JPH0714592A - Regenerating method for molten carbonate fuel cell - Google Patents

Regenerating method for molten carbonate fuel cell

Info

Publication number
JPH0714592A
JPH0714592A JP5177594A JP17759493A JPH0714592A JP H0714592 A JPH0714592 A JP H0714592A JP 5177594 A JP5177594 A JP 5177594A JP 17759493 A JP17759493 A JP 17759493A JP H0714592 A JPH0714592 A JP H0714592A
Authority
JP
Japan
Prior art keywords
cathode
electrolyte
gas
fuel cell
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5177594A
Other languages
Japanese (ja)
Inventor
Kokichi Uematsu
宏吉 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5177594A priority Critical patent/JPH0714592A/en
Publication of JPH0714592A publication Critical patent/JPH0714592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To recover the dropped voltage of a molten carbonate type fuel cell caused by decrease of the electrolyte. CONSTITUTION:A fuel cell with molten carbonate concerned uses a porous oxide NiO prepared by sintering Ni powder as a material to cathode 2. In regenerating, N2 gas as the inert gas is first fed flowing to a gas passage 5 on the cathode 2 side and a gas passage 6 on the anode 3 side so as to make N purge. Then N2 gas and H2 gas are fed flowing to the gas passage 5 on the cathode 2 side so as to reduce the cathode 2, and NiO is turned into Ni, which is followed by compressing of the battery so that the Ni deforms. Then an oxidating gas is fed flowing to the gas passage 5 so that the cathode 2 is oxidated. A compressive deformation at the cathode reduction redistributes elsewhere the electrolyte inside of the cathode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換するエネルギー部門で
用いる燃料電池のうち、溶融炭酸塩型燃料電池の電解質
が減少して性能が劣化したときに再生させる再生方法に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a fuel cell used in the energy sector for directly converting chemical energy of a fuel into electric energy, and regenerated when the performance of a molten carbonate fuel cell is deteriorated due to a decrease in electrolyte. The present invention relates to a reproducing method for making it.

【0002】[0002]

【従来の技術】燃料電池のうち、溶融炭酸塩型燃料電池
は、図2に一例の概略を示す如く、電解質として炭酸塩
を溶融させて多孔質体にしみ込ませてなる電解質板(タ
イル)1をカソード(酸素極)2とアノード(燃料極)
3の両電極で両面から挟んだセルをセパレータ4を介し
て積層し、カソード2側に形成したガス通路5に酸化ガ
ス(空気、CO2 )OGを、又、アノード3側に形成し
たガス通路6に燃料ガス(H2 )FGをそれぞれ供給す
ることによりカソード2側とアノード3側で電気化学反
応を起こさせることにより発電するようにしたものを、
図示しない締付装置にて締め付けてカソード2とアノー
ド3を電解質板1に密着させるようにしてある。
2. Description of the Related Art Among fuel cells, a molten carbonate fuel cell is an electrolyte plate (tile) 1 made by melting carbonate as an electrolyte and impregnating it into a porous body, as shown schematically in FIG. The cathode (oxygen electrode) 2 and the anode (fuel electrode)
The cells sandwiched by both electrodes of No. 3 from both sides are laminated via the separator 4, the oxidizing gas (air, CO 2 ) OG is provided in the gas passage 5 formed on the cathode 2 side, and the gas passage formed on the anode 3 side. 6, a fuel gas (H 2 ) FG is supplied respectively to cause an electrochemical reaction on the cathode 2 side and the anode 3 side to generate electric power.
The cathode 2 and the anode 3 are tightly attached to the electrolyte plate 1 by tightening with a tightening device (not shown).

【0003】[0003]

【発明が解決しようとする課題】ところが、溶融炭酸塩
型燃料電池は、時間の経過とともに電解質が次第に減少
し、これにより電池の電圧が低下して性能が劣化して来
る問題がある。かかる問題を解決するためには、外部か
ら電解質を補給することが考えられるが、従来、実際に
は外部からの電解質の補給は行われていないので、溶融
炭酸塩型燃料電池を再生させることができなかった。
However, the molten carbonate fuel cell has a problem that the electrolyte gradually decreases with the lapse of time, whereby the voltage of the cell is lowered and the performance is deteriorated. In order to solve such a problem, it is possible to replenish the electrolyte from the outside, but conventionally, since the electrolyte is not actually replenished from the outside, it is possible to regenerate the molten carbonate fuel cell. could not.

【0004】そこで、本発明者は、溶融炭酸塩型燃料電
池の電解質板にしみ込ませた電解質が減少したときに外
部から電解質を補給することなく電池性能の劣化を回復
させて再生させるようにすることについて種々工夫研究
を重ねた結果、溶融炭酸塩型燃料電池のカソードは、使
用時に締付装置により付与される圧縮荷重によりクリー
プ変形することがないようにするため、素材として酸化
ニッケルNiOが用いられていて、Ni粉を焼結した多
孔質体を電池に組み込み、運転中に酸化させてNiOと
するようにしてあること、NiOは圧縮変形に耐え得る
が、Niは圧縮変形し易いこと、NiOを素材とするカ
ソードはNi粉末焼結体が用いられているアノードと違
って濡れ性があって、通常、電解質が全体に対し50%
位含浸していて、カソードは電解質中に漬っている状態
になっていること、等に着目し、カソードに含浸してい
る電解質を電解質板又はアノードへ再配分させれば、溶
融炭酸塩型燃料電池を再生させることができることを見
い出し本発明をなした。
Therefore, the inventor of the present invention tries to recover and regenerate the deterioration of the cell performance without replenishing the electrolyte from the outside when the electrolyte soaked in the electrolyte plate of the molten carbonate fuel cell decreases. As a result of repeated research into various ideas, nickel oxide NiO was used as the material for the cathode of the molten carbonate fuel cell in order to prevent creep deformation due to the compressive load applied by the tightening device during use. That a porous body obtained by sintering Ni powder is incorporated into a battery and is oxidized during operation to NiO, NiO can withstand compressive deformation, but Ni easily compresses and deforms, A cathode made of NiO has wettability unlike an anode using a Ni powder sintered body, and the electrolyte is usually 50% of the whole.
If the electrolyte impregnated in the cathode is redistributed to the electrolyte plate or anode, paying attention to the fact that the cathode is immersed in the electrolyte and the cathode is immersed in the electrolyte. The present invention has been made by finding that the fuel cell can be regenerated.

【0005】したがって、本発明は、溶融炭酸塩型燃料
電池の電解質が減少しても、外部から電解質を補給する
ことなく、カソード内部の電解質を電解質板、アノード
に配分させて電池の性能劣化を回復させるようにしよう
とするものである。
Therefore, according to the present invention, even if the amount of electrolyte in the molten carbonate fuel cell decreases, the electrolyte inside the cathode is distributed to the electrolyte plate and the anode without replenishing the electrolyte from the outside, thereby deteriorating the performance of the cell. It tries to recover.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、カソードの素材としてNi粉を焼結した
多孔質体の酸化物を用いた溶融炭酸塩型燃料電池を、そ
の運転温度下において、カソード側とアノード側に不活
性ガスを流した後、カソード側にH2 ガスを流してカソ
ードを還元してNiOをNiとし、カソードの電解質に
対する濡れ性を低下させ、次いで、この状態で締付装置
にて電池全体を圧縮し、カソードを圧縮変形させて余剰
となったカソード内部の電解質をカソードから出して、
その電解質を電解質板とアノードに再配分し、しかる
後、カソード側に酸化ガスを流してカソードを酸化さ
せ、カソードの空隙を減少させることで、一度再配分さ
れた電解質が再びカソードに戻ることを制限する。
In order to solve the above-mentioned problems, the present invention operates a molten carbonate fuel cell using a porous oxide of sintered Ni powder as a cathode material. At a temperature, after flowing an inert gas on the cathode side and the anode side, H 2 gas is caused to flow on the cathode side to reduce the cathode to NiO to Ni, thereby reducing the wettability of the cathode with respect to the electrolyte. In this state, the entire battery is compressed by the tightening device, the cathode is compressed and deformed, and the excess electrolyte inside the cathode is discharged from the cathode,
The electrolyte is redistributed between the electrolyte plate and the anode, and then the cathode is oxidized by flowing an oxidizing gas to the cathode side to reduce the voids in the cathode, so that the electrolyte once redistributed is returned to the cathode again. Restrict.

【0007】[0007]

【作用】カソードを還元してNiOからNiにすると、
カソードの電解質に対する濡れ性が低下すると同時にN
iは容易にクリープ変形するので、カソード還元後圧縮
変形させることによりカソードは変形させられて、カソ
ードの空隙が減少する。カソードの空隙が減少すると、
カソード内部に存在する電解質のうち余剰となった電解
質を電解質板及びアノードに再配分することができる。
これにより電解質を外部から補充することなく電池の性
能低下を回復させることができる。
[Function] When the cathode is reduced to convert NiO to Ni,
At the same time that the wettability of the cathode to the electrolyte decreases
Since i easily undergoes creep deformation, the cathode is deformed by compressing and deforming after reducing the cathode, so that the voids in the cathode are reduced. As the cathode voids decrease,
It is possible to redistribute excess electrolyte out of the electrolyte existing inside the cathode to the electrolyte plate and the anode.
This makes it possible to recover the deterioration of the battery performance without replenishing the electrolyte from the outside.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の方法を実施する工程を示す
もので、図2に示した燃料電池スタックの場合と同様
に、電解質として溶融炭酸塩をしみ込ませた電解質板1
をカソード2とアノード3の両電極で両面から挟んでな
るセルをセパレータ4を介し多層に積層して、上記セパ
レータ4により形成されたカソード2側のガス通路5に
酸化ガス(空気、CO2 )を供給すると共に、アノード
3側のガス通路6に燃料ガスH2 を供給して運転を行う
ようにしてある溶融炭酸塩型燃料電池において、電解質
が次第に減少して来て電池の電圧が低下して来ると、本
発明の方法で再生させる。
FIG. 1 shows steps for carrying out the method of the present invention. Like the fuel cell stack shown in FIG. 2, an electrolyte plate 1 impregnated with molten carbonate as an electrolyte is shown.
Cells are sandwiched between the cathode 2 and the anode 3 from both sides, and are laminated in multiple layers via a separator 4, and an oxidizing gas (air, CO 2 ) is introduced into a gas passage 5 formed by the separator 4 on the cathode 2 side. In the molten carbonate fuel cell in which the fuel gas H 2 is supplied to the gas passage 6 on the side of the anode 3 to perform the operation, the electrolyte gradually decreases and the voltage of the cell decreases. When it comes, it is regenerated by the method of the present invention.

【0010】この場合、電池の電圧低下が検知される
と、通常運転状態を停止させた後、運転温度を保持した
まま先ず、電池内を不活性ガスとしてのN2 ガスでパー
ジさせるため、図1(イ)の如く、各セルのカソード2
側のガス通路5及びアノード3側のガス通路6に不活性
ガスとしてN2 ガスを供給し、カソード2側の酸化ガス
(空気、CO2 )、アノード3側の燃料ガスH2 とN2
とを置換させる。
In this case, when the voltage drop of the battery is detected, the normal operation state is stopped, and then the inside of the battery is purged with N 2 gas as an inert gas while maintaining the operation temperature. Cathode 2 of each cell as shown in 1 (a)
Side gas passage 5 and anode 3 side gas passage 6 are supplied with N 2 gas as an inert gas, cathode 2 side oxidizing gas (air, CO 2 ), anode 3 side fuel gas H 2 and N 2
Replace and.

【0011】次に、図1(ロ)の如く、カソード2側の
ガス通路5にN2 ガスとH2 ガスを流すことによりカソ
ード2を還元させ、素材のNiOをNiにする。
Next, as shown in FIG. 1B, the cathode 2 is reduced by flowing N 2 gas and H 2 gas into the gas passage 5 on the cathode 2 side, and NiO as a raw material is changed to Ni.

【0012】NiOは電解質に対する濡れ性が良く、且
つクリープに強いが、Niは電解質に濡れにくく、且つ
容易にクリープ変形するので、この性質を利用して、素
材が変形し易いカソード還元状態のときに、図1(ハ)
に矢印で示す如く、図示しないスタック締付装置により
電池全体を圧縮させてカソード2を変形させる。これに
より、カソード2の容積が減少してカソードの空隙が減
少し、このカソードの空隙減少に伴い余剰となったカソ
ード内部の電解質が他の部分、すなわち、電解質板1、
アノード3に再配分されることになる。たとえば、カソ
ード2を還元させる前のカソード容積を100%とし、
カソード還元後クリープ変形させて80%に容積が減少
したとすると、通常カソード2に電解質が50%存在し
ているとしたときに、上記カソード容積が100%から
80%に減少することに伴い電解質は50%から40%
でよいことになり、余剰となった10%分の電解質が他
に利用できることになる。
NiO has a good wettability with respect to the electrolyte and is strong against creep, but Ni is hard to get wet with the electrolyte and easily undergoes creep deformation. Therefore, by utilizing this property, when the material is in a cathode-reduced state where it is easily deformed. In addition, Fig. 1 (C)
As indicated by the arrow, the whole battery is compressed by a stack tightening device (not shown) to deform the cathode 2. As a result, the volume of the cathode 2 is reduced and the voids of the cathode are reduced, and the excess electrolyte inside the cathode due to the reduction of the voids of the cathode is the other part, that is, the electrolyte plate 1,
It will be redistributed to the anode 3. For example, assuming that the cathode volume before reducing the cathode 2 is 100%,
Assuming that the volume is reduced to 80% by creep deformation after the reduction of the cathode, and when the electrolyte normally exists in the cathode 2 at 50%, the above-mentioned cathode volume is reduced from 100% to 80%. Is 50% to 40%
This means that 10% of the surplus electrolyte can be used for other purposes.

