JPH07144103A - Extraction agent for transuranic elements and separation of transuranic elements using the same - Google Patents

Extraction agent for transuranic elements and separation of transuranic elements using the same

Info

Publication number
JPH07144103A
JPH07144103A JP29698293A JP29698293A JPH07144103A JP H07144103 A JPH07144103 A JP H07144103A JP 29698293 A JP29698293 A JP 29698293A JP 29698293 A JP29698293 A JP 29698293A JP H07144103 A JPH07144103 A JP H07144103A
Authority
JP
Japan
Prior art keywords
extractant
tru
bis
phosphate
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29698293A
Other languages
Japanese (ja)
Inventor
Toshio Takahashi
俊夫 高橋
Kyoko Ishida
京子 石田
Kazuhiko Matsuda
一彦 松田
Chisato Takahashi
千里 高橋
Yoshihiro Endo
芳浩 遠藤
Shiro Matsumoto
史朗 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
IHI Corp
Original Assignee
Lion Corp
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, IHI Corp filed Critical Lion Corp
Priority to JP29698293A priority Critical patent/JPH07144103A/en
Publication of JPH07144103A publication Critical patent/JPH07144103A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To obtain a high TRU extraction performance even in a high concn. region by using a compd. having a specified formula such as bis p-nonylphenyl phosphate as an extraction agent for transuranic elements. CONSTITUTION:The compd. expressed by the formula (R1 and R2 are a6-18C linear or branched alkyl group having >=6 carbon atoms in a main chain, X is hydrogen atom, a univalent or bivalent metallic ion or ammonium ion) such as bis p-nonylphenyl phosphate and bis p-n-hexel-phenyl phosphate is used as the extraction agent for the transranic elements. Then, this extraction agent is impregnated to a porous carrier such as styrene-vinylbenzene copolymer to make an absorbent and the transuranic elements are absorbed to this absorbent to be separated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超ウラン元素の抽出剤に
関し、特に使用済み核燃料再処理工場等で発生する放射
性廃液中から、超ウラン元素を除去する際に有効な抽出
剤、及びこれを用いた超ウラン元素の分離法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extractant for transuranic elements, and more particularly, an extractant effective for removing transuranic elements from radioactive waste liquid generated in a spent nuclear fuel reprocessing plant and the like. The method for separating transuranic elements used.

【0002】[0002]

【従来の技術】使用済み核燃料からは、再処理により
U、Puが回収されるが、その際発生する放射性廃液中
には、Cs、Sr、Ruなどの核分裂生成物の他に、微
量のNp、Am、Cmなどの超ウラン元素(TRUと略
記)が含まれている。これらTRUの中には、例えば
243Amや245Cmのように、半減期が5000年以上に
も及ぶα放射体があり、廃棄物の処理、処分という観点
から、これらTRUを分離し、効率的に貯蔵管理または
処分することが必要となっている。
2. Description of the Related Art U and Pu are recovered from spent nuclear fuel by reprocessing, and in the radioactive waste liquid generated at that time, in addition to fission products such as Cs, Sr and Ru, a trace amount of Np is contained. , Am, Cm and other transuranium elements (abbreviated as TRU) are included. Among these TRUs, for example,
There are α-emitters such as 243 Am and 245 Cm with a half-life of 5000 years or more. From the viewpoint of waste treatment and disposal, it is possible to separate these TRUs and efficiently store or manage them. Is needed.

【0003】最近の放射性廃液からのTRU除去プロセ
スの研究から、硝酸水溶液中のランタノイド元素や、T
RUを含むアクチノイド元素等を効率的に捕集すること
が可能な抽出剤を含浸した吸着剤を用いた分離法が提案
されている。これらの吸着剤に含浸される抽出剤として
は、リン酸ビス−2−エチルヘキシルやリン酸ジイソデ
シル等のリン酸アルキルエステル(特開平1−1770
00号公報)や二座配位型のリン系抽出剤、例えばホス
ホン酸カルバモイルメチルエステル(CMPと略記)
や、カルバモイルメチルホスフィンオキシド(CMPO
と略記)が知られている(特開平3−225299号公
報)。
Recent studies on the process of removing TRU from radioactive liquid waste have revealed that lanthanoid elements in aqueous nitric acid and T
There has been proposed a separation method using an adsorbent impregnated with an extractant capable of efficiently collecting an actinide element including RU. As the extractant to be impregnated in these adsorbents, phosphoric acid alkyl esters such as bis-2-ethylhexyl phosphate and diisodecyl phosphate (Japanese Patent Laid-Open No. 1-1770)
No. 00) or a bidentate phosphorous-based extractant such as phosphonic acid carbamoylmethyl ester (abbreviated as CMP).
Or carbamoylmethylphosphine oxide (CMPO
Is abbreviated) (Japanese Patent Laid-Open No. 3-225299).

【0004】しかしながら、これらの抽出剤のうち、リ
ン酸アルキルエステルは、廃液が処理される高酸濃度領
域でのTRU抽出性能が低く、効率的ではないという欠
点を有していた。また、CMPなどのカルバモイルメチ
ルリン系抽出剤は、高いTRU抽出性能を有している
が、極めて高価であり、実用的な廃棄物処理システムに
使用するには経済的問題があった。
However, among these extractants, the phosphoric acid alkyl ester has a drawback that the TRU extraction performance is low in a high acid concentration region where waste liquid is treated and is not efficient. Further, although carbamoylmethylphosphorus-based extractants such as CMP have high TRU extraction performance, they are extremely expensive and have an economical problem when used in a practical waste treatment system.

【0005】一方、合成が容易で、高酸濃度領域でも高
い金属イオン抽出能を有する抽出剤としては、リン酸ジ
フェニルエステル誘導体が一般的に知られている。しか
しながら、従来から使用されているリン酸ジフェニルエ
ステル誘導体は、それ自身及びその金属錯体の、溶媒に
対する溶解性が必ずしも良好ではなかった。
On the other hand, a phosphoric acid diphenyl ester derivative is generally known as an extractant which is easy to synthesize and has a high metal ion extracting ability even in a high acid concentration range. However, the conventionally used phosphoric acid diphenyl ester derivatives have not always been good in the solubility of themselves and their metal complexes in solvents.

【0006】例えば、最もよく知られているリン酸ビス
−p−tert−オクチルフェニル及びその金属錯体
は、抽出溶媒として広く使用されているケロシンに対す
る溶解性が低いため、それを用いた抽出操作時に、生成
した金属錯体が析出してしまうことがあった。また、廃
液中にFe3+が存在すると、上記リン酸ビス−p−te
rt−オクチルフェニルは、そのFe3+と不溶性の錯体
を形成し、他の金属に対する抽出分離性能を悪化させる
という問題も生じていた(特開昭53−131213号
公報)。従って、このような抽出剤を多孔質担体に含浸
させて吸着剤とした場合、分離操作中に多孔質担体の表
面で錯体が析出して担体の孔を閉塞し、吸着性能を著し
く低下させる可能性があった。
For example, the most well-known bis-p-tert-octylphenyl phosphate and its metal complex have low solubility in kerosene, which is widely used as an extraction solvent. However, the generated metal complex may be deposited. When Fe 3+ is present in the waste liquid, the above-mentioned bis-p-te phosphate is used.
There is also a problem that rt-octylphenyl forms an insoluble complex with Fe 3+ and deteriorates the extraction / separation performance with respect to other metals (JP-A-53-131213). Therefore, when such an extractant is impregnated into a porous carrier to form an adsorbent, a complex may be deposited on the surface of the porous carrier during the separation operation to block the pores of the carrier and significantly lower the adsorption performance. There was a nature.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明におけ
る課題は、溶媒に対する溶解性に優れ、高酸濃度でも高
いTRU抽出性能を示し、なおかつ安価なTRU抽出
剤、及びこの抽出剤を含浸させた吸着剤を用いたTRU
分離法を提供することにある。なお、本明細書におい
て、抽出剤とはTRUと選択的に錯体を形成して捕捉す
る能力を有する化合物を指し、吸着剤とはその抽出剤を
例えば多孔質担体等に固定したものを指称するものとす
る。
Therefore, an object of the present invention is to provide an excellent TRU extractant having excellent solubility in a solvent, high TRU extractability even at a high acid concentration, and an inexpensive TRU extractant. TRU using adsorbent
To provide a separation method. In the present specification, the extractant refers to a compound having the ability to selectively form a complex with TRU to capture it, and the adsorbent refers to the extractant fixed to, for example, a porous carrier or the like. I shall.

【0008】[0008]

【課題を解決するための手段】かかる課題は、下記式
(1)で表される化合物の少なくとも1種からなる超ウ
ラン元素の抽出剤によって解決できる。
This problem can be solved by an extractant for transuranic elements consisting of at least one compound represented by the following formula (1).

【0009】[0009]

【化2】 但し、R1、R2は、主鎖中に6個以上の炭素原子を有す
るC6−C18の直鎖または分岐アルキル基であり、X
は、水素原子、1価もしくは2価の金属イオンまたはア
ンモニウムイオンである。
[Chemical 2] However, R 1 and R 2 are C 6 -C 18 linear or branched alkyl groups having 6 or more carbon atoms in the main chain, and X 1
Is a hydrogen atom, a monovalent or divalent metal ion or an ammonium ion.

【0010】本発明の抽出剤にあっては、アルキル基R
1及びR2をなす炭素数は6個から18個であり、それが
5個以下であると、TRU抽出時に生成される錯体の溶
媒に対する溶解性が悪くなり、逆に炭素数が19個以上
であると、TRUの抽出性能が低下する。また、このア
ルキル基はパラ位に置換されているのが好ましく、例え
ば、オルト位に置換されていると、その抽出剤の溶解性
には問題ないものの、抽出性能が大幅に低下する。
In the extracting agent of the present invention, the alkyl group R
The number of carbon atoms forming 1 and R 2 is 6 to 18, and if it is 5 or less, the solubility of the complex formed during the extraction of TRU in a solvent is deteriorated, and conversely, the number of carbon atoms is 19 or more. If so, the extraction performance of the TRU is deteriorated. Further, it is preferable that the alkyl group is substituted at the para position. For example, if the alkyl group is substituted at the ortho position, the solubility of the extractant will not be a problem but the extraction performance will be significantly reduced.

【0011】このような化合物の具体例としては、リン
酸ビス−p−ノニルフェニル、リン酸ビス−p−n−ヘ
キシルフェニル、等を挙げることができる。また、本発
明の抽出剤は、上記式(1)で表される化合物の1種ま
たは2種以上を主成分とするものであれば、他の化合物
を含んでいてもよい。ここで、主成分とは、その化合物
全体の、およそ7割以上の重量を占め、その化合物全体
の性質が、その主成分の性質で代表されるようなものを
いう。
Specific examples of such a compound include bis-p-nonylphenyl phosphate and bis-pn-hexylphenyl phosphate. Further, the extractant of the present invention may contain other compounds as long as it has one or more compounds represented by the above formula (1) as a main component. Here, the main component means a substance that occupies about 70% or more of the weight of the whole compound and the property of the whole compound is represented by the property of the main component.

【0012】次に、この抽出剤を用いた本発明のTRU
分離法について説明する。まず、上記本発明の抽出剤を
多孔質担体に含浸させ、吸着剤とする。ここで用いられ
る多孔質担体としては、多孔質高分子担体等が好適に用
いられる。その多孔質高分子担体を前記抽出剤中に浸漬
し、抽出剤を多孔質高分子担体中に含浸させる。含浸条
件は、多孔質高分子担体の種類、物性及び抽出剤の種類
等によって適宜選択される。例えば、多孔質高分子担体
としてスチレン−ジビニルベンゼン共重合体(SDBと
略記)粒子を用い、抽出剤としてリン酸−ビス−p−ノ
ニルフェニルを用いた場合には、SDB粒子をその抽出
剤中に浸漬して、24時間程度攪拌した後、SDB粒子
を濾別し、数回水洗してSDB粒子の細孔内の余剰の抽
出剤を除去する。そして、例えば真空乾燥炉内において
60℃で3時間程度乾燥させることにより得られる。
Next, the TRU of the present invention using this extractant
The separation method will be described. First, a porous carrier is impregnated with the extractant of the present invention to obtain an adsorbent. As the porous carrier used here, a porous polymer carrier or the like is preferably used. The porous polymer carrier is dipped in the extractant to impregnate the porous polymer carrier with the extractant. The impregnation conditions are appropriately selected depending on the type of porous polymer carrier, the physical properties, the type of extractant, and the like. For example, when styrene-divinylbenzene copolymer (abbreviated as SDB) particles are used as the porous polymer carrier and phosphoric acid-bis-p-nonylphenyl phosphate is used as the extractant, the SDB particles are contained in the extractant. After immersing in, and stirring for about 24 hours, the SDB particles are filtered off and washed several times with water to remove the excess extractant in the pores of the SDB particles. Then, for example, it is obtained by drying in a vacuum drying furnace at 60 ° C. for about 3 hours.

