06-18 2006-01-05 Miyachi Technos Corp Semiconductor laser device for excitation
JP2006506825A (en) * 2002-12-16 2006-02-23 インテル・コーポレーション Laser drive circuit and system
JP2007335597A (en) * 2006-06-14 2007-12-27 Sumitomo Electric Ind Ltd Laser drive circuit and laser driving method
JP2008523630A (en) * 2004-12-10 2008-07-03 インテル コーポレイション Real-time constant oscillation rate (ER) laser drive circuit
EP2112832A1 (en) 2008-03-31 2009-10-28 Brother Kogyo Kabushiki Kaisha Image display device
JP2010054879A (en) * 2008-08-29 2010-03-11 Seiko Epson Corp Light source device, image display, and light quantity correcting method
JP2011165866A (en) * 2010-02-09 2011-08-25 Fujitsu Telecom Networks Ltd Laser diode drive circuit and laser diode drive method
US8253769B2 (en) 2003-01-17 2012-08-28 Ricoh Company, Ltd. Semiconductor laser drive apparatus, optical write apparatus, imaging apparatus, and semiconductor laser drive method
US8348436B2 (en) 2007-10-15 2013-01-08 Seiko Epson Corporation Light source device, image display device, and light amount correction method
US8767023B2 (en) 2011-01-24 2014-07-01 Brother Kogyo Kabushiki Kaisha Scanning image display device and method of controlling the same
WO2019039312A1 (en) 2017-08-24 2019-02-28 ソニーセミコンダクタソリューションズ株式会社 Driving device, driving method, and light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163116B2 (en) 2007-12-28 2013-03-13 株式会社リコー Semiconductor laser driving device and image forming apparatus including the semiconductor laser driving device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164589A (en) * 1981-04-03 1982-10-09 Hitachi Ltd Light output stabilizing method
JPS62237786A (en) * 1986-04-08 1987-10-17 Canon Inc Semiconductor laser driving device
JPS6396979A (en) * 1986-10-14 1988-04-27 Matsushita Electric Ind Co Ltd Laser diode drive circuit
JPH03183181A (en) * 1989-12-12 1991-08-09 Sharp Corp Detector for deterioration of semiconductor laser
JPH0575547A (en) * 1991-09-10 1993-03-26 Hitachi Ltd Optical transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164589A (en) * 1981-04-03 1982-10-09 Hitachi Ltd Light output stabilizing method
JPS62237786A (en) * 1986-04-08 1987-10-17 Canon Inc Semiconductor laser driving device
JPS6396979A (en) * 1986-10-14 1988-04-27 Matsushita Electric Ind Co Ltd Laser diode drive circuit
JPH03183181A (en) * 1989-12-12 1991-08-09 Sharp Corp Detector for deterioration of semiconductor laser
JPH0575547A (en) * 1991-09-10 1993-03-26 Hitachi Ltd Optical transmitter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139869A (en) * 1994-11-07 1996-05-31 Fuji Xerox Co Ltd Light amount controller for laser recorder
US6683836B2 (en) 2000-02-09 2004-01-27 Matsushita Electric Industrial Co., Ltd. Laser control device
EP1328048A2 (en) * 2001-12-20 2003-07-16 Kabushiki Kaisha Toshiba Light-emitting element controller, optical transmitting apparatus, and method and computer program for determining driving current
US6895028B2 (en) 2001-12-20 2005-05-17 Kabushiki Kaisha Toshiba Light-emitting element controller, optical transmitting apparatus, and method and computer program for determining driving current
EP1328048A3 (en) * 2001-12-20 2005-07-13 Kabushiki Kaisha Toshiba Light-emitting element controller, optical transmitting apparatus, and method and computer program for determining driving current
JP2006506825A (en) * 2002-12-16 2006-02-23 インテル・コーポレーション Laser drive circuit and system
JP2004221587A (en) * 2003-01-10 2004-08-05 Agilent Technol Inc Method and system for controlling and calibrating laser system
US8253769B2 (en) 2003-01-17 2012-08-28 Ricoh Company, Ltd. Semiconductor laser drive apparatus, optical write apparatus, imaging apparatus, and semiconductor laser drive method
JP4570862B2 (en) * 2003-10-27 2010-10-27 株式会社リコー Semiconductor laser drive circuit
JP2005129842A (en) * 2003-10-27 2005-05-19 Ricoh Co Ltd Semiconductor laser drive circuit
JP2006005212A (en) * 2004-06-18 2006-01-05 Miyachi Technos Corp Semiconductor laser device for excitation
JP2008523630A (en) * 2004-12-10 2008-07-03 インテル コーポレイション Real-time constant oscillation rate (ER) laser drive circuit
JP2007335597A (en) * 2006-06-14 2007-12-27 Sumitomo Electric Ind Ltd Laser drive circuit and laser driving method
US8348436B2 (en) 2007-10-15 2013-01-08 Seiko Epson Corporation Light source device, image display device, and light amount correction method
EP2112832A1 (en) 2008-03-31 2009-10-28 Brother Kogyo Kabushiki Kaisha Image display device
US8164621B2 (en) 2008-03-31 2012-04-24 Brother Kogyo Kabushiki Kaisha Image display device
JP2010054879A (en) * 2008-08-29 2010-03-11 Seiko Epson Corp Light source device, image display, and light quantity correcting method
JP2011165866A (en) * 2010-02-09 2011-08-25 Fujitsu Telecom Networks Ltd Laser diode drive circuit and laser diode drive method
US8767023B2 (en) 2011-01-24 2014-07-01 Brother Kogyo Kabushiki Kaisha Scanning image display device and method of controlling the same
WO2019039312A1 (en) 2017-08-24 2019-02-28 ソニーセミコンダクタソリューションズ株式会社 Driving device, driving method, and light-emitting device
KR20200041865A (en) 2017-08-24 2020-04-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 Driving device, driving method, and light emitting device
US11901700B2 (en) 2017-08-24 2024-02-13 Sony Semiconductor Solutions Corporation Driving device, driving method, and light-emitting unit

Also Published As

Publication number Publication date
JP3541407B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3541407B2 (en) LD drive circuit for optical fiber module
US5974063A (en) Method and apparatus for driving laser diode in which deterioration of extinction ratio is prevented
US5835250A (en) Device for driving light emitting element
US10090640B2 (en) Pulse-width modulation light source drive and method
JP3286896B2 (en) Optical transmitter
JP2547849B2 (en) Automatic laser output control circuit
JP2008009226A (en) Optical transmission module
JPH01135085A (en) Semiconductor laser driving circuit
JPH0324521A (en) Optical modulation circuit
JP3743399B2 (en) Laser diode control device and control method
JP2000200941A (en) Semiconductor laser drive circuit
JPH0590673A (en) Optical transmitter
JPH0595148A (en) Driver for laser diode
JP4147627B2 (en) Laser driver device for burst signal transmission
JPH06152028A (en) Ld drive circuit
JPH04115583A (en) Semiconductor laser drive device
JPH05218553A (en) Laser diode driver
CN117374710A (en) Modulated output linear laser
JPH0445269Y2 (en)
JPH0637374A (en) Optical transmitter circuit
JPH06244800A (en) Optical transmitter
JPH0685362A (en) Laser diode driving circuit within wide temperature range
JPH04304689A (en) Optical transmitter
JPS63280482A (en) Optical transmission circuit
JPH01133384A (en) Semiconductor laser driving device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees