JPH02180615A - Control of waste gas desulfurization apparatus - Google Patents

Control of waste gas desulfurization apparatus

Info

Publication number
JPH02180615A
JPH02180615A JP63335580A JP33558088A JPH02180615A JP H02180615 A JPH02180615 A JP H02180615A JP 63335580 A JP63335580 A JP 63335580A JP 33558088 A JP33558088 A JP 33558088A JP H02180615 A JPH02180615 A JP H02180615A
Authority
JP
Japan
Prior art keywords
absorbent
operating
desulfurization
absorption tower
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63335580A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tamaru
田丸 忠義
Hiroo Inoue
井上 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63335580A priority Critical patent/JPH02180615A/en
Publication of JPH02180615A publication Critical patent/JPH02180615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out economical operation of the title apparatus by selecting optimum conditions from the data of waste gas flow rate into an absorption tower, the concentrations of SO2 at an inlet and an outlet of the absorption tower, the concentration of an absorbent in an absorbent solution, pH of the absorbent solution, and the number of driving circulation pumps and controlling the operation. CONSTITUTION:Desulfurization efficiency is computed by a computer 10 based on actual, operational data such as a waste gas flow rate into an absorption tower 1, pH of an absorption solution 2, the concentrations of SO2 at an inlet 8 and an outlet 9 of the absorption tower, the concentration of an absorbent in the absorbent solution 2, and the number of operating circulation pumps, etc. Operational conditions are so altered as to have the computed desulfurization efficiency superior to a set desulfurization efficiency, and real-time operational conditions are so selected as to have ability superior to the set desulfurization efficiency. Then, operation cost under each operational condition is computed and an operational condition is so set as to have minimum operation cost and basing on the operational condition, the actural supply amount of the absorbent, pouring amount of an activating agent, a number of the circulation pumps to be driven are controlled and as a result, most economical operation is thus achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は排煙脱硫装置において吸収塔に八つて来る排ガ
スの流量とか排ガス中の502yA度等から吸収塔内で
の脱硫を好適に行わせるように制御させるために採用す
る排煙脱硫装置の制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a flue gas desulfurization device that allows desulfurization to be carried out in the absorption tower in a suitable manner based on the flow rate of the exhaust gas coming into the absorption tower, the 502yA degree in the exhaust gas, etc. The present invention relates to a control method for a flue gas desulfurization device that is employed to control the exhaust gas desulfurization equipment.

[従来の技術] 排煙脱硫装置の吸収塔に送り込まれる排ガスの流量や該
排ガス中のSO2濃度を検出して、これらの検出値をデ
ータとして吸収塔内での脱硫作用を効率よく行わせるも
のとして、従来、たとえば、第7図に示す如き構成の排
煙脱硫装置が提案されている(特願昭60−16351
9号)。
[Prior art] A device that detects the flow rate of exhaust gas sent to the absorption tower of a flue gas desulfurization equipment and the SO2 concentration in the exhaust gas, and uses these detected values as data to efficiently perform the desulfurization action in the absorption tower. For example, a flue gas desulfurization device having the configuration shown in FIG. 7 has been proposed (Japanese Patent Application No. 16351/1986)
No. 9).

上記第7図に示す排煙脱硫装置では、吸収塔a内の下部
に溜められた吸収液すを、吸収塔a内の上部に多段に配
設したスプレー段Cに複数の循環ポンプdと循環ライン
eにより導くようにして、各スプレー段Cのスプレーノ
ズル[より吸収液すを噴出させるようにし、一方、上記
吸収塔a内の吸収液すと接触させるために吸収塔a内に
入れるボイラ等の排ガスの入口管9に、排ガス流量を検
出する排ガス流量計りと入口ガス中のSOz′#を度を
検出する入口5O21度計1を設けると共に、吸収塔a
の頂部から排ガスを排出させるガス出口管jに、出口ガ
ス中の5O2a度を検出する出口302 m度訂kを設
けで、上記排ガス流ff1ilh及び入口5O2iG度
訂iからの各検出信号を計算a1に入れることにより該
計算機Iで入口SO2の絶対口を演惇して、そのS02
旧の吸収に必要なスプレー段Cの段数を演騨し、各循環
ラインe上の遮断弁mの開閉を行わせて循環ポンプdの
運転台数を決めるようにしてあり、更に上記出口5o2
ia度計kからの検出信号を上記計則4に送って上記運
転するスプレー段Cの段数や循環ポンプdの台数による
結果をフィードバックさせるようにしである。0はミス
トエリミネータ、0は冷却用スプレー段、pは循環ライ
ン、qは循環ポンプ、rは流借計である。
In the flue gas desulfurization equipment shown in Fig. 7 above, the absorption liquid stored in the lower part of the absorption tower a is circulated through a plurality of circulation pumps d to the spray stage C arranged in multiple stages at the upper part of the absorption tower a. The spray nozzles of each spray stage C are guided by line e, and a boiler, etc., which is inserted into the absorption tower a in order to make it come into contact with the absorption liquid in the absorption tower a, etc. The exhaust gas inlet pipe 9 is provided with an exhaust gas flow meter for detecting the exhaust gas flow rate and an inlet 5O21 degree meter 1 for detecting the degree of SOz'# in the inlet gas.
The gas outlet pipe j that discharges exhaust gas from the top is provided with an outlet 302 m degree k for detecting 5O2a degrees in the outlet gas, and each detection signal from the exhaust gas flow ff1ilh and the inlet 5O2iG degree i is calculated a1. , the computer I calculates the absolute port of the inlet SO2, and the S02
The number of spray stages C required for old absorption is determined, and the number of operating circulation pumps d is determined by opening and closing the shutoff valves m on each circulation line e.
The detection signal from the ia temperature meter k is sent to the above-mentioned rule 4 to feed back the results based on the number of operating spray stages C and the number of circulation pumps d. 0 is a mist eliminator, 0 is a cooling spray stage, p is a circulation line, q is a circulation pump, and r is a flow meter.

したがって、上記従来の排煙脱硫装置を制御する場合は
、吸収塔aに入って来る排ガスの流旦と排ガス中の5O
2i度を検出して、その検出値によりS 02の母を求
めるようにし、その求められたSO2の岳に見合って使
用する循環ポンプdの台数を決めるようにして、経済的
な運転を行わせるようにしている。
Therefore, when controlling the above-mentioned conventional flue gas desulfurization equipment, the flow rate of the flue gas entering the absorption tower a and the 5O
2i degrees is detected, the mother of S 02 is determined based on the detected value, and the number of circulation pumps d to be used is determined according to the determined SO2 peak, thereby achieving economical operation. That's what I do.

[発明が解決しようとする課題] ところが、上記従来の排煙脱硫装置の制御方法では、循
環ポンプの運転台数を変えることによって脱硫を効率的
に行わせようとするものでおるため、実際の運転におい
て最適運転条件として評価する上で重要な吸収剤の供給
量、活性剤の注入口の選定の考慮がなされておらず、し
たがって、最適な運転条件を選ぶ上で充分とはいえない
[Problems to be Solved by the Invention] However, in the conventional control method for the flue gas desulfurization equipment described above, desulfurization is attempted to be performed efficiently by changing the number of operating circulation pumps. In this method, the amount of absorbent supplied and the selection of the injection port for the activator, which are important in evaluating the optimum operating conditions, are not considered, and therefore it cannot be said to be sufficient for selecting the optimum operating conditions.

そこで、本発明は、吸収塔へ入る排ガスの流母、吸収塔
入口のSO2濃度、吸収塔出口のSO2濃度、吸収液中
の吸収剤)農度、吸収液pH1循環ポンプ運転台数、等
のデータから現在の運転条件で最もよいものを選んで制
御して経済的な運転を行わせるようにしようとするもの
である。
Therefore, the present invention provides data such as the flow base of the exhaust gas entering the absorption tower, the SO2 concentration at the absorption tower inlet, the SO2 concentration at the absorption tower outlet, the agricultural degree of the absorbent (absorbent in the absorption liquid), the number of operating circulation pumps for the absorption liquid pH1, etc. The idea is to select the best one under the current operating conditions and control it to achieve economical operation.

[課題を解決するための手段] 本発明は、上記課題を解決するために、吸収塔へ入る排
ガスの流m、吸収液pH1吸収塔入口及び出口の各5O
zy!A度、吸収液中の吸収剤濃度、循環ポンプ運転台
数の如き現在の運転データを求めて、これらのデータに
基づき計算機にて脱硫性能シミュレーションモデルを作
った後、設定脱硫率と比較して設定脱硫率以下であれば
その時点で循環ポンプ運転台数、活性剤注入量、吸収剤
供給量の如き計算上の運転条件を変更してリアルタイム
シミュレーションを行い、上記設定脱硫率を超える性能
を出し得る運転条件を選定して、それぞれの運転条件ご
とに運転費を計算して最小運転費の運転条件を設定し、
この設定値に基づき循環ポンプの運転台数等の如き運転
条件をリアルタイムで制御させるようにする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a flow m of exhaust gas entering the absorption tower, an absorption liquid pH 1 of each 5O at the entrance and exit of the absorption tower.
Zy! Obtain current operating data such as degree A, absorbent concentration in the absorbent, and number of circulating pumps in operation, create a desulfurization performance simulation model using a computer based on these data, and then compare it with the set desulfurization rate to determine the setting. If the desulfurization rate is below the desulfurization rate, at that point, we will change the calculated operating conditions such as the number of circulation pumps in operation, the amount of activator injected, and the amount of absorbent supplied, perform a real-time simulation, and perform an operation that can achieve performance that exceeds the desulfurization rate set above. Select the conditions, calculate the operating cost for each operating condition, and set the operating condition with the minimum operating cost.
Based on this set value, operating conditions such as the number of circulating pumps in operation are controlled in real time.

[作  用] 現在の運転データから脱硫効率のモデル式を計算機内で
作って設定脱硫率と比較し、設定脱硫率を超える性能を
出し得る運転条件を選定するので、この運転条件で循環
ポンプの運転台数、活性剤注入量、吸収剤供給量を制御
させれば、脱硫効率のよい運転が行えるが、本発明では
、上記運転条件が設定されると、各運転条件ごとに運転
費を計算して、最小運転費となる運転条件で運転させる
ようにするので、現在の運転条件で最適で且つ運転費の
小ざい運転を行わせることができる。
[Function] A model formula for desulfurization efficiency is created in the computer from the current operating data and compared with the set desulfurization rate to select operating conditions that can achieve performance that exceeds the set desulfurization rate. Desulfurization efficiency can be achieved by controlling the number of operating units, the amount of activator injection, and the amount of absorbent supplied, but in the present invention, once the above operating conditions are set, the operating cost is calculated for each operating condition. Since the system is operated under the operating conditions that result in the minimum operating cost, it is possible to perform the optimum operation under the current operating conditions and with a small operating cost.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法の実施に使用する排煙脱硫装置の
概要を示すもので、下部に液溜部を設けて吸収液2を溜
めるようにした吸収塔1の上部に、スプレーノズル4を
有するスプレー段3を多段に配設し、各段のスプレー段
3に上記液溜部の吸収液を導くための複数の循環ライン
5の途中に、それぞれ循環ポンプ6を設置し、複数個の
循環ポンプ6の運転により吸収液2がスプレー段3へ導
かれてスプレーノズル4より噴出されるようにする。一
方、上記吸収塔1内の吸収液2の液面とスプレー段3と
の間の位置に、ボイラ7からの排ガスを導入させるよう
ガス入口管8を接続すると共に、塔頂部にガス出口管9
を接続し、ガス入口管8の途中に設置した昇圧通風機1
0で昇圧されたボイラ排ガスが、各スプレー段3のスプ
レーノズル4から噴出される吸収液2と接触させられ、
排ガス中のS02が吸収液中の吸収剤に吸収され、ガス
はガス出口管9より排出され、S02は吸収剤としての
CaCo1と反応し亜硫酸カルシウムとして吸収液2中
に入るようにし、更に、吸収塔1内の下部に空気吹込口
12を有する空気吹込管11を配設して、該空気吹込管
11に空気供給管13を接続すると共に、吸収液2中に
吸収剤としてのCaCaを供給するライン14と、活性
剤(たとえば、NaOH>を注入するライン15とをそ
れぞれ吸収塔1に接続し、且つ吸収塔1の底部付近に液
扱出管16を接続する。又、上記排ガスの入口管8の途
中には、排ガスの流量を検出する排ガス流量計17と、
排ガス中の5O2a度を検出する入口5O2a度計18
とを設け、又、ガス出口管9に排出されるガス中の5O
2a度を検出する出口5Ozlfi度計19を設け、更
に、各循環ライン5に、吸収液のpHを検出するpHH
2O2、吸収液中の吸収剤濃度を検出する吸収剤濃度計
21を設ける。
Fig. 1 shows an outline of the flue gas desulfurization equipment used to carry out the method of the present invention, in which a spray nozzle 4 is installed in the upper part of an absorption tower 1 which has a liquid reservoir section at the lower part to store an absorption liquid 2. A plurality of spray stages 3 having a By operating the circulation pump 6, the absorption liquid 2 is guided to the spray stage 3 and sprayed from the spray nozzle 4. On the other hand, a gas inlet pipe 8 is connected to a position between the liquid level of the absorption liquid 2 in the absorption tower 1 and the spray stage 3 so as to introduce exhaust gas from the boiler 7, and a gas outlet pipe 9 is connected to the top of the tower.
A booster fan 1 installed in the middle of the gas inlet pipe 8
The boiler exhaust gas pressurized at 0 is brought into contact with the absorption liquid 2 spouted from the spray nozzle 4 of each spray stage 3,
S02 in the exhaust gas is absorbed by the absorbent in the absorption liquid, and the gas is discharged from the gas outlet pipe 9. S02 reacts with CaCo1 as an absorbent and enters the absorption liquid 2 as calcium sulfite. An air blowing pipe 11 having an air blowing port 12 is disposed at the lower part of the tower 1, and an air supply pipe 13 is connected to the air blowing pipe 11, and CaCa as an absorbent is supplied into the absorption liquid 2. A line 14 and a line 15 for injecting an activator (for example, NaOH) are connected to the absorption tower 1, and a liquid handling pipe 16 is connected near the bottom of the absorption tower 1. Also, the exhaust gas inlet pipe 8, there is an exhaust gas flow meter 17 for detecting the flow rate of exhaust gas,
Inlet 5O2a degree meter 18 that detects 5O2a degrees in exhaust gas
and 5O in the gas discharged to the gas outlet pipe 9.
An outlet 5 ozlfi temperature meter 19 is provided to detect 2a degrees, and each circulation line 5 is further provided with a pHH meter 19 to detect the pH of the absorption liquid.
2O2, an absorbent concentration meter 21 for detecting the absorbent concentration in the absorption liquid is provided.