【0013】この多孔質高分子担体は、疎水性、親水性
いずれの性質を有する高分子樹脂からなってもよいが、
例えば、その細孔径や粒子径の調整が容易な低架橋度の
SDBやアクリル酸エステル樹脂等が好ましい。また、
この多孔質高分子担体の形状は特に限定されるものでは
ないが、カラムへの充填効率を考慮すると粒状が好まし
い。特に粒子径が小さいほど、TRU水溶液との接触面
積が増大し、短時間でTRUを吸着分離することができ
るので好ましい。
The porous polymer carrier may be composed of a polymer resin having either a hydrophobic property or a hydrophilic property,
For example, SDB or acrylate resin having a low degree of crosslinking, whose pore size and particle size can be easily adjusted, is preferable. Also,
The shape of the porous polymer carrier is not particularly limited, but a granular shape is preferable in consideration of the packing efficiency in the column. In particular, the smaller the particle diameter, the larger the contact area with the TRU aqueous solution and the more preferable the TRU can be adsorbed and separated in a short time.

【0014】次に、この吸着剤をTRU水溶液に接触さ
せて、TRUを吸着剤に吸着させる。その方法は、例え
ば図5に示したようなカラムクロマトグラフィー法を用
いるのが好ましい。図5において、1は本発明の抽出剤
を含浸した吸着剤を示す。まず、その吸着剤1を、カラ
ムクロマトグラフィー用のカラム2に充填する。次に、
カラム2のコック3を閉鎖した状態で、TRU水溶液1
0をカラム入口4から流入する。吸着剤1と接触したT
RU水溶液は、吸着剤1の細孔内に入り、その細孔内に
存在する抽出剤によって捕捉される。次に、前記コック
3を開放すると、カラム出口5からは、TRUが吸着除
去された水溶液が流出する。このようにしてTRUを吸
着した吸着剤は、例えば、乾留等によって減容し、所定
の方法に従って安全に処分することができる。
Next, this adsorbent is brought into contact with the TRU aqueous solution to adsorb TRU to the adsorbent. As the method, for example, a column chromatography method as shown in FIG. 5 is preferably used. In FIG. 5, 1 indicates an adsorbent impregnated with the extractant of the present invention. First, the adsorbent 1 is packed in a column 2 for column chromatography. next,
TRU aqueous solution 1 with the cock 3 of the column 2 closed
0 flows in from the column inlet 4. T in contact with adsorbent 1
The RU aqueous solution enters the pores of the adsorbent 1 and is captured by the extractant present in the pores. Next, when the cock 3 is opened, the aqueous solution from which the TRU has been adsorbed and removed flows out from the column outlet 5. The adsorbent that has adsorbed TRU in this manner can be reduced in volume, for example, by dry distillation, and safely disposed of according to a predetermined method.

【0015】上記説明では、カラムクロマトグラフィー
法を用いた吸着分離法について述べたが、本発明のTR
Uの分離法は、それに限られるものではなく、本発明の
抽出剤とTRU水溶液とが、接触することが可能な手段
であれば如何なる方法を用いてもよい。なお本発明の分
離法は、多孔質高分子担体中に特定の抽出剤を含浸させ
たものであり、TRUのみならず本発明の抽出剤と配位
可能な希土類元素、例えばランタノイド元素及びアクチ
ノイド元素等の分離に利用することができる。
Although the adsorption separation method using the column chromatography method has been described in the above description, the TR of the present invention is used.
The method for separating U is not limited to this, and any method may be used as long as it can contact the extractant of the present invention and the TRU aqueous solution. In the separation method of the present invention, a porous polymer carrier is impregnated with a specific extractant, and a rare earth element such as a lanthanoid element and an actinoid element that can coordinate with the extractant of the present invention as well as TRU. Etc. can be used for separation.

【0016】以上説明したように、本発明の抽出剤は、
従来使用していたリン酸アルキルエステルなどの抽出剤
に比較して高酸濃度でのTRU抽出性能が高く、なおか
つ溶媒に対する溶解性がよい。従って、本発明のTRU
分離法にあっては、抽出剤を多孔質担体に含浸させた吸
着剤とTRU水溶液とを接触させれば、TRUは吸着剤
中に吸着され除去される。しかも、この過程において生
成される錯体も溶解性に優れているため、錯体の析出に
よって多孔質担体の孔を閉塞することがないので抽出性
能は低下しない。
As explained above, the extractant of the present invention is
Compared with conventional extractants such as phosphoric acid alkyl esters, TRU extraction performance at high acid concentration is high, and solubility in solvent is good. Therefore, the TRU of the present invention
In the separation method, the TRU is adsorbed in the adsorbent and removed by bringing the TRU aqueous solution into contact with the adsorbent in which the porous carrier is impregnated with the extractant. Moreover, since the complex formed in this process also has excellent solubility, the pores of the porous carrier are not blocked by the precipitation of the complex, and therefore the extraction performance does not deteriorate.

