JPH0714454B2 - Control method of flue gas desulfurization equipment - Google Patents

Control method of flue gas desulfurization equipment

Info

Publication number
JPH0714454B2
JPH0714454B2 JP63335582A JP33558288A JPH0714454B2 JP H0714454 B2 JPH0714454 B2 JP H0714454B2 JP 63335582 A JP63335582 A JP 63335582A JP 33558288 A JP33558288 A JP 33558288A JP H0714454 B2 JPH0714454 B2 JP H0714454B2
Authority
JP
Japan
Prior art keywords
inlet
concentration
exhaust gas
absorbent
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63335582A
Other languages
Japanese (ja)
Other versions
JPH02180617A (en
Inventor
忠義 田丸
博雄 井上
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP63335582A priority Critical patent/JPH0714454B2/en
Publication of JPH02180617A publication Critical patent/JPH02180617A/en
Publication of JPH0714454B2 publication Critical patent/JPH0714454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排ガスを吸収塔に入れて吸収液と接触させるこ
とにより排ガス中のSO2を吸収して除去させる排煙脱硫
装置を現時点から或る時間後を予測して制御するために
用いる排煙脱硫装置の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flue gas desulfurization device for absorbing and removing SO 2 in exhaust gas by putting the exhaust gas into an absorption tower and contacting with the absorbing liquid. The present invention relates to a control method of a flue gas desulfurization device used for predicting and controlling after a certain period of time.

[従来の技術] ボイラからの排ガス中のSO2を吸収して脱硫する排煙脱
硫装置としては、下部に接続したガス入口管より流入さ
せたボイラの排ガスを、頂部のガス出口管より排出させ
るようにしてある吸収塔の下部に液溜タンクを設け、該
液溜タンク内の吸収液を複数の循環ポンプ、循環ライン
を経て上部のスプレー段に導き、スプレー段のスプレー
ノズルより吸収液を噴出させて上記排ガスと接触させる
ようにし、排ガス中のSO2を吸収液中の吸収剤で吸収さ
せて脱硫後のガスは塔頂のガス出口管より排出させ、一
方、SO2を吸収した吸収剤スラリーを液溜タンク内で空
気で酸化させることにより石膏スラリーとした後、石膏
として回収するようにした湿式石灰石膏法の排煙脱硫装
置が知られている。
[Prior Art] As a flue gas desulfurization device that absorbs SO 2 in exhaust gas from a boiler and desulfurizes it, the exhaust gas of the boiler, which has flowed in through a gas inlet pipe connected to the lower part, is discharged through a gas outlet pipe at the top. A liquid storage tank is installed in the lower part of the absorption tower, and the absorption liquid in the liquid storage tank is guided to the upper spray stage through a plurality of circulation pumps and circulation lines, and the absorption liquid is jetted from the spray nozzle of the spray stage. by so as to contact with the exhaust gas, the gas after desulfurization by absorbing the sO 2 in the flue gas in the absorption agent in the absorbing fluid is discharged from the top of the gas outlet pipe, while the absorbent that has absorbed sO 2 There is known a flue gas desulfurization apparatus of the wet lime gypsum method in which gypsum slurry is obtained by oxidizing the slurry with air in a liquid storage tank to obtain gypsum slurry.

かかる湿式石灰石膏法排煙脱硫装置の制御方法におい
て、現時点から或る時間後の脱硫率が最適となるように
吸収剤の供給量、循環ポンプ運転台数を予測制御するこ
とは従来全く行われていない。従来の制御方法は、吸収
塔へ入る排ガス流量、吸収塔へ入る排ガス中のSO2濃度
(入口SO2濃度)、吸収塔から出る排ガス中のSO2濃度
(出口SO2濃度)、循環される吸収液pH、等の現在のデ
ータから吸収塔への吸収剤の供給量を調整したり、循環
ポンプの運転台数を決めたりして、脱硫率、吸収液中吸
収剤濃度を制御するものであり、特に、循環ポンプの運
転台数の決定は、吸収塔出口SO2濃度をみながら作業員
の勘により行われている。
In such a method for controlling a wet lime gypsum flue gas desulfurization device, predictive control of the supply amount of the absorbent and the number of circulating pumps has been conventionally performed so that the desulfurization rate after a certain time from the present time becomes optimum. Absent. Conventional control method, exhaust gas flow rate entering the absorption tower, SO 2 concentration (the inlet SO 2 concentration) in the exhaust gas entering the absorption tower, SO 2 concentration in the exhaust gas leaving the absorption tower (outlet SO 2 concentration), is circulated The desulfurization rate and the concentration of absorbent in the absorbent are controlled by adjusting the amount of absorbent supplied to the absorption tower based on the current data such as the pH of the absorbent, etc., and by determining the number of operating circulating pumps. Especially, the number of operating circulation pumps is determined by the operator's intuition while observing the SO 2 concentration at the outlet of the absorption tower.