22は排ガス流量計17からの値と入口SO7濃度計1
8からの502w1度値とを掛算してS02の母を求め
る掛算器、23は加算器、24は吸収剤供給うイン14
により供給ざ′れる吸収剤の供給流Eを調節させる流量
調節計、25は該流量調節計24により調節される調節
弁、26は活性剤の注入量を調節する流量調節計、27
は該流量調節計26により調節される調節弁、28は吸
収液の抜出管16から法用される吸収液の量を調節する
流量調節計、29は該流量調節計28により調節される
調節弁である。
22 is the value from the exhaust gas flow meter 17 and the inlet SO7 concentration meter 1
23 is an adder, 24 is an absorbent supply input 14
25 is a control valve regulated by the flow rate regulator 24; 26 is a flow rate regulator 27 that regulates the injection amount of the activator;
28 is a flow rate regulator that adjusts the amount of absorption liquid taken out from the absorption liquid extraction pipe 16; 29 is a control valve that is regulated by the flow rate regulator 28; It is a valve.

本発明では、上記構成のほかに、現在の運転データから
吸収塔1での脱硫効率を求めて設定脱硫率と比較し更に
比較結果に基づき設定脱硫率を超える性能が出せる運転
条件を選定する機能と、該設定された運転条件ごとに運
転費を計算して最小運転費の運転条件を設定する殿能を
有する計!H!t30を使用し、上記現在の運転データ
として、排ガス流量計17からの現在の排ガス流量、入
口302 a変針18からの現在の入口S02濃度、出
口5O2S度計19からの現在の出口S02濃度、pH
H2O2らの現在の吸収液pH1吸収剤濃度計21から
の現在の吸収剤濃度、現在の循環ポンプの運転台数を使
用するため、これ・らの現在のデータを計算機30に入
力させるよう電気的に接続する。
In addition to the above-mentioned configuration, the present invention has a function of determining the desulfurization efficiency in the absorption tower 1 from the current operating data, comparing it with the set desulfurization rate, and further selecting operating conditions that can achieve performance exceeding the set desulfurization rate based on the comparison result. And, it has the ability to calculate the operating cost for each set operating condition and set the operating condition with the minimum operating cost! H! Using t30, the current operating data is the current exhaust gas flow rate from the exhaust gas flow meter 17, the current inlet S02 concentration from the inlet 302a change course 18, the current outlet S02 concentration from the outlet 5O2S degree meter 19, and the pH.
In order to use the current absorbent concentration from the absorbent concentration meter 21 and the current number of circulating pumps in operation, an electrical connection is made to input these current data into the calculator 30. Connecting.

第2図は上記訓算懇30の内部構成例を示すもので、3
1は脱硫効率ηと吸収液pt+のモデル式設定部、32
は脱硫率ηの計算部、33は計算された脱硫率と脱硫率
設定器34からの設定脱硫率η。
Figure 2 shows an example of the internal configuration of the above-mentioned Kunsan-Kou 30.
1 is the model equation setting part for desulfurization efficiency η and absorption liquid pt+, 32
33 is the calculated desulfurization rate and the set desulfurization rate η from the desulfurization rate setting device 34.

とを比較する比較部、35は比較部33で比較された結
果により変更するときの計算上の運転条件を示すもので
、36は循環ポンプ運転台数、37は活性剤(通常は苛
性ソーダN a OH)注入量、38は吸収剤濃度計の
値、39は運転条件設定部、40は運転条件ごとの運転
費を計算する運転費計算部、41は運転費最小運転条件
設定部であり、上記運転費最小運転条件設定部41から
吸収剤の供給m調1節弁24、活性剤の注入量wA節弁
26、循環ポンプ6へ制御指令が送られるようにしであ
る。
35 indicates the calculated operating conditions to be changed based on the results of the comparison in the comparison section 33, 36 indicates the number of circulation pumps in operation, and 37 indicates the activator (usually caustic soda NaOH). ) injection amount, 38 is the value of the absorbent concentration meter, 39 is an operating condition setting section, 40 is an operating cost calculation section that calculates the operating cost for each operating condition, 41 is a minimum operating cost operating condition setting section, and 41 is a minimum operating cost operating condition setting section. Control commands are sent from the minimum cost operating condition setting unit 41 to the absorbent supply m adjustment valve 24, the activator injection amount wA adjustment valve 26, and the circulation pump 6.

今、ボイラ7からの排ガスは入口管8を通り、昇圧通風
機10で昇圧されて吸収塔1内に入れられる。吸収塔1
内では“、複数の循環ポンプ6の運転によりスプレー段
3へ導かれ、スプレーノズル4より吸収液2が噴霧され
ているので、上記吸収塔1内に入った排ガスは吸収液2
と向流接触させられて排ガス中の302が吸収液中の吸
収剤(CaCOl)に吸収されて除去され、ガスはガス
出口管9より排出され、吸収液は循環使用される。排ガ
ス中のSO2を吸収した吸収剤はSαと反応して吸収液
2中に入り、ここで、吹き込まれる空気によって酸化さ
せられ、スラリーとして液抜出管16より抜き出される
ことになる。
Now, the exhaust gas from the boiler 7 passes through the inlet pipe 8, is pressurized by the booster fan 10, and is introduced into the absorption tower 1. Absorption tower 1
Inside, the exhaust gas that has entered the absorption tower 1 is guided to the spray stage 3 by the operation of a plurality of circulation pumps 6, and the absorption liquid 2 is sprayed from the spray nozzle 4.
302 in the exhaust gas is absorbed and removed by the absorbent (CaCOl) in the absorption liquid, and the gas is discharged from the gas outlet pipe 9, and the absorption liquid is used for circulation. The absorbent that has absorbed SO2 in the exhaust gas reacts with Sα and enters the absorption liquid 2, where it is oxidized by the blown air and is extracted from the liquid extraction pipe 16 as a slurry.

上記吸収塔1内では、順次導入される排ガス中のS02
の吸収作用が行われて脱硫作用が行われるが、現在の運
転状況で最適な脱硫効率となる運転条件を設定しようと
する本発明の方法では、現在の運転で得られるデータか
ら計算Ia30にて脱硫効率のシミュレーションモデル
を作らせるようにする。すなわち、現在の運転において
得られるデータとして、前記したように現在のD1ガス
流母、現在の入口5O21度、現在の出口5OJJ度、
現在の吸収液pH1現在の吸収液中の吸収剤濃度、現在
の循環ポンプの運転台数を用い、これらのデータを第2
図のモデル設定部31に入れ、モデル式に従って計峰部
32で、脱硫効率ηの計算を行う。すなわら、 Pn      :循環ポンプ運転台数G      
=入ロガス伍 :入ロS02濃度 :液溜部容母 :吸収S02母 100−η =j−G−Y・ io。
Inside the absorption tower 1, S02 in the exhaust gas that is sequentially introduced
However, in the method of the present invention, which attempts to set the operating conditions that provide the optimal desulfurization efficiency under the current operating conditions, the calculation Ia30 from the data obtained in the current operating conditions Have students create a simulation model of desulfurization efficiency. That is, as mentioned above, the data obtained in the current operation includes the current D1 gas flow base, the current inlet 5O21 degrees, the current outlet 5OJJ degrees,
Using the current pH of the absorption liquid, the current concentration of the absorption agent in the absorption liquid, and the current number of circulation pumps in operation, these data are
The desulfurization efficiency η is calculated by the measuring unit 32 according to the model formula. In other words, Pn: Number of operating circulation pumps G
= Input log gas: Inlet S02 concentration: Reservoir volume: Absorption S02 base 100-η = j-G-Y・io.

B       :法用液量 PC:吸収剤供給母 Pa      :活性剤(NaO!−1>注入量この
場合、脱硫効率と循環ポンプ運転台数との関係は第3図
に示す如くであり、運転台数の増加に伴い脱硫効率はよ
くなる。図中、■は排ガス流量が少ないとぎ、■は排ガ
ス流量が多いとき、■はその中間のときの曲線である。
B: Legal liquid volume PC: Absorbent supply base Pa: Activator (NaO!-1>Injection amount) In this case, the relationship between desulfurization efficiency and the number of operating circulation pumps is as shown in Figure 3, and the number of operating pumps is The desulfurization efficiency improves as it increases. In the figure, ■ is the curve when the exhaust gas flow rate is low, ■ is the curve when the exhaust gas flow rate is high, and ■ is the curve when the exhaust gas flow rate is high.

又、脱硫効率と吸収液1)Hとの関係は、第4図に示す
如くであり、吸収液pHと吸収液中の吸収剤濃度との関
係は、第5図に示す如くであり、吸収液中の吸収剤濃度
が決まれば吸収液pHが決まる関係にある。第5図中、
曲線■′は吸収S02小の場合、曲線■′は吸収S02
中、曲線■′は吸収Sα大の場合である。更に、脱硫効
率と吸収液中N a 211度との関係は第6図に示す
如くである。
In addition, the relationship between desulfurization efficiency and absorption liquid 1)H is as shown in Figure 4, and the relationship between absorption liquid pH and absorbent concentration in the absorption liquid is as shown in Figure 5. The relationship is such that if the absorbent concentration in the liquid is determined, the pH of the absorbent liquid is determined. In Figure 5,
If the absorption S02 is small, the curve ■' is the absorption S02.
In the middle, the curve ■' is for the case where the absorption Sα is large. Furthermore, the relationship between desulfurization efficiency and Na 211 degrees in the absorption liquid is as shown in FIG.

上述した計算により脱硫効率のシミュレーションモデル
が作られると、この作られた脱硫効率ηと設定脱硫率η
、とを比較部33にて比較し、ηくη、であれば、計算
上の運転条件の変更指示を出して計算上の運転条件35
である循環ポンプ運転台数の値36、活性剤注入辺の値
37、吸収剤供給mの値38を変更した上、計算し直し
てリアルタイムシミュレーションを行い、η〉η。
When a simulation model of desulfurization efficiency is created by the above calculation, the created desulfurization efficiency η and the set desulfurization rate η
, are compared in the comparison unit 33, and if η is smaller than or equal to η, an instruction to change the calculated operating conditions is issued and the calculated operating conditions 35 are changed.
After changing the value 36 of the number of circulating pumps in operation, the value 37 of the activator injection side, and the value 38 of the absorbent supply m, recalculation was performed and a real-time simulation was performed to find η>η.

となる、すなわち、計算上の脱硫効率ηが設定脱硫率η
3を超えるような運転条例を運転条件設定部39で設定
する。この運転条件としては、循環ポンプ運転台数、活
性剤注入〇、吸収剤供給伍の条件組み合わせで、■■0
0・・・・・・の如き数種の運転条件が設定できる。
In other words, the calculated desulfurization efficiency η is the set desulfurization rate η
Driving regulations exceeding 3 are set in the driving condition setting section 39. This operating condition is a combination of the number of circulation pumps in operation, activator injection, and absorbent supply level.
Several types of operating conditions such as 0... can be set.

次に、上記設定された運転条件ごとに運転費を運転費計
算部40で計算する。この計算は、電力、吸収剤として
のcaco、、活性剤としてのNaOH1更にはH2S
O,の使用但と単価の積で求める。この運転費計算によ
り最小運転費の運転条件を上記に)■0■・・・・・・
の中から選んで運転費最小運転条件設定部41にて設定
し、これに基づいて第1図の吸収剤の流m調節計24や
、活性剤の流m調節計26や、循環ポンプ6へと制御指
令を与える。これにより吸収剤の供給量、活性剤の注入
量、循環ポンプ運転台数をリアルタイムで制御させるこ
とができる。
Next, the operating cost calculation unit 40 calculates the operating cost for each of the set operating conditions. This calculation includes electric power, caco as an absorbent, NaOH1 as an activator, and even H2S.
It is calculated by multiplying the usage proviso of O and the unit price. Based on this operating cost calculation, the operating conditions for the minimum operating cost are set as above)■0■・・・・・・
Select one from among them and set it in the operating cost minimum operating condition setting unit 41, and then set it based on this to the absorbent flow meter 24, the activator flow meter 26, and the circulation pump 6 in FIG. and give control commands. This makes it possible to control the amount of absorbent supplied, the amount of activator injected, and the number of circulation pumps in operation in real time.