【0017】以下に、実施例により本発明を具体的に説
明するが、本発明は下記の実施例に制限されるものでは
ない。 (実施例1)TRUのモデル物質としてCe(III)
を用い、本発明の抽出剤の抽出性能を評価した。実験は
液/液抽出法によって行った。まず、0.05mol/
lのCe(III)を含有する、0.1N及び1.0N
の硝酸水溶液を調整した。本発明の抽出剤として市販の
ノニルフェノールより合成したリン酸ビス−p−ノニル
フェニルを用意し、それを0.5mol/lの濃度でケ
ロシンに溶解させた。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. (Example 1) Ce (III) as a model substance of TRU
Was used to evaluate the extraction performance of the extractant of the present invention. The experiment was performed by the liquid / liquid extraction method. First, 0.05 mol /
0.1N and 1.0N containing 1 Ce (III)
An aqueous nitric acid solution was prepared. As the extractant of the present invention, bis-p-nonylphenyl phosphate synthesized from commercially available nonylphenol was prepared and dissolved in kerosene at a concentration of 0.5 mol / l.

【0018】次に、上記2種類の硝酸濃度のCe(II
I)水溶液の各々と、リン酸ビス−p−ノニルフェニル
のケロシン溶液とを、容積比1:1で混合し、25℃で
1時間振とうさせて抽出を行った。抽出終了後、水層及
び有機層の溶液性状を観察するとともに、Ce(II
I)の分配率を算出した。ここで、分配率は、水層中に
残存したCe(III)濃度に対する有機層に抽出され
たCe(III)濃度の比率と定義した。従って、水層
中のCe(III)が全て抽出された場合は、上記分配
率は無限大となる。結果を表1に示す。
Next, Ce (II
I) Each of the aqueous solutions and a solution of bis-p-nonylphenyl phosphate in kerosene were mixed at a volume ratio of 1: 1 and shaken at 25 ° C. for 1 hour for extraction. After completion of the extraction, the solution properties of the aqueous layer and the organic layer were observed, and the Ce (II
The distribution rate of I) was calculated. Here, the partition ratio was defined as the ratio of the Ce (III) concentration extracted in the organic layer to the Ce (III) concentration remaining in the aqueous layer. Therefore, when all Ce (III) in the water layer is extracted, the distribution rate becomes infinite. The results are shown in Table 1.

【0019】(実施例2)本発明の抽出剤として、リン
酸ビス−p−ヘキシルフェニルを用いた以外は、実施例
1と同様にして、硝酸濃度0.1N及び1.0Nでの、
Ce(III)の抽出実験を行った。結果を表1に示
す。
Example 2 In the same manner as in Example 1 except that bis-p-hexylphenyl phosphate was used as the extractant of the present invention, nitric acid concentrations of 0.1 N and 1.0 N,
An extraction experiment of Ce (III) was performed. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの結果から、本発明の抽出剤によれ
ば、硝酸濃度0.1Nでは、水溶液中のCe(III)
を100%抽出でき、硝酸濃度1.0Nにおいても高い
抽出性能を示すことがわかった。また、水層と有機層と
が明確に分離し、有機層が透明であることから、本発明
の抽出剤とCe(III)との錯体は、ケロシンのよう
な有機溶媒に対する溶解性に優れていることがわかっ
た。
From these results, according to the extractant of the present invention, when the concentration of nitric acid was 0.1 N, Ce (III) in the aqueous solution was
It was found that 100% of the water was extracted, and high extraction performance was exhibited even at a nitric acid concentration of 1.0N. Further, since the aqueous layer and the organic layer are clearly separated and the organic layer is transparent, the complex of the extractant of the present invention and Ce (III) has excellent solubility in an organic solvent such as kerosene. I found out that

【0022】(比較例1)抽出剤としてCMPを用いた
以外は、実施例1と同様にしてCe(III)の抽出実
験を行った。結果を表2に示す。
Comparative Example 1 An extraction experiment of Ce (III) was conducted in the same manner as in Example 1 except that CMP was used as the extracting agent. The results are shown in Table 2.

【0023】(比較例2)抽出剤として、リン酸アルキ
ルエステルの1種であるリン酸ビス−2−エチルヘキシ
ルを用いた以外は、実施例1と同様にしてCe(II
I)の抽出実験を行った。結果を表2に示す。これらの
結果から、本発明の抽出剤は、リン酸アルキルエステル
に比較して、はるかに優れ、CMPをも凌ぐ抽出性能を
有していることがわかる。
(Comparative Example 2) Ce (II) was prepared in the same manner as in Example 1 except that bis-2-ethylhexyl phosphate, which is one of alkyl phosphate esters, was used as the extractant.
The extraction experiment of I) was performed. The results are shown in Table 2. From these results, it can be seen that the extractant of the present invention has a far superior extraction performance as compared with the alkyl phosphate ester and has an extraction performance superior to that of CMP.

【0024】[0024]

【表2】 [Table 2]

【0025】(比較例3)抽出剤として、リン酸ビス−
p−ベヘニルフェニルを用いた以外は、実施例1と同様
にしてCe(III)を抽出した。このリン酸ビス−p
−ベヘニルフェニルは、そのアルキル基が炭素数22の
直鎖状の化合物である。結果を表3に示す。
(Comparative Example 3) Bisphosphate as an extractant
Ce (III) was extracted in the same manner as in Example 1 except that p-behenylphenyl was used. This bis-p phosphate
-Behenylphenyl is a linear compound whose alkyl group has 22 carbon atoms. The results are shown in Table 3.

【0026】(比較例4)抽出剤としてリン酸ビス−p
−クレジルを用いた以外は、実施例1と同様にしてCe
(III)を抽出した。このリン酸−p−クレジルは、
そのアルキル基の炭素数が1の化合物である。結果を表
3に示す。
(Comparative Example 4) Bis-p phosphate as an extractant
Ce as in Example 1, except that cresyl was used.
(III) was extracted. This p-cresyl phosphate is
It is a compound in which the alkyl group has 1 carbon atom. The results are shown in Table 3.

【0027】(比較例5)抽出剤として、従来のリン酸
ジフェニル誘導体の1種であるリン酸ビス−p−ter
t−オクチルフェニルを用いた以外は、実施例1と同様
にしてCe(III)を抽出した。このリン酸ビス−p
−tert−オクチルフェニルは、主成分がリン酸ビス
−p−1,1,3,3−テトラメチルブチルフェニルで
あり、そのアルキル基全体の炭素数は本発明の条件を満
たしているが、主鎖の炭素数が5以下の化合物である。
結果を表3に示す。
(Comparative Example 5) As an extractant, bis-p-ter phosphate, which is one of conventional diphenyl phosphate derivatives, is used.
Ce (III) was extracted in the same manner as in Example 1 except that t-octylphenyl was used. This bis-p phosphate
The main component of -tert-octylphenyl is bis-p-1,1,3,3-tetramethylbutylphenyl phosphate, and although the total number of carbon atoms in the alkyl group satisfies the conditions of the present invention, A compound having 5 or less carbon atoms in the chain.
The results are shown in Table 3.

【0028】(比較例6)抽出剤としてリン酸ビス−o
−イソプロピルフェニルを用いた以外は、実施例1と同
様にしてCe(III)を抽出した。このリン酸ビス−
o−イソプロピルフェニルは、アルキル基全体の炭素数
が3、主鎖の炭素数が2であり、そのアルキル基がオル
ト位に置換されている。結果を表3に示す。
(Comparative Example 6) Bis-ophosphate as an extractant
Ce (III) was extracted in the same manner as in Example 1 except that isopropylphenyl was used. This bis-phosphate
In o-isopropylphenyl, the total number of carbon atoms in the alkyl group is 3, the carbon number in the main chain is 2, and the alkyl group is substituted at the ortho position. The results are shown in Table 3.

【0029】以上の結果から、本発明の抽出剤のアルキ
ル基をなす炭素数が多すぎると、ケロシン等の溶媒に対
する溶解性は問題ないが、TRUの抽出性能が低下する
ことがわかる。また、アルキル基の炭素数が少なすぎる
と、高酸濃度においてもある程度の抽出性能を示すが、
有機溶媒に対する溶解性が悪くなる。また、アルキル基
全体の炭素数が、本発明の条件を満たしていても、その
主鎖の炭素数が5以下であると、やはり有機溶媒に対す
る溶解性が悪化することがわかった。さらに、比較例6
の抽出剤のようにアルキル基がオルト位に置換されてい
ると、アルキル基の炭素数は少ないにもかかわらず、そ
の溶解性は良好であるが、抽出性能は大幅に低下する傾
向が見られた。
From the above results, it can be seen that if the number of carbon atoms forming the alkyl group of the extractant of the present invention is too large, the solubility of kerosene in a solvent is not a problem, but the extraction performance of TRU is lowered. Further, if the alkyl group has too few carbon atoms, it exhibits some extraction performance even at a high acid concentration,
Solubility in organic solvents deteriorates. It was also found that even if the total number of carbon atoms in the alkyl group satisfies the conditions of the present invention, if the number of carbon atoms in the main chain is 5 or less, the solubility in organic solvents will also deteriorate. Furthermore, Comparative Example 6
When the alkyl group is substituted at the ortho position as in the extractant in Example 1, although the alkyl group has a small number of carbons, its solubility is good, but the extraction performance tends to decrease significantly. It was

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明の抽出剤は、高酸濃度領域におい
ても高いTRU抽出性能を示し、なおかつ溶媒に対する
溶解性がよい。また、抽出によって生成される錯体も溶
解性に優れている。従って、本発明のTRU分離法にあ
っては、この抽出剤を多孔質担体に含浸させた吸着剤と
TRUを含む溶液とを接触させれば、TRUは吸着剤中
に吸着して水溶液から除去され、錯体の析出によって多
孔質担体の孔を閉塞することはなく、抽出性能が低下す
ることはない。また、本発明の抽出剤は、従来の抽出剤
に比較して安価であるため、これを利用することによ
り、放射性廃液からの効率のよい、経済的なTRU除去
が可能となる。
EFFECTS OF THE INVENTION The extractant of the present invention exhibits high TRU extraction performance even in a high acid concentration region and has good solubility in a solvent. Further, the complex formed by extraction is also excellent in solubility. Therefore, in the TRU separation method of the present invention, when the adsorbent in which this extractant is impregnated in the porous carrier is brought into contact with the solution containing TRU, TRU is adsorbed in the adsorbent and removed from the aqueous solution. Therefore, the precipitation of the complex does not block the pores of the porous carrier and the extraction performance does not deteriorate. Moreover, since the extractant of the present invention is cheaper than the conventional extractant, by utilizing this, efficient and economical TRU removal from the radioactive liquid waste becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のTRU分離法の一実施例を示す図で
ある。
FIG. 1 is a diagram showing an embodiment of a TRU separation method of the present invention.

【符号の説明】[Explanation of symbols]

1…吸着剤、2…カラム、3…コック、4…カラム入
口、5…カラム出口、6…TRU水溶液
1 ... Adsorbent, 2 ... Column, 3 ... Cock, 4 ... Column inlet, 5 ... Column outlet, 6 ... TRU aqueous solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 一彦 東京都墨田区本所1丁目3番7号 ライオ ン株式会社内 (72)発明者 高橋 千里 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 (72)発明者 遠藤 芳浩 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 (72)発明者 松本 史朗 埼玉県上福岡市駒林667−2 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuhiko Matsuda 1-3-7 Honjo, Sumida-ku, Tokyo Lion Co., Ltd. (72) Inventor Chisato Takahashi 3-2-1-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. in Toyosu General Office (72) Inventor Yoshihiro Endo 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. in Toyosu General Office (72) Inventor Shiro Matsumoto 667 Komabayashi, Kamifukuoka, Saitama Prefecture Two

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記式(1)で表される化合物の少なく
とも1種からなることを特徴とする超ウラン元素の抽出
剤。 【化1】 (但し、R1、R2は、主鎖中に6個以上の炭素原子を有
するC6−C18の直鎖または分岐アルキル基であり、X
は、水素原子、1価もしくは2価の金属イオンまたはア
ンモニウムイオンである。)
1. An extractant for transuranic element, which comprises at least one compound represented by the following formula (1). [Chemical 1] (However, R 1 and R 2 are C 6 -C 18 straight chain or branched alkyl groups having 6 or more carbon atoms in the main chain, and X 1
Is a hydrogen atom, a monovalent or divalent metal ion or an ammonium ion. )
【請求項2】 請求項1記載の抽出剤を、多孔質担体に
含浸させて吸着剤とし、その吸着剤を超ウラン元素を含
む水溶液と接触させ、超ウラン元素を前記吸着剤に吸着
させて前記水溶液から分離することを特徴とする超ウラ
ン元素の分離法。
2. A porous carrier is impregnated with the extractant according to claim 1 to form an adsorbent, and the adsorbent is contacted with an aqueous solution containing a transuranium element to adsorb the transuranium element onto the adsorbent. A method for separating a transuranium element, characterized by separating from the aqueous solution.
JP29698293A 1993-11-26 1993-11-26 Extraction agent for transuranic elements and separation of transuranic elements using the same Withdrawn JPH07144103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29698293A JPH07144103A (en) 1993-11-26 1993-11-26 Extraction agent for transuranic elements and separation of transuranic elements using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29698293A JPH07144103A (en) 1993-11-26 1993-11-26 Extraction agent for transuranic elements and separation of transuranic elements using the same