【0013】上記カソード還元状態でのカソード圧縮変
形が終ると、図1(ニ)に示す如く、カソード2側のガ
ス通路5にN2 ガスとともに酸化ガス(空気、CO2
を流してカソード2を酸化させてクリープ変形に強いN
iOとするようにし、アノード3側のガス通路6にはN
2 ガスとともに燃料ガスH2 を流すようにする。
When the cathode compression deformation in the cathode reducing state is completed, as shown in FIG. 1D, the oxidizing gas (air, CO 2 ) together with N 2 gas is introduced into the gas passage 5 on the cathode 2 side.
Flowing to oxidize the cathode 2 and resist N from creep deformation.
iO, and N in the gas passage 6 on the anode 3 side.
The fuel gas H 2 is caused to flow together with the two gases.

【0014】この状態では、カソードの電解質に対する
濡れ性は再び高くなるが、カソードの空隙減少が電解質
がカソードへ戻ることを制限する。
In this state, the wettability of the cathode with respect to the electrolyte becomes high again, but the void reduction of the cathode limits the return of the electrolyte to the cathode.

【0015】上記図1(ニ)の工程が終ると、カソード
2側には酸化ガス、アノード3側には燃料ガスをそれぞ
れ供給させて通常運転を行わせるようにする。
When the step of FIG. 1D is completed, the oxidizing gas is supplied to the cathode 2 side and the fuel gas is supplied to the anode 3 side to perform normal operation.

【0016】なお、上記実施例では、一例としてセパレ
ータ4を挟んで酸化ガスと燃料ガスが並行流となるもの
について示したが、対向流となるようにしたものでもよ
く、又、ガスの給排は内部マニホールド型、外部マニホ
ールド型のいずれでもよいこと、その他本発明の要旨を
逸脱しない範囲内で種々変更を加え得ることは勿論であ
る。
In the above embodiment, as an example, the oxidizing gas and the fuel gas flow in parallel with the separator 4 sandwiched between them. However, the oxidizing gas and the fuel gas may flow in opposite directions. Needless to say, may be an internal manifold type or an external manifold type, and various changes may be made without departing from the scope of the present invention.

【0017】[0017]

【発明の効果】以上述べた如く、本発明の溶融炭酸塩型
燃料電池の再生方法によれば、カソードの素材としてN
i粉を焼結して多孔質体としたものの酸化物であるNi
Oを用いた溶融炭酸塩型燃料電池において、NiOは電
解質に対する濡れ性が高く、且つクリープに強いが、N
iは電解質に対する濡れ性が低く、且つ容易にクリープ
変形することを利用して、カソードを不活性雰囲気にし
た後、還元してNiOをNiとし、次いで、この状態で
クリープ変形させてカソードの空隙を減少させ、カソー
ド内部に存在する電解質の余剰分を電解質板、アノード
に再配分するようにするので、電解質を外部から補給す
ることなく電解質減少に伴う電池の電圧低下を回復させ
ることができる、という優れた効果を奏し得る。
As described above, according to the method for regenerating a molten carbonate fuel cell of the present invention, N is used as the cathode material.
Ni, which is an oxide of i-powder sintered into a porous body
In a molten carbonate fuel cell using O, NiO has high wettability to an electrolyte and is strong in creep, but N
i is low in wettability to an electrolyte and easily creep-deforms, so that the cathode is made an inert atmosphere, and then NiO is reduced to NiO, and then creep-deformation is performed in this state to form a void in the cathode. Is reduced and the surplus of the electrolyte present inside the cathode is redistributed to the electrolyte plate and the anode, so that the voltage drop of the battery due to the electrolyte reduction can be recovered without replenishing the electrolyte from the outside. That is, the excellent effect can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶融炭酸塩型燃料電池の再生方法の手
順を示すもので、(イ)は電池内部を不活性ガス雰囲気
にする工程図、(ロ)はカソード還元工程図、(ハ)は
カソード圧縮変形工程図、(ニ)はカソード酸化工程図
である。
FIG. 1 shows a procedure of a method for regenerating a molten carbonate fuel cell of the present invention, in which (a) is a process diagram of making an inert gas atmosphere inside the cell, (b) is a cathode reduction process diagram, () Is a cathode compression deformation process drawing, and (D) is a cathode oxidation process drawing.