なお、比較部33での脱硫率による比較判定は出口S0
2の比較判定でもよい。
In addition, the comparative judgment based on the desulfurization rate in the comparison section 33 is made at the outlet S0.
A comparative judgment of 2 may also be used.

[発明の効果] 以上述べた如く、本発明の排煙脱硫装置の制御方法によ
れば、現在の運転状況における各種データをもとに脱硫
効率を計算により求めて、設定脱硫率を超えるような脱
硫効率となる運転条件を選定し、更に該選定された各運
転条件ごとに運転費を計算して最小運転費の運転条件を
選定し、これに基づいてリアルタイムで吸収剤供給量、
活性剤注入量、循環ポンプ運転台数を制御させるように
するので、現在の運転状況において最も脱硫効率がよく
て且つ運転費の少ない運転条件で運転ができ、最も経済
的な運転ができる、という優れた効果を奏し得る。
[Effects of the Invention] As described above, according to the control method for the flue gas desulfurization equipment of the present invention, the desulfurization efficiency is calculated based on various data in the current operating condition, and the Select the operating conditions that result in desulfurization efficiency, calculate the operating cost for each selected operating condition, select the operating condition with the minimum operating cost, and calculate the amount of absorbent supplied in real time based on this.
Since the amount of activator injection and the number of circulation pumps in operation are controlled, it is possible to operate under the operating conditions that have the highest desulfurization efficiency and lowest operating costs under the current operating conditions, making it the most economical operation. It can have a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に使用する排煙脱硫装置の
一例を示す概略図、第2図は第1図に示す計tillの
内部47.¥成例を示づブロック図、第3図は脱硫効率
と循環ポンプ運転台数との関係図、第4図は脱硫効率と
吸収液pHとの関係図、第5図は吸収液pHと吸収液中
の吸収剤濃度との関係図、第6図は脱硫効率と吸収液中
のNa!a度との関係図、第7図は従来のJjF煙脱硫
装置制御方法を実施覆る例を示す1図である。 1・・・吸収塔、2・・・吸収液、3・・・スプレー段
、4・・・スプレーノズル、5・・・循環ライン、6・
・・循環ポンプ、8・・・ガス入口管、9・・・ガス出
口管、11・・・空気吹込管、14・・・吸収剤供給ラ
イン、15・・・活性剤注入ライン、17・・・排ガス
流帛に1.18・・・入口S02濃度計、19・・・出
口5Oz1度計、20・・・pH計、21・・・吸収剤
温度計、24,26.28・・・流ii!J!1節計、
30・・・耐算機、31・・・モデル式設定部、32・
・・脱硫効率の計鐸部、33・・・比較部、34・・・
脱硫率設定器、35・・・計算上の運転条件、39・・
・運転条件設定部、40・・・運転費計算部、41・・
・運転費最小運転条件設定部。
FIG. 1 is a schematic diagram showing an example of a flue gas desulfurization apparatus used in carrying out the method of the present invention, and FIG. 2 is a schematic diagram showing the interior 47. Figure 3 is a diagram showing the relationship between desulfurization efficiency and the number of operating circulation pumps, Figure 4 is a diagram showing the relationship between desulfurization efficiency and absorbent pH, and Figure 5 is a diagram showing the relationship between desulfurization efficiency and absorption liquid pH. Figure 5 is a diagram showing the relationship between desulfurization efficiency and absorption liquid pH. Figure 6 shows the relationship between the desulfurization efficiency and the concentration of the absorbent in the absorbent. FIG. 7 is a diagram showing an example of implementing the conventional JJF smoke desulfurization equipment control method. DESCRIPTION OF SYMBOLS 1... Absorption tower, 2... Absorption liquid, 3... Spray stage, 4... Spray nozzle, 5... Circulation line, 6...
...Circulation pump, 8...Gas inlet pipe, 9...Gas outlet pipe, 11...Air blowing pipe, 14...Absorbent supply line, 15...Activator injection line, 17...・In the exhaust gas flow 1.18... Inlet S02 concentration meter, 19... Outlet 5Oz 1 degree meter, 20... pH meter, 21... Absorbent thermometer, 24, 26.28... Flow ii! J! 1 section meter,
30... Calculator, 31... Model formula setting section, 32.
...Desulfurization efficiency measurement section, 33...Comparison section, 34...
Desulfurization rate setting device, 35... Calculated operating conditions, 39...
- Operating condition setting section, 40...Operating cost calculation section, 41...
・Minimum operating cost operating condition setting section.

Claims (1)

【特許請求の範囲】[Claims] (1)吸収塔へ入る排ガス流量、吸収液pH、吸収塔入
口及び出口のSO_2濃度、吸収液中吸収剤濃度、循環
ポンプ運転台数の如き現状の運転データに基づき計算機
にて脱硫率を計算し、該計算で得られた脱硫率が設定脱
硫率を超えるように運転条件を変更して上記設定脱硫率
を超える性能を出し得るリアルタイムの運転条件を選定
し、次いで、各運転条件ごとに運転費を計算して最小運
転費となる運転条件を設定し、これに基づいて現在の吸
収剤供給量、活性剤注入量、循環ポンプ運転台数を制御
させることを特徴とする排煙脱硫装置の制御方法。
(1) Calculate the desulfurization rate using a computer based on current operating data such as the flow rate of exhaust gas entering the absorption tower, the pH of the absorption liquid, the SO_2 concentration at the inlet and outlet of the absorption tower, the concentration of the absorbent in the absorption liquid, and the number of operating circulation pumps. , change the operating conditions so that the desulfurization rate obtained by this calculation exceeds the set desulfurization rate, select real-time operating conditions that can achieve performance exceeding the set desulfurization rate, and then calculate the operating cost for each operating condition. A control method for a flue gas desulfurization equipment, characterized in that the operating conditions that result in the minimum operating cost are set by calculating the operating conditions, and the current amount of absorbent supplied, the amount of activator injected, and the number of operating circulation pumps are controlled based on this. .
JP63335580A 1988-12-29 1988-12-29 Control of waste gas desulfurization apparatus Pending JPH02180615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335580A JPH02180615A (en) 1988-12-29 1988-12-29 Control of waste gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335580A JPH02180615A (en) 1988-12-29 1988-12-29 Control of waste gas desulfurization apparatus

Publications (1)

Publication Number Publication Date
JPH02180615A true JPH02180615A (en) 1990-07-13

Family

ID=18290171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335580A Pending JPH02180615A (en) 1988-12-29 1988-12-29 Control of waste gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPH02180615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172088A1 (en) 2018-03-06 2019-09-12 三菱日立パワーシステムズ株式会社 Operation support system and operation support method for desulfurization equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172088A1 (en) 2018-03-06 2019-09-12 三菱日立パワーシステムズ株式会社 Operation support system and operation support method for desulfurization equipment
KR20200115639A (en) 2018-03-06 2020-10-07 미츠비시 파워 가부시키가이샤 Driving support system and driving support method of desulfurization device

Similar Documents

Publication Publication Date Title
CA2339507C (en) Method for controlling absorbent at decarboxylation facility and system therefor
CN101557868B (en) System of flue-gas desulfurization with seawater
MY196819A (en) Method for controlling wet flue gas desulfurization device, device for controlling wet flue gas desulfurization device, and remote monitoring system comprising device for controlling wet flue gas desulfurization device
CN100493679C (en) Method of controlling fume speed inside desulfurizing absorption tower
AU2018200280A1 (en) Removal of atmospheric pollutants from gas, related apparatus, processes and uses thereof
CN101303595A (en) Open ring fuzzy control system for wet process FGD system
Mejdell et al. Novel full height pilot plant for solvent development and model validation
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
Kayahan et al. A new look to the old solvent: Mass transfer performance and mechanism of CO2 absorption into pure monoethanolamine in a spray column
JPH11104448A (en) Equipment and method for flue gas desulfurization
JPH02180615A (en) Control of waste gas desulfurization apparatus
JPS61136417A (en) Dust removal apparatus
SA111320157B1 (en) Aeration apparatus for treated water and method for removing deposition
JP5583037B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
JPH02180616A (en) Control of waste gas desulfurization apparatus
CN210434255U (en) Experimental device capable of measuring gas absorption coefficient
JP4433268B2 (en) Wet flue gas desulfurization method and apparatus
JPH02180617A (en) Control of waste gas desulfurization apparatus
JP3757596B2 (en) Flue gas desulfurization equipment
EP0437338A1 (en) Apparatus for the prevention of acid excursions
CN207203799U (en) A kind of tail gas of sulphur cleaning system
JPH02180618A (en) Control of waste gas desulfurization apparatus
JP3651918B2 (en) Control method of wet flue gas desulfurization equipment
JPS6223423A (en) Method for controlling wet type waste gas desulfurization apparatus
JPH09155150A (en) Dust removal forecast control