[発明が解決しようとする課題] 上記従来の排煙脱硫装置の制御方法では、現在の運転デ
ータをもとに脱硫率を計算して最適な運転条件を見付け
ようとするものではないばかりでなく、予測制御をする
ものではないので、最適な制御ができなかった。
[Problems to be Solved by the Invention] In the above conventional control method for a flue gas desulfurization device, not only is the desulfurization rate calculated based on the current operation data to find an optimum operating condition, Since it is not a predictive control, the optimum control could not be performed.

そこで、本発明は、現在の運転データをもとにし且つボ
イラの負荷から予定の排ガス流量、入口SO2濃度を設定
して或る時間後の脱硫率を求めるようにして実際に合致
した予測制御ができるようにしようとするものである。
Therefore, the present invention is based on the present operation data, and the predicted exhaust gas flow rate and the inlet SO 2 concentration are set from the load of the boiler to obtain the desulfurization rate after a certain time, and the predictive control actually matched. It is intended to be possible.

[課題を解決するための手段] 本発明は、上記課題を解決するために、吸収塔へ入る排
ガス流量、吸収液pH、吸収液中吸収剤濃度、吸収塔入口
及び出口のSO2濃度、循環ポンプ運転台数の如き現在の
運転データをもとに計算機で脱硫率のモデル式を設定
し、一方、現在の負荷、現在の排ガス流量、現在の入口
SO2濃度をもとに負荷と排ガス流量の関係、負荷と入口S
O2濃度の関係を作って現時点からt時間後までの予定の
負荷変化に照して予定排ガス流量、予定入口SO2濃度を
設定し、脱硫率モデル式に従い上記予定排ガス流量、予
定入口SO2濃度をとり入れてt時間後の脱硫率を計算
し、次いで、該計算で求められたt時間後の脱硫率と設
定脱硫率と比較し、偏差が大きいと計算上の運転条件を
変更して計算し直し、上記偏差が小さくなると、そのと
きの運転条件を記憶させ、該記憶させた運転条件どおり
に予測制御させる方法とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention is directed to a flow rate of exhaust gas entering an absorption tower, a pH of an absorbent, an absorbent concentration in the absorbent, a SO 2 concentration at an inlet and an outlet of the absorbent, a circulation. A model formula of desulfurization rate is set by a computer based on the current operation data such as the number of pumps operating, while the current load, the current exhaust gas flow rate, the current inlet
Relationship between load and exhaust gas flow rate based on SO 2 concentration, load and inlet S
O 2 irradiation to planned exhaust gas flow to the load change events from the present time to make a concentration of relationship until after t time, scheduled inlet SO 2 set concentration, the expected exhaust gas flow rate in accordance with the desulfurization rate model formula will inlet SO 2 The concentration is taken in to calculate the desulfurization rate after t hours, and then the desulfurization rate after t hours obtained by the calculation is compared with the set desulfurization rate. If the deviation is large, the operating conditions for calculation are changed to calculate. Again, when the deviation becomes small, the operating condition at that time is stored, and the predictive control is performed according to the stored operating condition.

[作用] 現在の運転データのうち、特に吸収塔入口の排ガス流
量、入り口SO2濃度と、現在のボイラ負荷と、予定のボ
イラ負荷とから予定の排ガス流量、予定の入口SO2濃度
を設定し、これを予測シミュレーション計算のベースと
するので、現時点からt時間後の入口排ガス流量、入口
SO2濃度を容易に予測でき、これに合わせて吸収剤供給
量、循環ポンプ運転台数を予測制御できる。
[Operation] Of the current operation data, set the exhaust gas flow rate at the inlet of the absorption tower, the SO 2 concentration at the inlet, the current boiler load, and the planned exhaust gas flow rate and the planned SO 2 concentration from the planned boiler load. , This is the basis of the predictive simulation calculation, so the inlet exhaust gas flow rate after t hours from the present time, the inlet
The SO 2 concentration can be easily predicted, and the absorbent supply amount and the number of circulating pumps can be predicted and controlled accordingly.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の方法の実施に使用する排煙脱硫装置の
概要を示すもので、下部に液溜タンクを設けて吸収液2
を溜めるようにした吸収塔1の上部に、スプレーノズル
4を有するスプレー段3を多段に配設し、各段のスプレ
ー段3に上記液溜タンクの吸収液2を導くための複数の
循環ライン5の途中に、それぞれ循環ポンプ6を設置
し、複数個の循環ポンプ6の運転により吸収液2がスプ
レー段3へ導かれてスプレーノズル4より噴出されるよ
うにする。一方、上記吸収塔1内の吸収液2の液面とス
プレー段3との間の位置に、ボイラ7からの排ガスを導
入させるようガス入口管8を接続すると共に、塔頂部に
ガス出口管9を接続し、ガス入口管8の途中に設置した
昇圧通風機10で昇圧されたボイラ排ガスが、各スプレー
段3のスプレーノズル4から噴出される吸収液2と接触
させられ、排ガス中のSO2が吸収液中の吸収剤に吸収さ
れ、ガスはガス出口管9より排出され、SO2は吸収剤と
してのCaCO3と反応し亜硫酸カルシウムとして吸収液2
中に入るようにし、更に、吸収塔1内の下部に空気吹込
口12を有する空気吹込管11を配設して、該空気吹込管11
に空気供給管13を接続すると共に、吸収液2中に吸収剤
としてのCaCO3を供給するライン14を吸収塔1の下部に
接続し、且つ吸収塔1の底部付近に液抜出管15を接続す
る。又、上記ガス入口管8の途中には、排ガスの流量を
検出する排ガス流量計16と、排ガス中のSO2濃度を検出
する入口SO2濃度計17とを設け、又、ガス出口管9に排
出されるガス中のSO2濃度を検出する出口SO2濃度計18を
設け、更に、循環ライン5に、吸収液のpHを検出するpH
計19と吸収液中の吸収剤濃度を検出する吸収剤濃度計20
を設ける。21は排ガス流量計16からの値と入口SO2濃度
計17からのSO2濃度値とを掛算してSO2の量を求める掛算
器、22は加算器、23は吸収剤供給ライン14により供給さ
れる吸収剤の供給量を調節させる流量調節計、24は該流
量調節計23により調節される調節弁、25は吸収液の抜出
管15から抜出される吸収液の量を調節する流量調節計、
26は該流量調節計25により調節される調節弁である。
FIG. 1 shows an outline of a flue gas desulfurization apparatus used for carrying out the method of the present invention.
A plurality of spray stages 3 each having a spray nozzle 4 are arranged on the upper part of the absorption tower 1 configured to store the liquid, and a plurality of circulation lines for guiding the absorption liquid 2 of the liquid storage tank to the spray stages 3 of the respective stages. A circulation pump 6 is installed in the middle of each of 5 so that the absorption liquid 2 is guided to the spray stage 3 and ejected from the spray nozzle 4 by the operation of the plurality of circulation pumps 6. On the other hand, a gas inlet pipe 8 is connected between the liquid surface of the absorbing liquid 2 and the spray stage 3 in the absorption tower 1 so as to introduce the exhaust gas from the boiler 7, and a gas outlet pipe 9 is provided at the top of the tower. The boiler exhaust gas pressurized by a pressure booster 10 installed in the middle of the gas inlet pipe 8 is brought into contact with the absorbing liquid 2 ejected from the spray nozzle 4 of each spray stage 3, and SO 2 in the exhaust gas is discharged. Is absorbed by the absorbent in the absorbent, the gas is discharged from the gas outlet pipe 9, and SO 2 reacts with CaCO 3 as the absorbent to form calcium sulfite as the absorbent 2.
Further, an air blow-in pipe 11 having an air blow-in port 12 is disposed in the lower part of the absorption tower 1 so that the air blow-in pipe 11 can be inserted.
Is connected to the air supply pipe 13, a line 14 for supplying CaCO 3 as an absorbent into the absorption liquid 2 is connected to the lower part of the absorption tower 1, and a liquid withdrawal pipe 15 is provided near the bottom of the absorption tower 1. Connecting. Further, an exhaust gas flow meter 16 for detecting the flow rate of the exhaust gas and an inlet SO 2 concentration meter 17 for detecting the SO 2 concentration in the exhaust gas are provided in the middle of the gas inlet pipe 8, and the gas outlet pipe 9 is provided. An outlet SO 2 concentration meter 18 for detecting the concentration of SO 2 in the discharged gas is provided, and a pH for detecting the pH of the absorbing liquid is further provided in the circulation line 5.
Total 19 and absorbent concentration meter 20 to detect the concentration of absorbent in the absorbent
To provide. 21 is a multiplier for obtaining the amount of SO 2 by multiplying the value from the exhaust gas flow meter 16 and the SO 2 concentration value from the inlet SO 2 concentration meter 17, 22 is an adder, and 23 is supplied by the absorbent supply line 14. Flow controller for adjusting the supply amount of the absorbent, 24 is a control valve adjusted by the flow controller 23, and 25 is a flow controller for adjusting the amount of the absorption liquid extracted from the absorption liquid extraction pipe 15. Total,
Reference numeral 26 is a control valve controlled by the flow rate controller 25.

本発明では、上記構成のほかに、現在の運転データや、
ボイラの現在又は予定の負荷との関係で求めた予定の入
口排ガス流量、予定の入口SO2濃度をベースとして脱硫
率の予測シミュレーション計算を行ってt時間の脱硫率
を求め、そのときの運転条件を記憶しておけるようにし
てある計算機27を使用し、且つ現在の運転データとし
て、排ガス流量計16からの現在の排ガス流量、入口SO2
濃度計17からの現在の入口SO2濃度、出口SO2濃度計18か
らの現在の出口SO2濃度、pH計19からの現在の吸収液p
H、吸収剤濃度計20からの現在の吸収剤濃度、現在の循
環ポンプ運転台数を使用するため、これらのデータを計
算機27に入力させるように電気的に接続する。
In the present invention, in addition to the above configuration, current operation data and
A desulfurization rate for t hours is calculated by performing a predictive simulation calculation of the desulfurization rate based on the planned inlet exhaust gas flow rate and the planned inlet SO 2 concentration determined in relation to the present or planned load of the boiler, and the operating conditions at that time Is used, and the current exhaust gas flow rate from the exhaust gas flow meter 16 and the inlet SO 2 are used as the current operation data.
Current absorption liquid p from the current inlet SO 2 concentration, the current outlet SO 2 concentration, pH meter 19 from the outlet SO 2 concentration meter 18 from densitometer 17
Since H, the current absorbent concentration from the absorbent densitometer 20, and the current number of circulating pumps in operation are used, these data are electrically connected so as to be input to the computer 27.

第2図は上記計算機27の内部構成例を示すもので、28は
現在の運転データから脱硫効率ηと吸収液pHの計算をす
るモデル式設定部、29は現在の運転データのうち、現在
の排ガス流量、現在の入口SO2濃度と現在のボイラ負荷
をベースに、ボイラ負荷と入口排ガス流量の関係、ボイ
ラ負荷と入口SO2濃度との関係を作り、この関係を予定
負荷の変化に照して予定排ガス流量Gと予定入口SO2
度Yを設定する設定部、30はモデル式の設定部28で計算
して求められる脱硫率ηと上記予定排ガス流量と予定入
口SO2濃度の設定部29からの予定排ガス流量、予定入口S
O2濃度をベースとして脱硫性能の予測シミュレーション
の計算を行いt時間の脱硫率ηtを算出する計算部、31
は算出されたt時間後の脱硫率ηtと脱硫率設定器32か
らの設定脱硫率ηsとを比較する比較部、33は比較部31
で比較された結果、上記t時間後の脱硫率ηtと設定脱
硫率ηSの偏差が大きいときに指示により変更される計
算上の予定の運転条件であり、34は予定吸収剤(CaC
O3)供給量の値、35は予定循環ポンプ運転台数の値であ
る。又、36は比較部31でt時間後の脱硫率ηtと設定脱
硫率ηsとを比較して偏差が小さくなりηt>ηsである
ときに、このときの運転条件を記憶させておく運転指示
記憶装置である。
FIG. 2 shows an example of the internal configuration of the computer 27, where 28 is a model formula setting unit that calculates desulfurization efficiency η and absorption liquid pH from the current operation data, and 29 is the current operation data among the current operation data. Based on the exhaust gas flow rate, the current inlet SO 2 concentration and the current boiler load, the relationship between the boiler load and the inlet exhaust gas flow rate and the relationship between the boiler load and the inlet SO 2 concentration are created, and this relationship is compared with the changes in the planned load. A setting unit for setting the planned exhaust gas flow rate G and the planned inlet SO 2 concentration Y, and 30 is a desulfurization rate η calculated by the model setting unit 28 and the above-mentioned planned exhaust gas flow rate and planned inlet SO 2 concentration setting unit 29. Planned exhaust gas flow rate from the planned entrance S
A calculation unit that calculates a desulfurization performance prediction simulation based on the O 2 concentration and calculates a desulfurization rate η t in t hours, 31
Is a comparing section for comparing the calculated desulfurization rate η t after t hours with the desulfurization rate η s set by the desulfurization rate setting unit 32, and 33 is a comparing section 31.
As a result, the calculated operating conditions are changed according to the instruction when the deviation between the desulfurization rate η t after the above t hours and the set desulfurization rate η S is large, and 34 is the planned absorbent (CaC
O 3 ) Supply amount value, 35 is the value of planned circulation pump operation number. Further, 36 is a comparison unit 31 which compares the desulfurization rate η t after t hours with the set desulfurization rate η s , and when the deviation is small and η t > η s , the operating condition at this time is stored. This is a storage device for storing driving instructions.

今、ボイラ7からの排ガスはガス入口管8を通り、昇圧
通風機10で昇圧されて吸収塔1内に入れられる。吸収塔
1では複数の循環ポンプ6の運転によりスプレー段3へ
導かれ、スプレーノズル4より吸収液2が噴出されてい
るので、上記吸収塔1に入った排ガスは吸収液2と向流
接触させられて排ガス中のSO2が吸収液中の吸収剤(CaC
O3)に吸収されて除去され、ガスはガス出口管9より排
出され、吸収液は循環使用される。排ガス中のSO2を吸
収した吸収剤は、SO2と反応して吸収液2中に入り、こ
こで、吹き込まれる空気によって酸化させられ、石膏ス
ラリーとして液抜出管15より抜き出されることになる。
Now, the exhaust gas from the boiler 7 passes through the gas inlet pipe 8 and is boosted by the booster fan 10 and put into the absorption tower 1. In the absorption tower 1, the plurality of circulation pumps 6 are operated to guide the spray to the spray stage 3, and the spray nozzle 4 ejects the absorption liquid 2. Therefore, the exhaust gas entering the absorption tower 1 is brought into countercurrent contact with the absorption liquid 2. The SO 2 in the exhaust gas is absorbed by the absorbent (CaC
O 3 ) is absorbed and removed, the gas is discharged from the gas outlet pipe 9, and the absorbing liquid is circulated and used. The absorbent that has absorbed SO 2 in the exhaust gas reacts with SO 2 and enters the absorption liquid 2, where it is oxidized by the blown air and extracted from the liquid extraction pipe 15 as gypsum slurry. Become.

上記吸収塔1内では、順次導入される排ガス中のSO2
吸収による脱硫作用が行われているが、現時点から或る
時間(t時間)後の予測制御を最適に行わせるようにす
る本発明の方法では、現在(現時点)の運転から得られ
るデータをもとに計算機27内のモデル式設定部28で脱硫
効率ηのシミュレーションモデルを作り、更に、現在の
運転データ、現在のボイラ負荷、予定のボイラ負荷変化
をベースにして予定の排ガス流量、予定の入口SO2濃度
を設定し、これに基づき予測シミュレーションの計算を
行ってt時間後の脱硫率ηtを求め、該脱硫率ηtが最適
となるところの運転条件を記憶させて予測制御させるよ
うにする。
In the absorption tower 1, desulfurization is performed by absorption of SO 2 in the exhaust gas that is sequentially introduced, but a book that optimizes predictive control after a certain time (t hours) from the present time In the method of the invention, a simulation model of the desulfurization efficiency η is created by the model formula setting unit 28 in the computer 27 based on the data obtained from the current (current time) operation, and further, the current operation data, the current boiler load, A planned exhaust gas flow rate and a planned inlet SO 2 concentration are set based on the planned boiler load change, and a predictive simulation is calculated based on this to determine the desulfurization rate η t after t hours, and the desulfurization rate η t The operating conditions at which is optimal are stored for predictive control.

詳述すると、現在の運転データとして、第2図に示す如
く現時点の排ガス流量、吸収液pH、吸収液中吸収剤濃
度、循環ポンプ運転台数、入口SO2濃度、出口SO2濃度を
モデル式設定部28に入力させて、モデル式に従って脱硫
効率ηと吸収液pHの計算を行う。すなわち、脱硫効率η
は、 η=100{1−exp(−K・Pna・G-b・exp(pH−α・
Y)・Ce} 吸収液pHは、 但し、K、Kc、a〜h:定数 Pn :循環ポンプ運転台数 G :入口排ガス流量 Y :入口SO2濃度 C :吸収液中吸収剤濃度 V :液溜タンク容量 S :吸収SO2 Pc :吸収剤供給量 B :抜出液量 この場合、脱硫効率と循環ポンプ運転台数との関係は第
3図に示す如くであり、運転台数の増加に伴い脱硫効率
はよくなる。図中、Iは排ガス流量が少ないときの曲
線、IIは排ガス流量が多いときの曲線、IIIは排ガス流
量が上記の中間のときの曲線である。又、脱硫効率と吸
収液pHとの関係は、第4図に示す如くであり、吸収液pH
と吸収液中の吸収剤濃度との関係は、第5図に示す如く
であり、吸収液中の吸収剤濃度が決まれば吸収液pHが決
まる関係にある。第5図中、I′は吸収SO2量が少ない
場合、II′は吸収SO2量が中間の場合、III′は吸収SO2
量が多い場合の各曲線である。
More specifically, as the current operation data, as shown in Fig. 2, the exhaust gas flow rate, the absorption liquid pH, the concentration of the absorbent in the absorption liquid, the number of operating circulation pumps, the inlet SO 2 concentration, and the outlet SO 2 concentration are set as model equations as shown in Fig. 2. It is input to the unit 28 and the desulfurization efficiency η and the absorption liquid pH are calculated according to the model formula. That is, the desulfurization efficiency η
Is η = 100 {1-exp (-K ・ Pn a・ G -b・ exp (pH−α ・
Y) · C e } The absorption liquid pH is However, K, Kc, a to h: Constant Pn: Number of circulating pumps operating G: Inlet exhaust gas flow rate Y: Inlet SO 2 concentration C: Absorbent concentration in absorbing liquid V: Liquid tank capacity S: Absorbed SO 2 amount Pc: Absorbent supply amount B: Extracted liquid amount In this case, the relationship between the desulfurization efficiency and the number of operating circulation pumps is as shown in Fig. 3, and the desulfurization efficiency improves as the number of operating units increases. In the figure, I is a curve when the exhaust gas flow rate is low, II is a curve when the exhaust gas flow rate is high, and III is a curve when the exhaust gas flow rate is in the middle of the above. The relationship between desulfurization efficiency and absorption liquid pH is as shown in Fig. 4.
The relationship between and the concentration of the absorbent in the absorbent is as shown in FIG. 5, and if the concentration of the absorbent in the absorbent is determined, the pH of the absorbent is determined. In Fig. 5, I'is when the absorbed SO 2 amount is small, II 'is when the absorbed SO 2 amount is intermediate, and III' is the absorbed SO 2 amount.
The curves are for large quantities.

次に、予測シミュレーションの計算部30での計算のベー
スとなる予定排ガス量G、予定入口SO2濃度Yを設定部2
9で設定する。この場合、設定部29では、現在の入口SO2
濃度、現在の排ガス流量、現在のボイラ負荷をベース
に、ボイラ負荷と排ガス流量の関係、ボイラ負荷と入口
SO2濃度の関係を作り、これを予定負荷変化に照して設
定する。上記ボイラ負荷と排ガス流量比の関係は、実験
の結果、第6図の如き関係にあることが判明し、ボイラ
負荷と入口SO2濃度の関係は、同じく実験の結果、第7
図の如き関係にあることが判明した。第6図における縦
軸の入口排ガス流量比は、ボイラ負荷100%時の入口排
ガス流量をベース(1.0)とした場合の各負荷時におけ
る入口排ガス流量の比率であり、第7図における縦軸の
入口SO2濃度比は、ボイラ負荷100%時のSO2濃度をベー
ス(1.0)とした場合の各負荷時におけるSO2濃度の比率
である。上記第6図及び第7図に示す関係を設定部29に
記憶させ、予定のボイラ負荷に対して入口排ガス流量や
入口SO2濃度がどの値まで達するかが容易に予測できる
ことになる。すなわち、第6図及び第7図の関係を見付
けたことにより、現在のボイラ負荷が50%でt時間後に
ボイラ負荷が100%に達するとすると、入口排ガス流量
比は0.75から1.0まで上がり、入口SO2濃度比は0.77から
1.0まで上がることがわかり、これにより或る時間後の
ボイラ負荷変化とそのときの入口排ガス流量、入口SO2
濃度を予測することができる。
Next, the planned exhaust gas amount G and the planned inlet SO 2 concentration Y, which are the basis of the calculation in the calculation unit 30 of the prediction simulation, are set in the setting unit 2
Set with 9. In this case, in the setting unit 29, the current entrance SO 2
Based on the concentration, the current exhaust gas flow rate, the current boiler load, the relationship between the boiler load and the exhaust gas flow rate, the boiler load and the inlet
Create a relationship of SO 2 concentration and set this in light of the planned load change. As a result of the experiment, the relationship between the boiler load and the exhaust gas flow rate ratio was found to be as shown in FIG. 6, and the relationship between the boiler load and the SO 2 concentration at the inlet was the same as the result of the experiment.
It turned out that there is a relationship as shown in the figure. The inlet exhaust gas flow rate ratio on the vertical axis in FIG. 6 is the ratio of the inlet exhaust gas flow rate at each load when the inlet exhaust gas flow rate when the boiler load is 100% is taken as the base (1.0). The inlet SO 2 concentration ratio is the ratio of SO 2 concentration at each load when the SO 2 concentration at 100% boiler load is used as the base (1.0). By storing the relationships shown in FIG. 6 and FIG. 7 in the setting unit 29, it becomes possible to easily predict what values the inlet exhaust gas flow rate and the inlet SO 2 concentration will reach with respect to the planned boiler load. That is, if the current boiler load is 50% and the boiler load reaches 100% after t hours by finding the relationship between FIG. 6 and FIG. 7, the inlet exhaust gas flow rate ratio increases from 0.75 to 1.0, SO 2 concentration ratio is from 0.77
It can be seen that the value rises to 1.0, which means that the boiler load change after a certain time, the inlet exhaust gas flow rate, and the inlet SO 2
The concentration can be predicted.

現時点からt時間後のボイラの予定負荷に照して予定の
入口排ガス流量と予定の入口SO2濃度が設定されると、
脱硫性能シミュレーションの計算部30でt時間の脱硫率
ηtを計算し、該計算で求められたt時間後の脱硫率ηt
と脱硫率設定器32からの設定脱硫率ηsとを比較部31で
比較させる。上記算出されたt時間後の脱硫率ηtと設
定脱硫率ηsとの間の偏差が大きく、特に、ηt<ηs
ときは、計算上の運転条件変更指示を出して、予定吸収
剤供給量の値34、予定循環ポンプ運転台数の値35を計算
部30にインプットしてt時間後の脱硫率ηtを再計算
し、上記ηtとηsの偏差が小さくなり、特に、ηt>ηs
になると、このときの予定吸収剤供給量、予定循環ポン
プ運転台数の如き運転条件を運転指示記憶装置36に記憶
させておき、t時間後の予測制御を行わせるときに、上
記運転指示記憶装置36に記憶させた運転条件に従い吸収
剤供給ライン14上の流量調節弁23や循環ポンプ6に制御
指令を送って吸収剤供給量、循環ポンプ運転台数を変え
るようにする。これによりt時間後を最適に予測制御で
きることになる。
When the planned inlet exhaust gas flow rate and the planned inlet SO 2 concentration are set in light of the planned load of the boiler after t hours from the present time,
The desulfurization rate η t after t hours is calculated by the calculation unit 30 of the desulfurization performance simulation, and the desulfurization rate η t after t hours obtained by the calculation.
And the desulfurization rate η s set by the desulfurization rate setting unit 32 are compared by the comparison unit 31. The deviation between the calculated desulfurization rate η t after t hours and the set desulfurization rate η s is large, and particularly when η ts , a calculation operating condition change instruction is issued and the planned absorption The value 34 of the agent supply amount and the value 35 of the planned number of circulating pumps are input to the calculation unit 30 to recalculate the desulfurization rate η t after t hours, and the deviation between the above η t and η s becomes small. η t > η s
Then, the operating conditions such as the planned supply amount of the absorbent and the planned number of circulating pumps at this time are stored in the operation instruction storage device 36, and when the predictive control after t hours is performed, the operation instruction storage device is used. According to the operating condition stored in 36, a control command is sent to the flow rate control valve 23 and the circulation pump 6 on the absorbent supply line 14 to change the absorbent supply amount and the number of operating circulation pumps. As a result, the predictive control after t time can be optimally performed.