【図2】溶融炭酸塩型燃料電池スタックの一部を示す概
略図である。
FIG. 2 is a schematic view showing a part of a molten carbonate fuel cell stack.

【符号の説明】[Explanation of symbols]

1 電解質板 2 カソード 3 アノード 4 セパレータ 5,6 ガス通路 1 Electrolyte Plate 2 Cathode 3 Anode 4 Separator 5,6 Gas Passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カソードの素材としてNi粉を焼結した
多孔質体の酸化物を用いている溶融炭酸塩型燃料電池
を、その運転温度下において、カソード側とアノード側
に不活性ガスを流して、電池内部のガスを不活性ガスに
置換させ、次に、カソード側に水素ガスを流してカソー
ドを還元し、カソードの電解質に対する濡れ性を低下さ
せ、次いで、この状態で電池全体を圧縮してカソードを
圧縮変形して、余剰となったカソード内部の電解質をカ
ソードから出して、その電解質を電解質板及びアノード
に再配分し、しかる後、カソードを酸化させることを特
徴とする溶融炭酸塩型燃料電池の再生方法。
1. A molten carbonate fuel cell using a porous oxide obtained by sintering Ni powder as a material of a cathode, and an inert gas is caused to flow to the cathode side and the anode side at an operating temperature thereof. To replace the gas inside the battery with an inert gas, then flow hydrogen gas to the cathode side to reduce the cathode, reduce the wettability of the cathode to the electrolyte, and then compress the entire battery in this state. By compressing and deforming the cathode to discharge the excess electrolyte inside the cathode from the cathode, redistributing the electrolyte to the electrolyte plate and the anode, and then oxidizing the cathode. How to regenerate a fuel cell.
JP5177594A 1993-06-25 1993-06-25 Regenerating method for molten carbonate fuel cell Pending JPH0714592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177594A JPH0714592A (en) 1993-06-25 1993-06-25 Regenerating method for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5177594A JPH0714592A (en) 1993-06-25 1993-06-25 Regenerating method for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH0714592A true JPH0714592A (en) 1995-01-17

Family

ID=16033729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177594A Pending JPH0714592A (en) 1993-06-25 1993-06-25 Regenerating method for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0714592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002074A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 A purging device of fuel cell system
KR100972188B1 (en) * 2007-12-14 2010-07-26 한국과학기술원 Performance recovery method of direct alcohol fuel cells
KR101298541B1 (en) * 2011-12-27 2013-08-22 재단법인 포항산업과학연구원 Method for recycling mcfc element
JP2018037271A (en) * 2016-08-31 2018-03-08 東芝燃料電池システム株式会社 Fuel cell sealing component, fuel cell, and storage method of fuel cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040002074A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 A purging device of fuel cell system
KR100972188B1 (en) * 2007-12-14 2010-07-26 한국과학기술원 Performance recovery method of direct alcohol fuel cells
KR101298541B1 (en) * 2011-12-27 2013-08-22 재단법인 포항산업과학연구원 Method for recycling mcfc element
JP2018037271A (en) * 2016-08-31 2018-03-08 東芝燃料電池システム株式会社 Fuel cell sealing component, fuel cell, and storage method of fuel cell stack

Similar Documents

Publication Publication Date Title
US6663999B2 (en) Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly
US6361896B1 (en) Device and method for combined purification and compression of hydrogen containing CO and the use thereof in fuel cell assemblies
US3650837A (en) Secondary metal/air cell
EP1732157A1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxyde fuel cell stack
US20120126752A1 (en) Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
EP0714146B1 (en) Fuel cell anode and fuel cell
JP2004134132A (en) Fuel regenerable fuel battery, method for generating electric power, and method for regenerating fuel
JPH0714592A (en) Regenerating method for molten carbonate fuel cell
JP2516274B2 (en) Fuel cell power plant
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
JP4832982B2 (en) Anode reduction method for solid oxide fuel cells
JPS6124158A (en) Electrode of fused carbonate type fuel cell
US20140004395A1 (en) Electric energy store
US3479226A (en) Method of chemically regenerating air depolarized cell with hydrogen
US5641328A (en) Fuel cell cathodes
US11870080B2 (en) Anode layer activation method for solid oxide fuel cell, and solid oxide fuel cell system
US20050069756A1 (en) High temperature fuel cell
JPH05335030A (en) Method for enhancing performance of fuel cell
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell
KR102707813B1 (en) Solid oxide fuel cells and method of manufacturing the same
JPH02822B2 (en)
JP2005166596A (en) Fuel cell system
JPH04215257A (en) Molten carbonate fuel cell
JPH0244655A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees