JPH07145387A - Production of mesocarbon microbead - Google Patents

Production of mesocarbon microbead

Info

Publication number
JPH07145387A
JPH07145387A JP5291784A JP29178493A JPH07145387A JP H07145387 A JPH07145387 A JP H07145387A JP 5291784 A JP5291784 A JP 5291784A JP 29178493 A JP29178493 A JP 29178493A JP H07145387 A JPH07145387 A JP H07145387A
Authority
JP
Japan
Prior art keywords
mesocarbon microbeads
graphitized
firing
air
mesocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5291784A
Other languages
Japanese (ja)
Other versions
JP3678433B2 (en
Inventor
Noriyoshi Fukuda
田 典 良 福
Akihisa Takayama
山 明 久 高
Hitomi Hatano
仁 美 羽多野
Takashi Haraoka
岡 たかし 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29178493A priority Critical patent/JP3678433B2/en
Publication of JPH07145387A publication Critical patent/JPH07145387A/en
Application granted granted Critical
Publication of JP3678433B2 publication Critical patent/JP3678433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a mesocarbon microbead baked or graphitized with a good reproducibility at a low cost. CONSTITUTION:A mesocarbon microbead is baked to 120 deg.C) in the air and graphitized in an inert or nonoxidizing atmosphere at a temp. rise rate of 10 deg.C/hr to 1,000 deg.C, if necessary to 3,000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】メソカーボンマイクロビーズとは
ピッチ類を350〜450℃に熱処理した時にピッチ中
に生成する巨大多環芳香族性高分子がピッチマトリック
スから析出した、光学的に異方性を呈するメソフェーズ
小球体を有機溶剤でピッチマトリックスから分離して得
られる、粒径数〜数十μmの微細な炭素質微粉末を言
う。メソカーボンマイクロビーズはコークスとピッチ類
の中間的な性質を有し、バインダーレスの高密度炭素材
原料として実用化されており、近年ではメソカーボンマ
イクロビーズをそのまま焼成、黒鉛化して導電性樹脂等
への添加物あるいはLiイオン二次電池負極用の炭素材
料としての利用が注目を浴びている。本発明は導電性樹
脂添加物あるいはLiイオン二次電池負極用の炭素材料
として利用される焼成、黒鉛化されたメソカーボンマイ
クロビーズの製造方法に関わる。
[Industrial application] Mesocarbon microbeads are optical anisotropy in which pitch polycyclic aromatic macromolecules formed in pitch when heat-treated at 350-450 ℃ A fine carbonaceous fine powder having a particle size of several to several tens of μm, which is obtained by separating mesophase spheroids exhibiting the above from the pitch matrix with an organic solvent. Mesocarbon microbeads have an intermediate property between coke and pitch, and have been put into practical use as a binderless high-density carbon material raw material. In recent years, mesocarbon microbeads have been directly fired and graphitized to form a conductive resin, etc. Attention has been paid to its use as an additive to carbon or as a carbon material for a negative electrode of a Li-ion secondary battery. The present invention relates to a method for producing a fired and graphitized mesocarbon microbead used as a conductive resin additive or a carbon material for a negative electrode of a Li-ion secondary battery.

【0002】[0002]

【従来の技術】一般に、炭素材料は2000℃以上の高
温処理して使用されることが多い。この高温処理は通常
炭素材料が酸素と反応し、酸化消耗するために、Ar,
2 等の不活性ガス中あるいはコークスブリーズ等の還
元雰囲気中で行われる。メソカーボンマイクロビーズは
コークスとピッチ類の中間的な性質を有するためまだ化
学的な活性が強く、焼成、黒鉛化時に加圧型を行わなく
ても容易に自己焼結し、一次粒子としてメソカーボンマ
イクロビーズを得るために焼成、黒鉛化後に解砕する必
要があり、且つこの解砕工程が粒子間の強固な融着のた
め多大な労力を要している問題があった。
2. Description of the Related Art Generally, carbon materials are often used after being treated at a high temperature of 2000 ° C. or higher. In this high-temperature treatment, the carbon material usually reacts with oxygen and is oxidized and consumed.
It is carried out in an inert gas such as N 2 or in a reducing atmosphere such as coke breeze. Since the mesocarbon microbeads have intermediate properties between coke and pitch, they are still chemically active, and they easily self-sinter without firing under pressure when graphitizing, and the mesocarbon microbeads are used as primary particles. There has been a problem that it is necessary to crush and to crush after graphitization to obtain beads, and this crushing process requires a great deal of labor because of strong fusion between particles.

【0003】一方で、既述したように近年、メソカーボ
ンマイクロビーズの持つ物理特性を生かす新規用途が開
発され、特に特開平4−115458号、特開平4−1
88559号、特開平4−190557号、特開平4−
332484号等に示されるように、メソカーボンマイ
クロビーズを高温処理した炭素材料がリチウムイオン二
次電池の負極に適していることが明らかになり、メソカ
ーボンマイクロビーズの安価な高温処理技術が課題とな
っている。
On the other hand, as described above, in recent years, new applications have been developed which make use of the physical properties of the mesocarbon microbeads, and especially JP-A-4-115458 and JP-A-4-1-1.
88559, JP-A-4-190557, and JP-A-4-190557.
As shown in No. 332484 and the like, it became clear that a carbon material obtained by treating mesocarbon microbeads at a high temperature is suitable for a negative electrode of a lithium ion secondary battery, and an inexpensive high temperature treatment technique for mesocarbon microbeads becomes a problem. Has become.

【0004】[0004]

【発明が解決しようとする課題】本発明はメソカーボン
マイクロビーズの持つ本来の物理特性を損なうことなく
安価で、再現性に優れた、焼成あるいは黒鉛化されたメ
ソカーボンマイクロビーズの製造方法を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing mesocarbon microbeads which are calcined or graphitized, which are inexpensive and excellent in reproducibility without impairing the original physical properties of mesocarbon microbeads. To do.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、メ
ソカーボンマイクロビーズを空気中で120℃まで焼成
した後、さらに不活性または非酸化性雰囲気中で10℃
/hr以上の昇温速度で1000℃、必要に応じて30
00℃まで黒鉛化処理することを特徴とするメソカーボ
ンマイクロビーズの製造方法を提供するものである。空
気中での焼成後、600℃までは100℃/hr以下の
昇温速度で焼成するのが好ましい。
[Means for Solving the Problems] That is, according to the present invention, after firing mesocarbon microbeads to 120 ° C. in air, they are further heated to 10 ° C. in an inert or non-oxidizing atmosphere.
1000 ° C at a heating rate of / hr or more, 30 if necessary
The present invention provides a method for producing mesocarbon microbeads, which comprises performing graphitization treatment up to 00 ° C. After firing in air, it is preferable to perform firing up to 600 ° C. at a temperature rising rate of 100 ° C./hr or less.

【0006】[0006]

【作用】以下に本発明をさらに詳細に説明する。メソカ
ーボンマイクロビーズがコークス類と異なり、自己焼結
性を有するのは、その構成分子中に比較的低分子量留分
を含有している為である。この低分子量留分は焼成時に
350〜450℃の領域で軟化溶融し、かつ一定の残炭
率を持つためにメソカーボンマイクロビーズ同士を強固
に接着させる。この接着力は本発明者らの研究によれば
焼成速度に依存する。通常、速い昇温速度は軽質分の溶
融、蒸発を高温側にシフトさせるためより強固な接着を
もたらす。
The present invention will be described in more detail below. The reason why the mesocarbon microbeads have self-sintering properties, unlike cokes, is that they contain a relatively low molecular weight fraction in their constituent molecules. This low molecular weight fraction softens and melts in the region of 350 to 450 ° C. during firing and has a constant residual carbon rate, so that the mesocarbon microbeads are firmly bonded to each other. This adhesion depends on the firing rate according to the studies by the present inventors. Usually, a fast heating rate shifts the melting and evaporation of light components to the high temperature side, resulting in stronger adhesion.

【0007】しかし当然のことながら、焼成速度を高め
ることは強固に接着したメソカーボンマイクロビーズを
解砕することが困難となり、結果的に製造コストが増加
することとなり、安価なメソカーボンマイクロビーズの
高温処理方法と言う初期の目標を達成することが出来な
い。
However, as a matter of course, increasing the firing rate makes it difficult to crush the strongly bonded mesocarbon microbeads, resulting in an increase in manufacturing cost. The initial goal of high temperature treatment method cannot be achieved.

【0008】本発明者等は更に鋭意研究を重ねた結果、
メソカーボンマイクロビーズ焼成時の120℃以下の低
温領域で、一旦空気中で酸素と反応させることによりそ
の後の焼成速度を大幅に増加させることが可能であるこ
とを発見した。メソカーボンマイクロビーズは勿論、空
気中では容易に酸素と反応し、燃えてしまう。しかしな
がら、120℃以下の温度領域での反応は遅く、工業的
に充分制御可能である。120℃以下の温度で空気中に
暴露されたメソカーボンマイクロビーズは酸素によりそ
の構成成分である低分子量留分が重質化し、急速に接着
力を低下させる。120℃超の温度では酸化反応が急速
に進行し、制御が困難となりメソカーボンマイクロビー
ズが燃焼してしまうばかりでなく、結晶構造の破壊をも
たらす。一方、40℃以下の温度では酸化反応は極めて
遅く、効果が得られないため好ましくは40℃以上の温
度を選定することが好ましい。
As a result of further diligent studies, the present inventors have found that
It was discovered that it is possible to significantly increase the subsequent firing rate by once reacting with oxygen in air in the low temperature region of 120 ° C. or lower during firing of the mesocarbon microbeads. Not to mention mesocarbon microbeads, it easily reacts with oxygen and burns in the air. However, the reaction in the temperature range of 120 ° C. or lower is slow and can be industrially sufficiently controlled. The mesocarbon microbeads exposed to the air at a temperature of 120 ° C. or lower make oxygen a heavy component of the low molecular weight fraction, which is a constituent thereof, and rapidly reduce the adhesive strength. At a temperature above 120 ° C., the oxidation reaction proceeds rapidly, making it difficult to control and burning the mesocarbon microbeads, as well as causing the destruction of the crystal structure. On the other hand, at a temperature of 40 ° C. or lower, the oxidation reaction is extremely slow and no effect can be obtained. Therefore, it is preferable to select a temperature of 40 ° C. or higher.

【0009】かかる空気中での酸化処理を実施したメソ
カーボンマイクロビーズは結晶構造を破壊することなく
メソカーボンマイクロビーズ間の接着力が低下してお
り、その後焼成速度を10℃/hr以上、好ましくは1
00℃/hr以下と言う、炭素材料の焼成速度としては
極めて速い昇温速度で例えば1000℃といった温度域
まで焼成可能となる。さらに、必要に応じて3000℃
まで黒鉛化処理することができる。尚、好ましくはかか
る100℃/hr以下と言う条件は、温度600℃付近
までであって、これ以上の温度領域では、更に速い昇温
速度を採用することも可能である。こうした条件を採用
することにより、従来、メソカーボンマイクロビーズ同
士の融着を防止するために1〜3℃/hrと言う極めて
ゆっくりした昇温速度を採用し、それにも関わらず、最
終工程で解砕操作を必要とする複雑な製造工程が極めて
簡略化されることが明らかになった。なお、空気中での
酸化処理後の焼成あるいは黒鉛化処理は従来と同様不活
性または非酸化性雰囲気中で行なう。
The mesocarbon microbeads that have been subjected to such an oxidation treatment in air have a reduced adhesive force between the mesocarbon microbeads without destroying the crystal structure, and then the firing rate is 10 ° C./hr or more, preferably Is 1
The firing rate of the carbon material, which is equal to or lower than 00 ° C./hr, is extremely fast, and it is possible to perform firing up to a temperature range of 1000 ° C. Furthermore, if necessary, 3000 ℃
It can be graphitized. The condition of 100 ° C./hr or less is preferably up to a temperature of around 600 ° C., and in a temperature range higher than this, it is possible to adopt a higher temperature rising rate. By adopting such a condition, conventionally, an extremely slow temperature rising rate of 1 to 3 ° C./hr is used to prevent fusion of mesocarbon microbeads to each other, and nevertheless, in the final step, It turned out that the complicated manufacturing process which requires a crushing operation is greatly simplified. The firing or graphitization treatment after the oxidation treatment in air is performed in an inert or non-oxidizing atmosphere as in the conventional case.

【0010】[0010]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例1)フリーカーボン(QI)を1.5%含有す
るコールタールを、450℃で0.2hr熱処理してメ
ソフェーズ小球体を生成させた。かかる熱処理ピッチを
タール中油(bp:130〜250℃)を使用して抽出
し、ピッチマトリックス中からメソフェーズ小球体を分
離濾過し、溶剤を除去するために充分乾燥してメソカー
ボンマイクロビーズを得た。かかるメソカーボンマイク
ロビーズ約5kgを15LのSUS製の焼成管に充填
し、内部に空気を吹き込みながら、100℃で2分間処
理した後、空気を窒素雰囲気に変え、20℃/hrの速
度で1000℃まで焼成した。その後、黒鉛化炉を使用
して、2800℃まで500℃/hrの速度で高温処理
して目的とするメソカーボンマイクロビーズの黒鉛化品
を得た。この時、メソカーボンマイクロビーズは互いに
融着することなく、一次粒子のままであった。かかる黒
鉛化されたメソカーボンマイクロビーズは平均粒径が1
2.1μmで、X線の(002)回折線から得られる格
子定数Coと結晶子の大きさLcはそれぞれ6.758
Å、376Åであった。
EXAMPLES The present invention will be specifically described below based on examples. (Example 1) Coal tar containing 1.5% of free carbon (QI) was heat-treated at 450 ° C for 0.2 hr to generate mesophase microspheres. The heat-treated pitch was extracted using oil in tar (bp: 130 to 250 ° C.), the mesophase microspheres were separated and filtered from the pitch matrix, and sufficiently dried to remove the solvent to obtain mesocarbon microbeads. . About 15 kg of such mesocarbon microbeads was filled in a 15 L SUS firing tube, and while being blown with air, the mixture was treated at 100 ° C. for 2 minutes, then the air was changed to a nitrogen atmosphere, and 1000 ° C. at 20 ° C./hr. Bake to ℃. Then, using a graphitization furnace, high temperature treatment was performed up to 2800 ° C. at a rate of 500 ° C./hr to obtain a target graphitized product of mesocarbon microbeads. At this time, the mesocarbon microbeads remained as primary particles without being fused to each other. The graphitized mesocarbon microbeads have an average particle size of 1
At 2.1 μm, the lattice constant Co and the crystallite size Lc obtained from the (002) diffraction line of X-ray are 6.758, respectively.
It was Å, 376Å.

【0011】(実施例2)実施例1と同様して得られた
メソカーボンマイクロビーズ約5kgを15LのSUS
製の焼成管に充填し、室温(23℃)から昇温速度15
℃/hrで1000℃まで一定速度で焼成した。この
時、120℃までは焼成管中に空気を流し、120℃を
超える温度になった時、空気を窒素に切り換えた。その
後は実施例1と同様の条件で黒鉛化処理を実施してメソ
カーボンマイクロビーズの黒鉛化品を得た。この時、メ
ソカーボンマイクロビーズは実施例1と同様に互いに融
着することなく、一次粒子のままであった。かかる黒鉛
化されたメソカーボンマイクロビーズは平均粒径が1
2.4μmで、X線の(002)回折線から得られる格
子定数Coと結晶子の大きさLcはそれぞれ6.753
Å、396Åであり、実施例1と同様の物性を示した。
(Example 2) About 5 kg of mesocarbon microbeads obtained in the same manner as in Example 1 was added with 15 L of SUS.
It is filled in a baking tube made of steel and heated from room temperature (23 ° C) to a heating rate of 15
Baking was performed at a constant rate up to 1000 ° C at a rate of ° C / hr. At this time, air was flown through the firing tube up to 120 ° C, and when the temperature exceeded 120 ° C, the air was switched to nitrogen. After that, graphitization was performed under the same conditions as in Example 1 to obtain a graphitized mesocarbon microbead. At this time, the mesocarbon microbeads remained as primary particles without being fused to each other as in Example 1. The graphitized mesocarbon microbeads have an average particle size of 1
At 2.4 μm, the lattice constant Co and the crystallite size Lc obtained from the (002) diffraction line of X-ray are 6.753, respectively.
Å, 396Å, showing the same physical properties as in Example 1.

【0012】(比較例1)実施例1と同様して得られた
メソカーボンマイクロビーズ約5kgを15LのSUS
製の焼成管に充填し、室温(23℃)から昇温速度15
℃/hrで1000℃まで一定速度で焼成した。この
時、1000℃までは焼成管中に窒素を流した。焼成が
終了したメソカーボンマイクロビーズは強固に融着し、
約5kgの塊として得られた。かかる焼成したメソカー
ボンマイクロビーズを実施例1と同様の条件で黒鉛化処
理を実施した。黒鉛化したメソカーボンマイクロビーズ
を粉砕機で粉砕後、平均粒径が13.7μmとなった。
また、X線の(002)回折線から得られる格子定数C
oと結晶子の大きさLcはそれぞれ6.752Å、38
6Åであり、実施例と同等の結晶構造であった。
(Comparative Example 1) About 5 kg of mesocarbon microbeads obtained in the same manner as in Example 1 was mixed with 15 L of SUS.
It is filled in a baking tube made of steel and heated from room temperature (23 ° C) to a heating rate of 15
Baking was performed at a constant rate up to 1000 ° C at a rate of ° C / hr. At this time, nitrogen was flown into the firing tube up to 1000 ° C. The baked mesocarbon microbeads are firmly fused,
Obtained as a mass of about 5 kg. The calcined mesocarbon microbeads were graphitized under the same conditions as in Example 1. After crushing the graphitized mesocarbon microbeads with a crusher, the average particle size became 13.7 μm.
Also, the lattice constant C obtained from the (002) diffraction line of the X-ray
o and crystallite size Lc are 6.752Å and 38, respectively.
It was 6Å and had a crystal structure equivalent to that of the example.

