JPH02180617A - Control of waste gas desulfurization apparatus - Google Patents

Control of waste gas desulfurization apparatus

Info

Publication number
JPH02180617A
JPH02180617A JP63335582A JP33558288A JPH02180617A JP H02180617 A JPH02180617 A JP H02180617A JP 63335582 A JP63335582 A JP 63335582A JP 33558288 A JP33558288 A JP 33558288A JP H02180617 A JPH02180617 A JP H02180617A
Authority
JP
Japan
Prior art keywords
inlet
gas flow
concentration
flow rate
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63335582A
Other languages
Japanese (ja)
Other versions
JPH0714454B2 (en
Inventor
Tadayoshi Tamaru
田丸 忠義
Hiroo Inoue
井上 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63335582A priority Critical patent/JPH0714454B2/en
Publication of JPH02180617A publication Critical patent/JPH02180617A/en
Publication of JPH0714454B2 publication Critical patent/JPH0714454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to carry out predictive control agreeable to actual operation by computing desulfurization efficiency after a certain time by setting scheduled waste gas flow rate and concentration of SO2 at an inlet based on the present operation data as well as the load of a boiler. CONSTITUTION:Predictive simulation computation of desulfurization ability is carried out by a computer 27 based on scheduled waste gas flow rate and SO2 concentration at an inlet, which are set depending on scheduled load alteration obtained from present waste gas flow rate and present SO2 concentration at the inlet and the relations between the load and waste gas flow rate in the inlet and between the load and the SO2 concentration at the inlet based on the present load, as well as present operation data such as waste gas flow rate at the inlet of an absorption tower 1, pH of an absorbent solution 2, the concentration of an absorbent in the absorbent solution 2, the concentrations of SO2 at the inlet 8 and outlet 9, the number of driving circulation pumps 6, etc. Then, the computed desulfurization efficiency after (t) hours and set desulfurization efficiency are compared each other and the operation conditions at the time of small deviation between both is stored and the supply of the absorbent is predictively controlled by the stored operation conditions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排ガスを吸収塔に入れて吸収液と接触させるこ
とにより排ガス中のSO2を吸収して除去させる排煙脱
硫装置を現時点から成る時間後を予測して制御するため
に用いる排煙脱硫装置の制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a flue gas desulfurization device that absorbs and removes SO2 from the flue gas by introducing the flue gas into an absorption tower and bringing it into contact with an absorption liquid. The present invention relates to a control method for a flue gas desulfurization device used to predict and control the future.

[従来の技術] ボイラからの排ガス中の802を吸収して脱硫する排煙
脱硫装置としては、下部に接続したガス入口管より流入
させたボイラの排ガスを、頂部のガス出口管より排出さ
せるようにしである吸収塔の下部に液溜タンクを設け、
該液溜タンク内の吸収液を複数の循環ポンプ、循環ライ
ンを経て上部のスプレー段に導き、スプレー段のスプレ
ーノズルより吸収液を噴出させて上記排ガスと接触させ
るようにし、排ガス中のS02を吸収液中の吸収剤で吸
収させて脱硫後のガスは塔頂のガス出口管より排出させ
、一方、S02を吸収した吸収剤スラリーを液溜タンク
内で空気で酸化させることにより石膏スラリーとした後
、石膏として回収するようにしたi♀式石灰石合法の排
煙脱硫装置が知られている。
[Prior Art] A flue gas desulfurization device that absorbs and desulfurizes 802 in the flue gas from a boiler is designed so that the boiler flue gas is introduced through a gas inlet pipe connected at the bottom and discharged through a gas outlet pipe at the top. A liquid storage tank is installed at the bottom of the absorption tower.
The absorption liquid in the liquid storage tank is guided to the upper spray stage through a plurality of circulation pumps and circulation lines, and the absorption liquid is jetted out from the spray nozzle of the spray stage and brought into contact with the exhaust gas, thereby eliminating S02 in the exhaust gas. The gas after desulfurization was absorbed by the absorbent in the absorption liquid and discharged from the gas outlet pipe at the top of the tower.Meanwhile, the absorbent slurry that had absorbed S02 was oxidized with air in a sump tank to form gypsum slurry. There is also known an i♀-type limestone method flue gas desulfurization equipment that recovers gypsum as gypsum.

かかる湿式石灰石膏法琲煙脱硫装置の制御方法において
、現時点から成る時間後の脱硫率が最適となるように吸
収剤の供給母、循環ポンプ運転台数を予測制御すること
は従来全く行われていない。従来の制御方法は、吸収塔
へ入る排ガス流量、吸収塔へ入る排ガス中のSO□Q度
(入口3021aA度)、吸収塔から出る排ガス中のS
02濃度(出口S O> 11度)、循環される吸収液
pH1等の現在のデータから吸収塔への吸収剤の供給ω
を調整したり、循環ポンプの運転台数を決めたりして、
脱硫率、吸収液中吸収剤)Q度を制御するものであり、
特に、循環ポンプの運転台数の決定は、吸収塔出口S 
O2’tH度をみながら作業員の助により行われている
In the control method of such a wet lime plaster method smoke desulfurization equipment, predictive control of the absorbent supply source and the number of circulation pumps in operation has not been carried out so as to optimize the desulfurization rate after a period of time from the current point in time. . Conventional control methods are based on the flow rate of exhaust gas entering the absorption tower, the degree of SO□Q in the exhaust gas entering the absorption tower (inlet 3021aA degree), and the degree of S in the exhaust gas exiting from the absorption tower.
Supply of absorbent to the absorption tower from current data such as 02 concentration (outlet S O > 11 degrees) and pH 1 of the circulating absorbent
and determine the number of circulating pumps to operate.
It controls the desulfurization rate, Q degree (absorbent in the absorption liquid),
In particular, the number of operating circulation pumps is determined by the absorption tower outlet S.
This is done with the help of a worker while monitoring the O2'tH level.

[発明が解決しようとする課題] 上記従来の排煙脱硫装置の制御方法では、現在の運転デ
ータをもとに脱硫率をfft RL、て最適な運転条件
を見付けようとするものではないばかつでなく、予測制
御をするものではないので、最適な制御ができなかった
[Problems to be Solved by the Invention] The conventional control method for flue gas desulfurization equipment described above does not attempt to find the optimal operating conditions by determining the desulfurization rate based on current operating data. However, since it does not perform predictive control, optimal control could not be achieved.

そこで、本発明は、現在の運転データをもとにし且つボ
イラの負荷から予定の排ガス流量、入口SO2濃度を設
定して成る時間後の脱硫率を求めるようにして実際に合
致した予測制御ができるようにしようとするものである
Therefore, the present invention can perform predictive control that matches the actual situation by determining the desulfurization rate after a certain period of time based on the current operating data and setting the planned exhaust gas flow rate and inlet SO2 concentration based on the boiler load. This is what we are trying to do.

[課題を解決するための手段] 本発明は、上記課題を解決するために、吸収塔へ入る排
ガス流量、吸収液1)H1吸収液中吸収剤濃度、吸収塔
入口及び出口のS02濃度、循環ポンプ運転台数の如き
現在の運転データをもとに計算機で脱硫率のモデル式を
設定し、一方、現在の負荷、現在の排ガス流量、現在の
入口SO2濃度をもとに予定排ガス流量、予定入口SO
ziM度を設定し、脱硫率モデル式に従い上記予定排ガ
ス流量、予定入口S02′a度をとり入れて1時間後の
脱硫率を計算し、次いで、該計算で求められた1時間後
の脱硫率と設定脱硫率と比較し、偏差が大きいと計算上
の運転条件を変更して計算し直し、上記偏差が小さくな
ると、そのときの運転条件を記憶させ、該記憶させた運
転条件どおりに予測制御させる方法とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention aims to improve the flow rate of exhaust gas entering the absorption tower, absorption liquid 1) absorbent concentration in the H1 absorption liquid, S02 concentration at the absorption tower inlet and exit, and circulation. A model formula for the desulfurization rate is set by a computer based on current operating data such as the number of pumps in operation, while the planned exhaust gas flow rate and planned inlet are calculated based on the current load, current exhaust gas flow rate, and current inlet SO2 concentration. S.O.
ziM degree is set, and the desulfurization rate after 1 hour is calculated by taking the above planned exhaust gas flow rate and planned inlet S02'a degree according to the desulfurization rate model formula, and then, the desulfurization rate after 1 hour obtained by the calculation is Compare with the set desulfurization rate, and if the deviation is large, change the calculated operating conditions and recalculate. If the deviation becomes small, the operating conditions at that time are stored and predictive control is performed according to the memorized operating conditions. method.

[作  用] 現在の運転データのうち、特に吸収塔・入口の排ガス流
量、入口SC1度と、現在のボイラ負荷と、予定のボイ
ラ負荷とから予定の排ガス流量、予定の入口5o2s度
を設定し、これを予測シミュレーション計算のベースと
するので、現時点からし時間後の入口排ガス流徂、入口
S02濃度を容易に予測でき、これに合わせて吸収剤供
給但、循環ポンプ運転台数を予測制御できる。
[Function] Set the planned exhaust gas flow rate and planned inlet 5o2s degrees from the current operating data, especially the exhaust gas flow rate at the absorption tower/inlet, the inlet SC 1 degree, the current boiler load, and the planned boiler load. Since this is used as the basis for predictive simulation calculations, it is possible to easily predict the inlet exhaust gas flow range and the inlet S02 concentration after a certain period of time, and accordingly, the number of operating circulation pumps for supplying the absorbent can be predictively controlled.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法の実施に使用する排煙脱硫装置の
概要を示ずもので、下部に液溜タンクを設けて吸収液2
を溜めるようにした吸収塔1の上部に、スプレーノズル
4を有するスプレー段3を多段に配設し、各段のスプレ
ー段3に上記液溜タンクの吸収液2を導くための複数の
循環ライン5の途中に、それぞれ循環ポンプ6を設置し
、複数個の循環ポンプ6の運転により吸収液2がスプレ
ー段3へ導かれてスプレーノズル4より噴出されるよう
にする。一方、上記吸収塔1内の吸収液2の液面とスプ
レー段3との間の位置に、ボイラ7からの排ガスを導入
させるようガス入口管8を接続すると共に、塔頂部にガ
ス出口管9を接続し、ガス入口管8の途中に設置した昇
圧通風機10で昇圧されたボイラ排ガスが、各スプレー
段3のスプレーノズル4から噴出される吸収液2と接触
させられ、排ガス中のS02が吸収液中の吸収剤に吸収
され、ガスはガス出口管9より排出され、Sαは吸収剤
としてのcacO3と反応し亜硫酸カルシウムとして吸
収液2中に入るようにし、更に、吸収塔1内の下部に空
気吹込口12を有する空気吹込管11を配設して、該空
気吹込管11に空気供給管13を接続すると共に、吸収
液2中に吸収剤としてのCaCo3を供給するライン1
4を吸収塔1の下部に接続し、且つ吸収塔1の底部付近
に液抜出管15を接続する。又、上記ガス入口管8の途
中には、排ガスの流量を検出する排ガス流量計16と、
排ガス中のS02濃度を検出する入口5O2a度計17
とを設け、又、ガス出口管9に排出されるガス中のso
2m度を検出する出口SO2濃度計18を設け、更に、
循環ライン5に、吸収液のpHを検出するpHπ119
と吸収液中の吸収剤濃度を検出する吸収剤濃度計20を
設ける。21は排ガス流伍8116からの値と入口80
21a度計17からのS02濃度値とを掛算してS02
の岳を求める掛算器、22は加算器、23は吸収剤供給
ライン14により供給される吸収剤の供給量を調節させ
る流m調節計、24は該流m調節計23により調節され
る調節弁、25は吸収液の後出管15から後出される吸
収液の量を調節する流m調節計、26は該流♀調節計2
5により調節される調節弁である。
Figure 1 does not show the outline of the flue gas desulfurization equipment used to carry out the method of the present invention.
Spray stages 3 having spray nozzles 4 are arranged in multiple stages on the upper part of the absorption tower 1 configured to store water, and a plurality of circulation lines are provided for guiding the absorption liquid 2 from the liquid storage tank to each spray stage 3. Circulation pumps 6 are installed in the middle of each of the pumps 5, and the absorption liquid 2 is guided to the spray stage 3 and sprayed from the spray nozzle 4 by operation of the plurality of circulation pumps 6. On the other hand, a gas inlet pipe 8 is connected to a position between the liquid level of the absorption liquid 2 in the absorption tower 1 and the spray stage 3 so as to introduce exhaust gas from the boiler 7, and a gas outlet pipe 9 is connected to the top of the tower. The boiler exhaust gas, which has been pressurized by a booster fan 10 installed in the middle of the gas inlet pipe 8, is brought into contact with the absorption liquid 2 spouted from the spray nozzle 4 of each spray stage 3, and the S02 in the exhaust gas is The gas is absorbed by the absorbent in the absorption liquid, and is discharged from the gas outlet pipe 9. Sα reacts with cacO3 as the absorbent and enters the absorption liquid 2 as calcium sulfite. An air blowing pipe 11 having an air blowing port 12 is disposed in the air blowing pipe 11, an air supply pipe 13 is connected to the air blowing pipe 11, and a line 1 supplies CaCo3 as an absorbent into the absorbing liquid 2.
4 is connected to the lower part of the absorption tower 1, and a liquid extraction pipe 15 is connected near the bottom of the absorption tower 1. Further, in the middle of the gas inlet pipe 8, an exhaust gas flow meter 16 for detecting the flow rate of exhaust gas,
Inlet 5O2a degree meter 17 for detecting S02 concentration in exhaust gas
and SO in the gas discharged to the gas outlet pipe 9.
An outlet SO2 concentration meter 18 for detecting 2m degrees is provided, and further,
In the circulation line 5, there is a pH π119 line for detecting the pH of the absorption liquid.
An absorbent concentration meter 20 is provided to detect the absorbent concentration in the absorbent liquid. 21 is the value from the exhaust gas flow 8116 and the inlet 80
21a Multiply the S02 concentration value from the degree meter 17 to obtain S02
22 is an adder, 23 is a flow meter that adjusts the amount of absorbent supplied by the absorbent supply line 14, and 24 is a control valve that is adjusted by the flow meter 23. , 25 is a flow m controller that adjusts the amount of absorption liquid discharged from the absorption liquid discharge pipe 15, and 26 is the flow♀ regulator 2.
This is a control valve regulated by 5.

本発明では、上記構成のほかに、現在の運転データや、
ボイラの現在又は予定の負荷との関係で求めた予定の入
口排ガス流m、予定の入口SO2濃度をベースとして脱
硫率の予測シミュレーション計算を行って1時間の脱硫
率を求め、そのときの運転条件を記憶しておけるように
しである計算機27を使用し、且つ現在の運転データと
して、排ガス流量計16からの現在の排ガス流量、入口
so2m度計1変針らの現在の入口S02濃度、出口S
O2濃度計18からの現在の出口5O2iIa度、l)
H計19からの現在の吸収液pH1吸収剤濃度計20か
らの現在の吸収剤濃度、現在の循環ポンプ運転台数を使
用するため、これらのデータを計算機27に入力させる
ように電気的に接続する。
In the present invention, in addition to the above configuration, current operation data,
Based on the planned inlet exhaust gas flow m determined in relation to the boiler's current or planned load, and the planned inlet SO2 concentration, a predictive simulation calculation of the desulfurization rate is performed to determine the desulfurization rate for one hour, and the operating conditions at that time are calculated. The calculator 27 is used to store the current operating data, and the current operating data includes the current exhaust gas flow rate from the exhaust gas flow meter 16, the current inlet SO2 concentration of the inlet SO2m degree meter 1 change, and the outlet S02 concentration.
Current outlet 5O2iIa degrees from O2 concentration meter 18, l)
In order to use the current absorbent pH from the H meter 19, the current absorbent concentration from the absorbent concentration meter 20, and the current number of circulating pumps in operation, these data are electrically connected to be input into the calculator 27. .

第2図は上記計算機27の内部構成例を示すもので、2
8は現在の運転データから脱硫効率ηと吸収液1)11
の計算をするモデル式設定部、29は現在の運転データ
のうち、現在の排ガス流伍、現在の入口S021度と現
在のボイラ負荷をベースに、ボイラ負荷と入口排ガス流
量の関係、ボイラ負荷と入口5OJ1度との関係を作り
、この関係を予定負荷の変化に照して予定排ガス流口G
と予定入口S0濃度Y@設定する設定部、30はモデル
式の設定部28で計算して求められる脱硫率ηと上記予
定排ガス流口と予定入口302 m度の設定部29から
の予定排ガス流口、予定人口S 02)A度をベースと
して脱硫性能の予測シミュレーションの計算を行い1時
間の脱硫率η1を算出する計樟部、31は算出された1
時間後の脱硫率η1と脱硫率設定器32からの設定脱硫
率η8とを比較する比較部、33は比較部31で比較さ
れた結果、上記を時間後の脱硫率η1と設定脱硫率η、
の偏差が大きいときに指示により変更される計算上の予
定の運転条件でおり、34は予定吸収剤(CaCa)供
給量の値、35は予定循環ポンプ運転台数の値である。
FIG. 2 shows an example of the internal configuration of the computer 27.
8 is the desulfurization efficiency η and absorption liquid 1) from the current operating data.
A model formula setting section 29 calculates the relationship between the boiler load and the inlet exhaust gas flow rate, the boiler load and the Create a relationship with the inlet 5 OJ 1 degree, and compare this relationship with the planned exhaust gas flow port G based on changes in the planned load.
30 is the desulfurization rate η calculated by the model equation setting unit 28 and the planned exhaust gas flow from the setting unit 29 at the above-mentioned planned exhaust gas outlet and planned inlet 302 m degrees. 31 is the calculated 1
A comparison section 33 compares the desulfurization rate η1 after time and the set desulfurization rate η8 from the desulfurization rate setting device 32, and 33 is the result of comparison in the comparison unit 31.
34 is the value of the planned absorbent (CaCa) supply amount, and 35 is the value of the planned number of operating circulation pumps.

又、36は比較部31で1時間後の脱硫率η1と設定脱
硫率η8とを比較して偏差が小さくなりη1〉η、であ
るときに、このときの運転条件を記憶させておく運転指
示記憶装置である。
Further, 36 is an operation instruction for storing the operating conditions at this time when the comparing section 31 compares the desulfurization rate η1 after one hour with the set desulfurization rate η8 and the deviation becomes small and η1>η. It is a storage device.

今、ボイラ7からの排ガスはガス入口管8を通り、昇圧
通風機10で昇圧されて吸収塔1内に入れられる。吸収
塔1では複数の循環ポンプ6の運転によりスプレー段3
へ導かれ、スプレーノズル4より吸収液2が噴出されて
いるので、上記吸収塔1に入った排ガスは吸収液2と向
流接触させられて排ガス中のS02が吸収液中の吸収剤
(CaCa)に吸収されて除去され、ガスはガス出口管
9より排出され、吸収液は循環使用される。排ガス中の
S02を吸収した吸収剤は、S02と反応して吸収液2
中に入り、ここで、吹き込まれる空気によって酸化させ
られ、6青スラリーとして液抜出管15より扱き出され
ることになる。
Now, the exhaust gas from the boiler 7 passes through the gas inlet pipe 8, is pressurized by the booster fan 10, and is introduced into the absorption tower 1. In the absorption tower 1, the spray stage 3 is
Since the absorption liquid 2 is ejected from the spray nozzle 4, the exhaust gas that has entered the absorption tower 1 is brought into countercurrent contact with the absorption liquid 2, and the S02 in the exhaust gas is mixed with the absorbent (CaCa) in the absorption liquid. ), the gas is discharged from the gas outlet pipe 9, and the absorption liquid is recycled. The absorbent that has absorbed S02 in the exhaust gas reacts with S02 to form absorbent liquid 2.
Here, it is oxidized by the air blown into it, and is discharged from the liquid extraction pipe 15 as a 6-blue slurry.

上記吸収塔1内では、順次導入される排ガス中のS02
の吸収による脱硫作用が行われているが、現時点から成
る時間(を時間)後の予測制御を最適に行わせるように
する本発明の方法では、現在(現時点)の運転から得ら
れるデータをもとに計算m27内のモデル式設定部28
で脱硫効率ηのシミュレーションモデルを作り、更に、
現在の運転データ、現在のボイラ負荷、予定のボイラ負
荷変化をベースにして予定の排ガス流量、予定の入口5
o2iU度を設定し、これに基づき予測シミュレーショ
ンの計算を行って1時間後の脱硫率η を求め、該脱@
率η1が最適となるところの運転条件を記憶させて予測
制御させるようにする。
Inside the absorption tower 1, S02 in the exhaust gas that is sequentially introduced
The desulfurization effect is carried out by absorption of Model formula setting part 28 in Toni calculation m27
Create a simulation model of desulfurization efficiency η using
Planned exhaust gas flow rate and planned inlet 5 based on current operating data, current boiler load, and planned boiler load changes.
o2iU degree is set, a prediction simulation is calculated based on this, the desulfurization rate η after 1 hour is determined, and the desulfurization rate η is calculated based on this.
The operating conditions under which the ratio η1 is optimal are stored and predictive control is performed.

詳述すると、現在の運転データとして、第2図に示ず如
く現時点の排ガス流量、吸収液p11、吸収液中吸収剤
濃度、循環ポンプ運転台数、入口5o2f4度、出口5
O2iH度をモデル式設定部28に入力させて、モデル
式に従って脱硫効率ηと吸収液pHの計算を行う。すな
わら、脱硫効率ηは、 Pn      :循環ポンプ運転台数G      
:入口排ガス流量 Y       :入口S02溌度 C:吸収液中吸収剤濃度 V      :液溜タンク容量 S      :吸収SO2量 (100−η) =a−G−Y・ 100 PC:吸収剤供給岳 B       :後出液■ この場合′、脱硫効率と循環ポンプ運転台数との関係は
第3図に示す如くでおり、運転台数の増加に伴い脱硫効
率はよくなる。図中、■は排ガス流mが少ないときの曲
線、■は排ガス流mが多いときの曲線、■は排ガス流量
が上記の中間のときの曲線である。又、脱硫効率と吸収
液pHとの関係は、第4図に示す如くでおり、吸収液p
Hと吸収液中の吸収剤濃度との関係は、第5図に示す如
くであり、吸収液中の吸収剤濃度が決まれば吸収液pH
が決まる関係にある。第5図中、工′は吸収S02量が
少ない場合、■′は吸収5o2fflが中間の場合、■
′は吸収5o2fflが多い場合の各曲線でおる。
To be more specific, as shown in Fig. 2, the current operating data includes the current exhaust gas flow rate, absorbent p11, absorbent concentration in the absorbent, number of circulating pumps in operation, inlet 5 o 2 f 4 degrees, and outlet 5.
The O2iH degree is input to the model formula setting unit 28, and the desulfurization efficiency η and the absorption liquid pH are calculated according to the model formula. In other words, the desulfurization efficiency η is: Pn: Number of operating circulation pumps G
: Inlet exhaust gas flow rate Y : Inlet S02 hotness C : Absorbent concentration in absorption liquid V : Liquid reservoir tank capacity S : Absorbed SO2 amount (100-η) = a-G-Y・100 PC: Absorbent supply mount B : After-drain liquid ■ In this case, the relationship between the desulfurization efficiency and the number of circulation pumps in operation is as shown in FIG. 3, and the desulfurization efficiency improves as the number of circulation pumps in operation increases. In the figure, ■ is a curve when the exhaust gas flow m is small, ■ is a curve when the exhaust gas flow m is large, and ■ is a curve when the exhaust gas flow rate is in the middle of the above. In addition, the relationship between desulfurization efficiency and absorption liquid pH is as shown in Figure 4.
The relationship between H and the absorbent concentration in the absorbent liquid is as shown in Figure 5. Once the absorbent concentration in the absorbent liquid is determined, the absorbent liquid pH
The relationship is determined by In Figure 5, E' is when the amount of absorbed S02 is small, ■' is when the amount of absorbed S02 is intermediate, and ■
' is each curve when absorption 5o2ffl is large.

次に、予測シミュレーションの計算部30での計算のベ
ースとなる予定排ガスωG、予定入口S02濃度Yを設
定部29で設定する。この場合、設定部29では、現在
の入口S 02 濃度、現在の排ガス流量、現在のボイ
ラ負荷をベースに、ボイラ負荷と排ガス流はの関係、ボ
イラ負荷と入口SO□溌度の関係を作り、これを予定負
荷変化に照して設定する。上記ボイラ負荷と排ガス流d
比の関係は、実験の結果、第6図の如き関係にあること
が判明し、ボイラ負荷と入口s 02yA 度の関係は
、同じく実験の結果、第7図の如き関係にあることが判
明した。第6図における縦軸の入口排ガス流量比は、ボ
イラ負荷100%時の入口排ガス流量をベース(1,0
)とした場合の各負荷時における入口排ガス流量の比率
であり、第7図における縦軸の入口5O2vA度比は、
ボイラ負荷100%時の3028度をベース(1,0)
とした場合の各負荷時にあけるS 02 濃度の比率で
ある。上記第6図及び第7図に示す関係を設定部29に
記憶させ、予定のボイラ負荷に対して入口排ガス流量や
入口S02濃度がどの値まで達するかが容易に予測でき
ることになる。すなわち、第6図及び第7図の関係を見
付けたことにより、現在のボイラ負荷が50%で1時間
後にボイラ負荷が100%に達すると1゛ると、入口排
ガス流d比は0.75から1.0まで上がり、入口50
2m度比は0.77から1.0まで上がることがわかり
、これにより成る時間後のボイラ負荷変化とそのときの
入口排ガス流量、入口5O2I!度を予、測Vることが
できる。
Next, the setting unit 29 sets the planned exhaust gas ωG and the planned inlet S02 concentration Y, which are the basis of the calculation in the calculation unit 30 of the prediction simulation. In this case, the setting unit 29 creates a relationship between the boiler load and the exhaust gas flow, and a relationship between the boiler load and the inlet SO□ vigor, based on the current inlet S 02 concentration, the current exhaust gas flow rate, and the current boiler load. This is set based on the planned load change. Above boiler load and exhaust gas flow d
The relationship between the ratios was found to be as shown in Figure 6 as a result of experiments, and the relationship between boiler load and inlet s02yA degree was found to be as shown in Figure 7 as a result of experiments. . The inlet exhaust gas flow rate ratio on the vertical axis in Figure 6 is based on the inlet exhaust gas flow rate at 100% boiler load (1,0
) is the ratio of the inlet exhaust gas flow rate at each load, and the inlet 5O2vA degree ratio on the vertical axis in Fig. 7 is:
Based on 3028 degrees at 100% boiler load (1,0)
This is the ratio of S 02 concentration at each load when By storing the relationships shown in FIGS. 6 and 7 in the setting section 29, it is possible to easily predict to what value the inlet exhaust gas flow rate and inlet S02 concentration will reach with respect to the scheduled boiler load. That is, by finding the relationships shown in Figures 6 and 7, if the current boiler load is 50% and the boiler load reaches 100% after 1 hour, the inlet exhaust gas flow d ratio will be 0.75. to 1.0, entrance 50
It is found that the 2m degree ratio increases from 0.77 to 1.0, and the boiler load change after this time, the inlet exhaust gas flow rate at that time, and the inlet 5O2I! It is possible to predict and measure the degree of

現時点から1時間後のボイラの予定負荷に照して予定の
入口排ガス流量と予定の入口5o2i度が設定されると
、脱硫性能シミュレーションのi¥i算部30で1時間
の脱硫率η1を計算し、該計算で求められた1時間後の
脱硫率η1と脱硫率設定器32からの設定脱硫率η3と
を比較部31で比較さける。上記算出された1時間後の
脱硫率η1と設定脱硫率η3との間の偏差が大きく、特
に、η1くη3のときは、計算上の運転条件変更指示を
出して、予定吸収剤供給伍の値34、予定循環ポンプ運
転台数の値35を計算部30にインプットして1時間後
の脱硫率η1を再計算し、上記η1とη3の偏差が小さ
くなり、特に、η1〉η、になると、このときの予定吸
収剤供給量、予定循環ポンプ運転台数の如き運転条件を
運転指示記憶装置36に記憶させておき、を時間後の予
測制御を行わせるときに、上記運転指示記憶装置36に
記憶させた運転条件に従い吸収剤供給ライン14上の流
量調節弁23や循環ポンプ6に制御指令を送って吸収剤
供給量、循環ポンプ運転台数を変えるようにする。これ
により1時間後を最適に予測制御できることになる。
When the planned inlet exhaust gas flow rate and the planned inlet 5o2i degree are set based on the planned load of the boiler one hour from now, the desulfurization performance simulation unit 30 calculates the desulfurization rate η1 for one hour. Then, the comparison section 31 compares the desulfurization rate η1 after one hour obtained by the calculation with the desulfurization rate η3 set from the desulfurization rate setting device 32. If the deviation between the above-calculated desulfurization rate η1 after 1 hour and the set desulfurization rate η3 is large, especially when η1 is less than η3, an instruction to change the calculated operating conditions is issued and the planned absorbent supply stage is changed. The value 34 and the value 35 of the planned number of operating circulation pumps are input into the calculation unit 30 to recalculate the desulfurization rate η1 after one hour, and when the deviation between η1 and η3 becomes small, especially when η1>η, Operating conditions such as the planned absorbent supply amount and the planned number of circulating pumps to be operated at this time are stored in the operating instruction storage device 36, and when performing predictive control after a certain period of time, the operating conditions are stored in the operating instruction storage device 36. Control commands are sent to the flow control valve 23 on the absorbent supply line 14 and the circulation pump 6 in accordance with the operating conditions set, thereby changing the amount of absorbent supplied and the number of operating circulation pumps. This allows optimal predictive control for one hour later.

[発明の効果] 以上述べた如く、本発明の排煙脱硫装置の制御方法によ
れば、現在の運転データのうら、入口排ガス流ωと入口
S Ch 18度と現在のボイラ負荷をベースに、ボイ
ラ負荷と入口排ガス流昂、ボイラ負荷と入口S 02I
JA度の関係を作り、これと予定のボイラ負荷とから予
定の入口排ガス流mと予定の入口S02濃度を設定し、
該設定された予定入口排ガス流量、予定入口502m度
をベースとして脱硫性能予測シミュレーションの計算を
行わせ、現時点から1時間後の予測制御を行わせるよう
にするので、燃料毎に入口排ガス流量、入口S 02 
’a度を設定する場合に比して現状の運転条件からスタ
ートすることから実際に合致した予測ができ、又、ボイ
ラの負荷と入口排ガス泥足の関係、ボイラの負荷と入口
3026度の関係を求めているので、成る時間後の予定
負荷の変化がわかることにより予測ができて最適な条件
で運転さけることができる、という優れた効果を奏し得
る。
[Effects of the Invention] As described above, according to the control method of the flue gas desulfurization equipment of the present invention, based on the current operation data, the inlet exhaust gas flow ω, the inlet S Ch 18 degrees, and the current boiler load, Boiler load and inlet exhaust gas flow, boiler load and inlet S 02I
Create a relationship between the JA degree and set the planned inlet exhaust gas flow m and the planned inlet S02 concentration from this and the planned boiler load,
The desulfurization performance prediction simulation is calculated based on the set scheduled inlet exhaust gas flow rate and the scheduled inlet of 502 m degrees, and predictive control is performed one hour from the current time, so the inlet exhaust gas flow rate and inlet S02
Compared to the case of setting 'a degree, since we start from the current operating conditions, we can make predictions that actually match. Therefore, by knowing the change in the scheduled load after the specified time, it is possible to make predictions and avoid operating under optimal conditions, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に使用する排煙脱硫装置の
一例を示す概略図、第2図は第1図に示ず計算機の内部
構成例を示すブロック図、第3図は脱硫効率と循環ポン
プ運転台数との関係図、第4図は脱硫効率と吸収液pH
との関係図、第5図は吸収液DHと吸収液中の吸収剤濃
度との関係図、第6図はボイラ負荷と吸収塔入口排ガス
流量比との関係を示す図、第7図はボイラ負荷と入口S
O2濃度比との関係を示す図である。 1・・・吸収塔、2・・・吸収液、3・・・スプレー段
、5・・・循環ライン、6・・・循環ポンプ、8・・・
ガス入口管、9・・・ガス出口管、14・・・吸収剤供
給ライン、16・・・排ガス流量計、17・・・入口S
O2濃度計、18・・・出口S 02Ia度計、19・
・・pH計、20・・・吸収剤濃度h1.27・・・計
算機、29・・・予定の排ガス流量及び入口S02′a
度設定部、30・・・脱硫性能予測シミュレーションの
計算部、31・・・比較部、32・・・脱硫率設定部、
36・・・運転指示記憶装置。
Fig. 1 is a schematic diagram showing an example of the flue gas desulfurization equipment used to carry out the method of the present invention, Fig. 2 is a block diagram showing an example of the internal configuration of a computer not shown in Fig. 1, and Fig. 3 is a diagram showing desulfurization efficiency. Figure 4 shows the relationship between desulfurization efficiency and the number of operating circulation pumps.
Figure 5 is a diagram showing the relationship between the absorption liquid DH and absorbent concentration in the absorption liquid, Figure 6 is a diagram showing the relationship between the boiler load and the exhaust gas flow rate ratio at the inlet of the absorption tower, and Figure 7 is a diagram showing the relationship between the absorption liquid DH and the absorbent concentration in the absorption liquid. Load and inlet S
It is a figure showing the relationship with O2 concentration ratio. DESCRIPTION OF SYMBOLS 1... Absorption tower, 2... Absorption liquid, 3... Spray stage, 5... Circulation line, 6... Circulation pump, 8...
Gas inlet pipe, 9... Gas outlet pipe, 14... Absorbent supply line, 16... Exhaust gas flow meter, 17... Inlet S
O2 concentration meter, 18... Outlet S 02Ia degree meter, 19.
...pH meter, 20...Absorbent concentration h1.27...Calculator, 29...Planned exhaust gas flow rate and inlet S02'a
degree setting section, 30... desulfurization performance prediction simulation calculation section, 31... comparison section, 32... desulfurization rate setting section,
36... Driving instruction storage device.

Claims (1)

【特許請求の範囲】[Claims] (1)吸収塔への入口排ガス流量、吸収液pH、吸収液
中吸収剤濃度、吸収塔入口及び出口の SO_2濃度、循環ポンプ運転台数の如き現在の運転デ
ータと、現在の入口排ガス流量、現在の入口SO_2濃
度、現在の負荷をベースに負荷と入口排ガス流量、負荷
と入口SO_2濃度の関係を作つて予定の負荷変化に照
して設定した予定入口排ガス流量及び予定入口SO_2
濃度とを、ベースとして脱硫性能の予測シミュレーショ
ンの計算をし、次いで、該計算で求められたt時間後の
脱硫率と設定脱硫率とを比較し、両者間の偏差が小さい
ときの運転条件を記憶させておき、該記憶させた運転条
件で吸収剤供給量等を予測制御することを特徴とする排
煙脱硫装置の制御方法。
(1) Current operating data such as the inlet exhaust gas flow rate to the absorption tower, absorption liquid pH, absorbent concentration in the absorption liquid, SO_2 concentration at the absorption tower inlet and outlet, number of circulation pumps in operation, current inlet exhaust gas flow rate, current The planned inlet exhaust gas flow rate and planned inlet SO_2 are set based on the current load, the load and the inlet exhaust gas flow rate, and the relationship between the load and the inlet SO_2 concentration, and are set based on the planned load change.
A predictive simulation of the desulfurization performance is calculated using the concentration as a base, and then the desulfurization rate after t time obtained by the calculation is compared with the set desulfurization rate, and the operating conditions are determined when the deviation between the two is small. 1. A method of controlling a flue gas desulfurization equipment, which comprises storing the operating conditions and predicting and controlling the amount of absorbent supplied, etc. based on the stored operating conditions.
JP63335582A 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment Expired - Lifetime JPH0714454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335582A JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335582A JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPH02180617A true JPH02180617A (en) 1990-07-13
JPH0714454B2 JPH0714454B2 (en) 1995-02-22

Family

ID=18290194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335582A Expired - Lifetime JPH0714454B2 (en) 1988-12-29 1988-12-29 Control method of flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH0714454B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
JPS63229126A (en) * 1987-03-19 1988-09-26 Babcock Hitachi Kk Control method for wet exhaust gas desulfurizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250931A (en) * 1986-04-23 1987-10-31 Babcock Hitachi Kk Wet exhaust gas desulfurization control device
JPS63229126A (en) * 1987-03-19 1988-09-26 Babcock Hitachi Kk Control method for wet exhaust gas desulfurizer

Also Published As

Publication number Publication date
JPH0714454B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
CN103771553B (en) The adaptive fuzzy control method of wet flue gas desulfurization waste water evaporation process
MY196819A (en) Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
JPH084709B2 (en) Wet Flue Gas Desulfurization Controller
CN101303595A (en) Open ring fuzzy control system for wet process FGD system
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH02180617A (en) Control of waste gas desulfurization apparatus
JPH02180618A (en) Control of waste gas desulfurization apparatus
JPH02180616A (en) Control of waste gas desulfurization apparatus
JPH11147020A (en) Method and apparatus for controlling flow rate of absorbent slurry at starting and stop of circulation pump for absorbing column in exhaust gas desulfurization facility
JPS60110321A (en) Control of exhaust gas desulfurizing plant
JPH0355171B2 (en)
JP2529244B2 (en) Absorption liquid circulation controller for wet flue gas desulfurization equipment
JPH0919623A (en) Wet type waste gas desulfurizing method and device therefor
CN111450622B (en) Demister flushing system capable of automatically adjusting water balance of desulfurizing tower and control method
JPH02180615A (en) Control of waste gas desulfurization apparatus
CN207203799U (en) A kind of tail gas of sulphur cleaning system
JPH05228336A (en) Ph controller for desulfurizing device
JPH08281056A (en) Wet type flue gas desulfurizer
JPH0372912A (en) Control method of exhaust gas desulfurization apparatus
JPH1066825A (en) Desulfurization control apparatus
JP2710790B2 (en) Control method for wet flue gas desulfurization unit
CN211462651U (en) Spray scattering tower
JPS6121720A (en) Control apparatus of wet waste gas desulfurization apparatus
JPH07116456A (en) Method for controlling flue gas wet desulfurization apparatus
JP3190938B2 (en) Flue gas desulfurization equipment