[発明の効果] 以上述べた如く、本発明の排煙脱硫装置の制御方法によ
れば、現在の運転データのうち、入口排ガス流量と入口
SO2濃度と現在のボイラ負荷をベースに、ボイラ負荷と
入口排ガス流量、ボイラ負荷と入口SO2濃度の関係を作
り、現時点からt時間後のボイラの予定負荷変化に照し
て予定の入口排ガス流量と予定の入口SO2濃度を設定
し、該設定された予定入口排ガス流量、予定入口SO2
度をベースとして脱硫性能予測シミュレーションの計算
を行わせ、現時点からt時間後の予測制御を行わせるよ
うにするので、燃料毎に入口排ガス流量、入口SO2濃度
を設定する場合に比して現状の運転条件からスタートす
ることから実際に合致した予測ができ、又、ボイラの負
荷と入口排ガス流量の関係、ボイラの負荷と入口SO2
度の関係を求めているので、或る時間後の予定負荷の変
化がわかることにより予測ができて最適な条件で運転さ
せることができる、という優れた効果を奏し得る。
[Effects of the Invention] As described above, according to the control method of the flue gas desulfurization apparatus of the present invention, the inlet exhaust gas flow rate and the inlet are included in the present operation data.
Based on the SO 2 concentration and the current boiler load, the relationship between the boiler load and the inlet exhaust gas flow rate, the boiler load and the inlet SO 2 concentration is created, and the planned inlet exhaust gas is compared with the planned load change of the boiler after t hours from the present time. The flow rate and the planned inlet SO 2 concentration are set, the desulfurization performance prediction simulation is calculated based on the set planned inlet exhaust gas flow rate and the planned inlet SO 2 concentration, and the predictive control is performed after t hours from the present time. As a result, compared to the case where the inlet exhaust gas flow rate and the inlet SO 2 concentration are set for each fuel, it is possible to make a prediction that actually matches from starting from the current operating conditions, and the load of the boiler and the inlet exhaust gas flow rate. Yu relationship, since the obtained relation load and inlet sO 2 concentration of the boiler can be operated under optimum conditions and be predicted by the change in the scheduled load after a certain time is known, that And it can achieve the effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法の実施に使用する排煙脱硫装置の
一例を示す概略図、第2図は第1図に示す計算機の内部
構成例を示すブロック図、第3図は脱硫効率と循環ポン
プ運転台数との関係図、第4図は脱硫効率と吸収液pHと
の関係図、第5図は吸収液pHと吸収液中の吸収剤濃度と
の関係図、第6図はボイラ負荷と吸収塔入口排ガス流量
比との関係を示す図、第7図はボイラ負荷と入口SO2
度比との関係を示す図である。 1……吸収塔、2……吸収液、3……スプレー段、5…
…循環ライン、6……循環ポンプ、8……ガス入口管、
9……ガス出口管、14……吸収剤供給ライン、16……排
ガス流量計、17……入口SO2濃度計、18……出口SO2濃度
計、19……pH計、20……吸収剤濃度計、27……計算機、
29……予定の排ガス流量及び入口SO2濃度設定部、30…
…脱硫性能予測シミュレーションの計算部、31……比較
部、32……脱硫率設定部、36……運転指示記憶装置。
FIG. 1 is a schematic diagram showing an example of a flue gas desulfurization apparatus used for carrying out the method of the present invention, FIG. 2 is a block diagram showing an internal configuration example of the computer shown in FIG. 1, and FIG. Fig. 4 shows the relationship between the number of circulating pumps, Fig. 4 shows the relationship between desulfurization efficiency and absorption liquid pH, Fig. 5 shows the relationship between absorption liquid pH and absorbent concentration in absorption liquid, and Fig. 6 shows boiler load. And the absorption tower inlet exhaust gas flow rate ratio, and FIG. 7 is a diagram showing the relationship between the boiler load and the inlet SO 2 concentration ratio. 1 ... Absorption tower, 2 ... Absorption liquid, 3 ... Spray stage, 5 ...
… Circulation line, 6 …… Circulation pump, 8 …… Gas inlet pipe,
9 …… Gas outlet pipe, 14 …… Absorbent supply line, 16 …… Exhaust gas flow meter, 17 …… Inlet SO 2 concentration meter, 18 …… Outlet SO 2 concentration meter, 19 …… pH meter, 20 …… Absorption Agent concentration meter, 27 …… Calculator,
29 …… Scheduled exhaust gas flow rate and inlet SO 2 concentration setting part, 30…
… Calculation part of desulfurization performance prediction simulation, 31 …… Comparison part, 32 …… Desulfurization rate setting part, 36 …… Operation instruction storage device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 125 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01D 53/34 125 E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】吸収塔への入口排ガス流量、吸収液pH、吸
収液中吸収剤濃度、吸収塔入口及び出口のSO2濃度、循
環ポンプ運転台数の如き現在の運転データと、現在の入
口排ガス流量、現在の入口SO2濃度、現在の負荷をベー
スに負荷と入口排ガス流量、負荷と入口SO2濃度の関係
を作って現時点からt時間後の予定の負荷変化に照して
設定した予定入口排ガス流量及び予定入口SO2濃度と
を、ベースとして脱硫性能の予測シミュレーションの計
算をし、次いで、該計算で求められたt時間後の脱硫率
と設定脱硫率とを比較し、両者間の偏差が小さいときの
運転条件を記憶させておき、該記憶させた運転条件で吸
収剤供給量等を予測制御することを特徴とする排煙脱硫
装置の制御方法。
1. Current operating data such as the flow rate of exhaust gas at the inlet to the absorption tower, the pH of the absorbent, the concentration of the absorbent in the absorbent, the SO 2 concentrations at the inlet and outlet of the absorbent, and the number of circulating pumps operating, and the current exhaust gas at the inlet. A planned inlet set based on the flow rate, the current inlet SO 2 concentration, the current load, and the relationship between the load and the inlet exhaust gas flow rate, the load and the inlet SO 2 concentration, and set in light of the planned load change after t hours from the present time. The desulfurization performance prediction simulation is calculated based on the exhaust gas flow rate and the planned inlet SO 2 concentration, and then the desulfurization rate after t hours obtained by the calculation is compared with the set desulfurization rate, and the deviation between the two is calculated. A method for controlling a flue gas desulfurization apparatus, characterized in that the operating conditions when the value is small are stored, and the absorbent supply amount and the like are predicted and controlled under the stored operating conditions.
JP63335582A 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment Expired - Lifetime JPH0714454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335582A JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335582A JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPH02180617A JPH02180617A (en) 1990-07-13
JPH0714454B2 true JPH0714454B2 (en) 1995-02-22

Family

ID=18290194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335582A Expired - Lifetime JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH0714454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116236892A (en) * 2023-03-16 2023-06-09 福建龙净环保股份有限公司 Method and device for controlling desulfurization equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084709B2 (en) * 1986-04-23 1996-01-24 バブコツク日立株式会社 Wet Flue Gas Desulfurization Controller
JP2529244B2 (en) * 1987-03-19 1996-08-28 バブコツク日立株式会社 Absorption liquid circulation controller for wet flue gas desulfurization equipment

Also Published As

Publication number Publication date
JPH02180617A (en) 1990-07-13

Similar Documents

Publication Publication Date Title
RU2759855C1 (en) Method for controlling device for wet desulfurization of flue gases, device for controlling device for wet desulfurization of flue gases and remote monitoring system containing device for controlling device for wet desulfurization of flue gases
JP4785006B2 (en) Wet flue gas desulfurization equipment
CN101557868A (en) System of flue-gas desulfurization with seawater
US20070134141A1 (en) Apparatus for treating flue gas using single-stage gas dispersing tray
JPH0714454B2 (en) Control method of flue gas desulfurization equipment
JPH0710331B2 (en) Control method of flue gas desulfurization equipment
JPH11104448A (en) Equipment and method for flue gas desulfurization
US4427420A (en) Pumping method and apparatus
JPH0714453B2 (en) Control method of flue gas desulfurization equipment
JPH0355171B2 (en)
JP3519498B2 (en) Wet flue gas desulfurization equipment
JP3701526B2 (en) Method and apparatus for controlling flue gas desulfurization apparatus
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
JP4433268B2 (en) Wet flue gas desulfurization method and apparatus
JPH1121567A (en) Method for regenerating wet-process desulfurization absorbent
JPH02180615A (en) Control of waste gas desulfurization apparatus
JP2809411B2 (en) Slurry circulation control system for wet flue gas desulfurization unit
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JP3190938B2 (en) Flue gas desulfurization equipment
JPS6244734Y2 (en)
JPS6121720A (en) Control apparatus of wet waste gas desulfurization apparatus
JPS6339613A (en) Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
JPH07116456A (en) Method for controlling flue gas wet desulfurization apparatus
JPH09201512A (en) Method for recovering sulfuric acid by exhaust gas desulfurization
RU2160712C1 (en) Method of water degassing