Publications (1)

Publication Number Publication Date
JPH07144103A true JPH07144103A (en) 1995-06-06

Family

ID=17840726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29698293A Withdrawn JPH07144103A (en) 1993-11-26 1993-11-26 Extraction agent for transuranic elements and separation of transuranic elements using the same

Country Status (1)

Country Link
JP (1) JPH07144103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304280A (en) * 2007-06-06 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Actinoid adsorption material and method for treating radioactive waste liquid
JP2013166129A (en) * 2012-02-16 2013-08-29 National Institute Of Advanced Industrial Science & Technology Objective metal ion adsorbent and method for producing the same
CN117438123A (en) * 2023-12-22 2024-01-23 中国核电工程有限公司 Method and device for determining uranium extraction zone in extraction column and method for controlling position of uranium extraction zone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304280A (en) * 2007-06-06 2008-12-18 Hitachi-Ge Nuclear Energy Ltd Actinoid adsorption material and method for treating radioactive waste liquid
JP2013166129A (en) * 2012-02-16 2013-08-29 National Institute Of Advanced Industrial Science & Technology Objective metal ion adsorbent and method for producing the same
CN117438123A (en) * 2023-12-22 2024-01-23 中国核电工程有限公司 Method and device for determining uranium extraction zone in extraction column and method for controlling position of uranium extraction zone
CN117438123B (en) * 2023-12-22 2024-05-07 中国核电工程有限公司 Method and device for determining uranium extraction zone in extraction column and method for controlling position of uranium extraction zone

Similar Documents

Publication Publication Date Title
US5678242A (en) Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Kabay et al. Solvent-impregnated resins (SIRs)–methods of preparation and their applications
US5368736A (en) Process for the separation and purification of yttrium-90 for medical applications
Lo et al. Solvent extraction of dithiocarbamate complexes and back-extraction with mercury (II) for determination of trace metals in seawater by atomic absorption spectrometry
JP3749941B2 (en) Method for producing cesium separator
CA1042574A (en) Process for the adsorptive removal of arsenic antimony and/or bismuth from an aqueous solution
Helaly et al. Extraction of cerium (IV) using tributyl phosphate impregnated resin from nitric acid medium
Wen et al. Aminotriazole isomers modified cellulose microspheres for selective adsorption of U (VI): Performance and mechanism investigation
US3320033A (en) Absorbent, its preparation and use to recover metal values
CN1175318A (en) Process for decontaminating radioactive materials
JPS6345244B2 (en)
JPH07144103A (en) Extraction agent for transuranic elements and separation of transuranic elements using the same
Warshawsky et al. Impregnated Resins: Metal‐Ion Complexing Agents Incorporated Physically In Polymeric Matrices
US3793408A (en) Method for the purification of bis (2-ethyl-hexyl) phosphoric acid
KR960008859B1 (en) Method for absorbing and separating heavy metal elements by using a tanin absorbent and method of rogenerating the absorbent
JP3014186B2 (en) Purification method of alkyl phosphate solution
Horwitz et al. Liquid extraction, the TRUEX process—experimental studies
JPH07100371A (en) Adsorbent for removing rare earth element and adsorption separation method using the same
Troshkina et al. Metal sorption by materials with a mobile phase of extractants
JPS6119958B2 (en)
JPH01246328A (en) Method for capturing scandium
JPH09173832A (en) Production of porous resin carried with copper hexacyanoferrate (ii)
Zhang et al. SPEC process II. Adsorption of strontium and some typical co-existent elements contained in high level liquid waste onto a macroporous silica-based crown ether impregnated functional composite
US3702233A (en) Yttrium purification
AU704823B2 (en) Composition of matter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130