【0013】[0013]

【発明の効果】従来法によると自己焼結してメソカーボ
ンマイクロビーズが強固に接着された塊状となるため、
多大な労力を必要とする解砕が必要であったが、本発明
法によればその必要がなく、安価に、再現性よく、焼成
あるいは黒鉛化されたメソカーボンマイクロビーズを製
造することができ、導電性樹脂組成物、Liイオン二次
電池負極用の炭素材料などに好適に利用可能である。
EFFECTS OF THE INVENTION According to the conventional method, self-sintering causes the mesocarbon microbeads to be firmly adhered to form a lump.
Although disintegration which requires a great deal of labor was required, the method of the present invention does not require such disintegration, and it is possible to produce calcined or graphitized mesocarbon microbeads at low cost, with good reproducibility. It can be suitably used for a conductive resin composition, a carbon material for a Li-ion secondary battery negative electrode, and the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽多野 仁 美 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 原 岡 たかし 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitomi Hatano, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Takashi Oka Hara Kawasaki, Chuo-ku, Chiba 1st town Kawasaki Steel Co., Ltd. Technical Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】メソカーボンマイクロビーズを空気中で1
20℃まで焼成した後、さらに不活性または非酸化性雰
囲気中で10℃/hr以上の昇温速度で1000℃、必
要に応じて3000℃まで黒鉛化処理することを特徴と
するメソカーボンマイクロビーズの製造方法。
1. Mesocarbon microbeads in air 1
Mesocarbon microbeads characterized by being calcined to 20 ° C. and then graphitized to 1000 ° C. at a temperature rising rate of 10 ° C./hr or more in an inert or non-oxidizing atmosphere, and to 3000 ° C. if necessary. Manufacturing method.
【請求項2】空気中での焼成後、600℃までは100
℃/hr以下の昇温速度で焼成する請求項1に記載のメ
ソカーボンマイクロビーズの製造方法。
2. After firing in air, 100 up to 600 ° C.
The method for producing mesocarbon microbeads according to claim 1, wherein the mesocarbon microbeads are fired at a temperature rising rate of not more than ° C / hr.
JP29178493A 1993-11-22 1993-11-22 Method for producing mesocarbon microbeads Expired - Fee Related JP3678433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29178493A JP3678433B2 (en) 1993-11-22 1993-11-22 Method for producing mesocarbon microbeads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29178493A JP3678433B2 (en) 1993-11-22 1993-11-22 Method for producing mesocarbon microbeads

Publications (2)

Publication Number Publication Date
JPH07145387A true JPH07145387A (en) 1995-06-06
JP3678433B2 JP3678433B2 (en) 2005-08-03

Family

ID=17773387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29178493A Expired - Fee Related JP3678433B2 (en) 1993-11-22 1993-11-22 Method for producing mesocarbon microbeads

Country Status (1)

Country Link
JP (1) JP3678433B2 (en)

Also Published As

Publication number Publication date
JP3678433B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP2010535697A (en) Methods for producing metals and alloys by carbothermal reduction of metal oxides
JP3093015B2 (en) Needle coke manufacturing method
JPH07145387A (en) Production of mesocarbon microbead
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP3714973B2 (en) Method for producing mesocarbon microbeads
JPH0288414A (en) Production of elastic graphite body
JPH07126659A (en) Production of meso-carbon microbead
CN108675292A (en) The method that combination method prepares isotropic graphite material
JPH02271919A (en) Production of fine powder of titanium carbide
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH07223808A (en) Spherical carbon powder, spherical graphite powder and production thereof
JP3593140B2 (en) Method for producing carbon material for secondary battery negative electrode
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2924061B2 (en) Production method of raw material powder for carbon material
JP2758962B2 (en) Production method of raw material powder for isotropic, high density, high strength carbon materials
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS6270216A (en) Production of coke for isotropic carbon material
JP3133679B2 (en) Carbonaceous powder for negative electrode material of lithium battery and method for producing the same
JPS6213284B2 (en)
JP2924062B2 (en) Production method of raw material powder for carbon material
JPH05105512A (en) Production of high-density isotropic carbonaceous material
JPH0292815A (en) Production of activated coke
JPH05330813A (en) Production of raw material for high purity special carbonaceous material
CN111072005A (en) Preparation method of carbon material oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees