JPH07145394A - Method for solidifying coal ash - Google Patents

Method for solidifying coal ash

Info

Publication number
JPH07145394A
JPH07145394A JP29482893A JP29482893A JPH07145394A JP H07145394 A JPH07145394 A JP H07145394A JP 29482893 A JP29482893 A JP 29482893A JP 29482893 A JP29482893 A JP 29482893A JP H07145394 A JPH07145394 A JP H07145394A
Authority
JP
Japan
Prior art keywords
coal ash
metal compound
weight
alkaline earth
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29482893A
Other languages
Japanese (ja)
Inventor
Iwao Sato
巌 佐藤
Tsutomu Nihei
努 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telnite Co Ltd
Original Assignee
Telnite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telnite Co Ltd filed Critical Telnite Co Ltd
Priority to JP29482893A priority Critical patent/JPH07145394A/en
Publication of JPH07145394A publication Critical patent/JPH07145394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To solidify coal ash simply in a short time. CONSTITUTION:Coal ash is solidified by adding an alkali metal compd. and a hardly sol. alkaline earth metal compd. to it and allowing it to solidify at normal temp. or at 70-100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電所などから発
生する石炭灰について、従来のポゾラン反応をより活性
化させ、短期間に固化体を得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of further activating the conventional pozzolanic reaction of coal ash generated from a thermal power plant to obtain a solidified product in a short period of time.

【0002】[0002]

【従来の技術】従来の石炭灰の固化方法には、常温下に
おけるものと加熱養生下におけるものとがある。常温下
における方法としては、水の存在下に、水酸化カルシウ
ム、硫酸カルシウム等と反応させ、不溶性の物質を生成
させるポゾラン反応による方法がある。一方、加熱養生
下における方法としては、石炭灰、消石灰、および既存
の固化材であるセメントや石膏を加え、水で混練りした
ものを水蒸気処理する方法がある。
2. Description of the Related Art Conventional solidification methods for coal ash include those at room temperature and those under heat curing. As a method at room temperature, there is a method by a pozzolanic reaction in which water is present to react with calcium hydroxide, calcium sulfate or the like to form an insoluble substance. On the other hand, as a method under heat curing, there is a method of adding coal ash, slaked lime, and cement or gypsum which are existing solidifying materials, and kneading with water, and steam-treating them.

【0003】[0003]

【発明が解決しようとする課題】上記従来の常温下にお
ける固化方法では、ポゾラン反応が顕著に進んで固化に
至るまで、約1ヶ月程度の長期間を要していた。また、
加熱養生下における固化方法では、既存の固化材である
セメントおよび石膏と水との混練り物を養生し、水蒸気
処理するというように非常に複雑な工程であるととも
に、固化に至るまで長時間を要していた。したがって、
本発明の目的は、簡単かつ短時間で石炭灰の固化体を得
る方法を提供することにある。
In the above-mentioned conventional solidification method at room temperature, it takes a long period of about one month until the pozzolanic reaction remarkably progresses to solidify. Also,
The solidification method under heat curing is a very complicated process such as curing the kneaded material of cement and gypsum, which are existing solidifying materials, and steam treatment, and it requires a long time to solidify. Was. Therefore,
An object of the present invention is to provide a method for easily obtaining a solidified body of coal ash in a short time.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の固化方法は、石炭灰にアルカリ金属化合
物及び難溶性アルカリ土類金属化合物を添加することを
特徴とする。アルカリ金属化合物としては、特に水酸化
ナトリウムまたは炭酸ナトリウムが好適である。また、
難溶性アルカリ土類金属化合物としては、特に水酸化カ
ルシウムが好適である。アルカリ金属化合物の添加量
は、石炭灰に含まれる可溶性SiO2 ,Al2 3 の割
合に応じて定められるが、本発明の目的とする効果を得
るには、一般に石炭灰の乾燥重量100重量部あたり1
重量部以上(0.01モル以上)を混合するのが好まし
い。
In order to achieve the above object, the solidification method of claim 1 is characterized by adding an alkali metal compound and a sparingly soluble alkaline earth metal compound to coal ash. As the alkali metal compound, sodium hydroxide or sodium carbonate is particularly preferable. Also,
As the sparingly soluble alkaline earth metal compound, calcium hydroxide is particularly preferable. The amount of the alkali metal compound added is determined according to the ratio of soluble SiO 2 and Al 2 O 3 contained in the coal ash, but in order to obtain the effect of the present invention, generally 100 wt. 1 per copy
It is preferable to mix at least parts by weight (0.01 mol or more).

【0005】混合方法としては、石炭灰粉体へ直接固体
状態のまま混合することができ、あるいはアルカリ金属
化合物の水溶液を混練り用水として混合することもでき
る。また、アルカリ金属化合物の水溶液を石炭灰へ噴霧
し乾燥して用いることもできる。難溶性アルカリ土類金
属化合物は、石炭灰乾燥重量100重量部あたり5重量
部以上(0.068モル以上)を粉体の形で混合され
る。
As a mixing method, coal ash powder can be directly mixed in a solid state, or an aqueous solution of an alkali metal compound can be mixed as kneading water. Alternatively, an aqueous solution of an alkali metal compound may be sprayed onto coal ash and dried before use. The sparingly soluble alkaline earth metal compound is mixed in the form of powder in an amount of 5 parts by weight or more (0.068 mol or more) per 100 parts by weight of dry weight of coal ash.

【0006】本発明において、難溶性アルカリ土類金属
化合物の添加割合を増加させると、ポゾラン反応の特徴
として、固化体の一軸圧縮強度は増加する。難溶性アル
カリ土類金属化合物の添加量を一定とし、アルカリ金属
化合物の混合量を増加させると、始めは、一軸圧縮強度
が増加するが、アルカリ金属化合物の添加量が3重量%
程度でピークに達し、それ以後は漸次低下をきたすよう
になる。本発明において、石炭灰乾燥重量に対するアル
カリ金属化合物および難溶性アルカリ土類金属化合物の
両者の添加量を増加することにより、一軸圧縮強度は一
次関数的に増加する傾向を示す。
In the present invention, when the addition ratio of the sparingly soluble alkaline earth metal compound is increased, the uniaxial compressive strength of the solidified product increases as a characteristic of the pozzolanic reaction. When the amount of the sparingly soluble alkaline earth metal compound is kept constant and the amount of the alkali metal compound mixed is increased, the uniaxial compressive strength is initially increased, but the amount of the alkali metal compound added is 3% by weight.
It reaches a peak at some degree, and then gradually decreases. In the present invention, the uniaxial compressive strength tends to increase linearly by increasing the addition amounts of both the alkali metal compound and the sparingly soluble alkaline earth metal compound with respect to the dry weight of coal ash.

【0007】請求項2の固化方法は、請求項1における
のと同様の組成物のスラリーを常圧において、70〜1
00℃で加熱することを特徴とする。加熱温度が70℃
未満であると、短時間に固化体を得ることができない。
According to a second aspect of the solidification method of the present invention, a slurry of the same composition as in the first aspect is used under normal pressure at 70 to 1
It is characterized by heating at 00 ° C. Heating temperature is 70 ℃
If it is less than this, a solidified product cannot be obtained in a short time.

【0008】石炭灰にアルカリ金属化合物と難溶性アル
カリ土類金属化合物を混合し、スラリーとして混練りす
ることにより、石炭灰中のシリカ分が、アルカリ金属化
合物中のナトリウム等と即座に反応を起こし、シリカ構
造が切断される。切断部に難溶性アルカリ土類金属化合
物中のイオンが結合し、速やかにアルカリ土類金属シリ
ケートの不溶性物質が生成し、強度が短期間に発現す
る。また、これを加熱することにより、イオン化力が増
加し、諸反応が極めて活発化し、反応速度が急激に増加
する。これにより、石炭灰が短時間で固化するものであ
る。
By mixing an alkali metal compound and a sparingly soluble alkaline earth metal compound with coal ash and kneading them as a slurry, the silica content in the coal ash immediately reacts with sodium etc. in the alkali metal compound. , The silica structure is cleaved. Ions in the sparingly soluble alkaline earth metal compound are bound to the cut portion, and an insoluble substance of alkaline earth metal silicate is rapidly produced, and strength is developed in a short time. Further, by heating this, the ionization force increases, various reactions become extremely active, and the reaction rate rapidly increases. As a result, the coal ash is solidified in a short time.

【0009】[0009]

【実施例】請求項1の固化方法による組成物の例が組成
例(c)である。組成例(a),(b)は比較例であ
る。組成例(a) 石炭灰100重量部に対し水酸化カルシウム10重量部
を混合し、水で混練りした。水比を80とした。ここ
で、水比とは、固形分総重量を100としたときの水の
重量をいう。組成例(b) 石炭灰100重量部に対し炭酸ナトリウム3重量部を混
合し、水で混練りした。水比を80とした。組成例(c) 石炭灰100重量部に対し水酸化カルシウム10重量部
と炭酸ナトリウム3重量部を混合し、水で混練りした。
水比を80とした。
EXAMPLE An example of the composition according to the solidification method of claim 1 is composition example (c). Composition examples (a) and (b) are comparative examples. Composition Example (a) 10 parts by weight of calcium hydroxide was mixed with 100 parts by weight of coal ash and kneaded with water. The water ratio was 80. Here, the water ratio means the weight of water when the total solid content weight is 100. Composition Example (b) 3 parts by weight of sodium carbonate was mixed with 100 parts by weight of coal ash, and kneaded with water. The water ratio was 80. Composition Example (c) 10 parts by weight of calcium hydroxide and 3 parts by weight of sodium carbonate were mixed with 100 parts by weight of coal ash, and kneaded with water.
The water ratio was 80.

【0010】図1および表1に上記3種の組成物の材令
4日までの強度発現を示した。表1において、供試体が
N.S.、S.N.S.の状態のものは、コーンペネト
ロメータによる推定一軸圧縮強度であり、硬化状態を示
したものは、一軸圧縮強度試験機によるものである。組
成例(b)は、混練り1日後に1kgf/cm2 程度の
強度を発現した。この際、ペーストが外力の作用で液体
を内部に吸い込んで、やや膨張し固化するような現象
(ダイラタンシー現象)を数日間呈しながら強度を発現
した。他方、組成例(c)は、水で混練り後、先のダイ
ラタンシーな状態を示さず、混練り後1〜2日以内に短
期に硬化状態に達した。
FIG. 1 and Table 1 show the strength development of the above three kinds of compositions by the age of 4 days. In Table 1, the test piece is N. S. , S. N. S. The one in the state of is the uniaxial compressive strength estimated by the cone penetrometer, and the one in the cured state is by the uniaxial compressive strength tester. Composition example (b) exhibited a strength of about 1 kgf / cm 2 one day after kneading. At this time, the paste exhibited strength while exhibiting a phenomenon in which the liquid sucked in the liquid by the action of an external force and slightly expanded and solidified (dilatancy phenomenon) for several days. On the other hand, the composition example (c) did not show the above-mentioned dilatancy state after kneading with water, and reached a cured state within a short period of time within 1 to 2 days after kneading.

【0011】[0011]

【表1】 [Table 1]

【0012】請求項2の固化方法の実施例、比較例とし
て、反応スラリーを90℃で5時間加熱後の強度を図2
に示す。比較例として、組成例(1),(2)を示し
た。組成例(3)を本発明の実施例とする。組成例(1) 石炭灰100重量部に水酸化カルシウム30重量部を混
合した。水比を50とした。組成例(2) 石炭灰100重量部に炭酸ナトリウム4重量部を混合し
た。水比を50とした。組成例(3) 石炭灰100重量部に水酸化カルシウム30重量部と、
炭酸ナトリウム4重量部を混合した。水比を50とし
た。図2に示したように、組成例(3)は、比較的低温
度で数時間加熱するだけで、強度の高い固化体を得るこ
とができる。
As an example and a comparative example of the solidification method of claim 2, the strength after heating the reaction slurry at 90 ° C. for 5 hours is shown in FIG.
Shown in. Composition examples (1) and (2) are shown as comparative examples. Composition example (3) is taken as an example of the present invention. Composition Example (1) 100 parts by weight of coal ash was mixed with 30 parts by weight of calcium hydroxide. The water ratio was 50. Composition Example (2) 100 parts by weight of coal ash was mixed with 4 parts by weight of sodium carbonate. The water ratio was 50. Composition Example (3) 100 parts by weight of coal ash and 30 parts by weight of calcium hydroxide,
4 parts by weight of sodium carbonate were mixed. The water ratio was 50. As shown in FIG. 2, in the composition example (3), a solidified body having a high strength can be obtained only by heating at a relatively low temperature for several hours.

【0013】この本発明組成において、アルカリ金属化
合物(例えば、炭酸ナトリウム、水酸化ナトリウム)や
難溶性アルカリ土類金属化合物(例えば、水酸化カルシ
ウム)の混合割合および水比を変化させることで強度発
現が異なる。水比を30と一定にし、アルカリ金属化合
物や難溶性アルカリ土類金属化合物の混合量を変化させ
た場合の加熱養生下における材令28日目の強度発現
を、図3に示す。
In the composition of the present invention, strength is exhibited by changing the mixing ratio and water ratio of an alkali metal compound (eg sodium carbonate, sodium hydroxide) or a sparingly soluble alkaline earth metal compound (eg calcium hydroxide). Is different. FIG. 3 shows the strength development on the 28th day of age under heat curing when the water ratio was kept constant at 30 and the mixing amount of the alkali metal compound or the sparingly soluble alkaline earth metal compound was changed.

【0014】図3より、アルカリ金属化合物や難溶性ア
ルカリ土類金属化合物の混合割合において、両者の増加
に比例して高強度を示す。また、水比を低下させると、
当然ながら強度が増加する。この組成物に、砂や砂利等
の細骨材や粗骨材を添加すれば、必然的にこれ以上の強
度を示す。
As shown in FIG. 3, in the mixing ratio of the alkali metal compound and the sparingly soluble alkaline earth metal compound, high strength is shown in proportion to the increase of both. Also, when the water ratio is reduced,
Naturally, the strength increases. When fine aggregate or coarse aggregate such as sand or gravel is added to this composition, the strength inevitably becomes higher than this.

【0015】[0015]

【発明の効果】アルカリ金属化合物と難溶性アルカリ土
類金属化合物を添加することで、石炭灰におけるポゾラ
ン反応を活性化し、短期間に硬化体を得ることができ
る。石炭灰のポゾラン反応を活性化させるアルカリ金属
化合物と難溶性アルカリ土類金属化合物を混合したスラ
リーを比較的低温度で、数時間加熱することにより、簡
単に強固な固化体を得ることができる。これらの固化方
法により作成した固化体は、物理的・化学的に比較的安
定である。
By adding an alkali metal compound and a sparingly soluble alkaline earth metal compound, the pozzolanic reaction in coal ash can be activated and a cured product can be obtained in a short period of time. By heating a slurry in which an alkali metal compound that activates the pozzolanic reaction of coal ash and a sparingly soluble alkaline earth metal compound are heated at a relatively low temperature for several hours, a strong solidified body can be easily obtained. The solidified body prepared by these solidifying methods is relatively stable physically and chemically.

【図面の簡単な説明】[Brief description of drawings]

【図1】組成物(a),(b),(c)の材令4日まで
の強度発現を示すグラフである。
FIG. 1 is a graph showing strength development of compositions (a), (b), and (c) up to 4 days of age.

【図2】組成物(1),(2),(3)を90℃の温度
で、常圧において5時間加熱養生を行い、供試体を室温
にて1時間放置後の強度発現グラフである。
FIG. 2 is a graph of strength development after the compositions (1), (2) and (3) were heated and aged at a temperature of 90 ° C. for 5 hours at normal pressure, and the test pieces were left at room temperature for 1 hour. .

【図3】水比を30と一定にし、アルカリ金属化合物
(炭酸ナトリウム)と難溶性アルカリ土類金属化合物
(水酸化カルシウム)の混合量を変化させ、常圧下で7
0〜100℃で5時間加熱養生を行い、その後材令28
日まで水中養生を行なった供試体の、強度発現3次元グ
ラフである。
FIG. 3 The water ratio is kept constant at 30 and the mixing amount of the alkali metal compound (sodium carbonate) and the sparingly soluble alkaline earth metal compound (calcium hydroxide) is changed to 7 under normal pressure.
Heat curing at 0-100 ° C for 5 hours, then age 28
It is a three-dimensional graph of strength development of a specimen that has been subjected to underwater curing until day.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 常温下で、石炭灰にアルカリ金属化合物
及び難溶性アルカリ土類金属化合物を添加する石炭灰の
固化方法。
1. A method for solidifying coal ash, which comprises adding an alkali metal compound and a sparingly soluble alkaline earth metal compound to coal ash at room temperature.
【請求項2】 アルカリ金属化合物及び難溶性アルカリ
土類金属化合物を添加した石炭灰を、70〜100℃で
加熱養生する石炭灰の固化方法。
2. A method for solidifying coal ash in which the coal ash to which the alkali metal compound and the sparingly soluble alkaline earth metal compound are added is heat-cured at 70 to 100 ° C.
JP29482893A 1993-11-25 1993-11-25 Method for solidifying coal ash Pending JPH07145394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29482893A JPH07145394A (en) 1993-11-25 1993-11-25 Method for solidifying coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29482893A JPH07145394A (en) 1993-11-25 1993-11-25 Method for solidifying coal ash

Publications (1)

Publication Number Publication Date
JPH07145394A true JPH07145394A (en) 1995-06-06

Family

ID=17812783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29482893A Pending JPH07145394A (en) 1993-11-25 1993-11-25 Method for solidifying coal ash

Country Status (1)

Country Link
JP (1) JPH07145394A (en)

Similar Documents

Publication Publication Date Title
JP4568430B2 (en) Method for preparing pumpable formulations and method for forming waste foam
JP2000211956A (en) Cement composition
JPS63289498A (en) Solidifying agent for radioactive waste
JP6934337B2 (en) Geopolymer composition and cured geopolymer
JPH0337145A (en) Quick setting agent for cement
JP2954136B2 (en) Ground improvement method
US4210456A (en) Method for producing a storable mortar
US4930428A (en) Cement composition comprising sodium tripolyphosphate and process for forming shaped articles therefrom
JP2716758B2 (en) Cement admixture
JPH07145394A (en) Method for solidifying coal ash
JPH10279937A (en) Cement-based solidifying material
JPH0214308B2 (en)
JP3378965B2 (en) Method for improving strength of hardened cement
JP3007905B2 (en) Soil improvement method
US1696899A (en) Cement
EP0434274A2 (en) Injectable grout
JPS5860650A (en) Method of controlling volume of cementitious material at setting process in concrete flow-in method and composition therefor
JPH0288451A (en) Waterproof cement admixture
JPS59111955A (en) Expandable cement composition
JPH0667791B2 (en) ALC manufacturing method
JP2006282430A (en) Shrinkage suppressing method of cement hardened body, and expanding material
JPH0497929A (en) Water-soluble fine particle silica dispersed body for admixture for cement
JPS6144835B2 (en)
JP2002234024A (en) Manufacturing method for cement composition
JPS6311309B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601