JPH07142437A - Dust particle eliminator - Google Patents

Dust particle eliminator

Info

Publication number
JPH07142437A
JPH07142437A JP5290503A JP29050393A JPH07142437A JP H07142437 A JPH07142437 A JP H07142437A JP 5290503 A JP5290503 A JP 5290503A JP 29050393 A JP29050393 A JP 29050393A JP H07142437 A JPH07142437 A JP H07142437A
Authority
JP
Japan
Prior art keywords
aspirator
foreign matter
nozzle
tip
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5290503A
Other languages
Japanese (ja)
Other versions
JP3307485B2 (en
Inventor
Toshio Takahara
寿雄 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP29050393A priority Critical patent/JP3307485B2/en
Publication of JPH07142437A publication Critical patent/JPH07142437A/en
Application granted granted Critical
Publication of JP3307485B2 publication Critical patent/JP3307485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To allow capturing/concentration of removed dust particles in a state suitable for compositional analysis while realizing cost reduction by eliminating a cleaning step using chemicals and pure water. CONSTITUTION:The dust particle eliminator comprises an aspirator 1 arranged to produce negative pressure at the tip of a nozzle 2 by feeding a gas having atomic weight of 10 or above, and a position controller 11 disposed in the vicinity of the tip of the nozzle 2 in order to shift the tip of the nozzle 2 and a stage 5 relatively, wherein the surface of an object 8 to be inspected mounted on the stage 5 is swept by means of the aspirator 1 thus sucking dust particlles therefrom and blowing out from one end of the aspirator 1. Furthermore, a filter is provided at the post-stage of the aspirator 1 in order to capture/ aggregate the dust particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体や液晶の製造プ
ロセス中でウエハやガラス基板上に付着した微粒子を除
去する装置に関し,洗浄工程を伴わない除去装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing fine particles adhering to a wafer or a glass substrate during a semiconductor or liquid crystal manufacturing process, and to a removing apparatus without a cleaning step.

【0002】[0002]

【従来の技術】半導体装置の製造工程では,歩留まりを
向上させるために各工程の前段でウエハ表面に付着した
異物(微粒子)の除去工程がある。この異物の除去は一
般的には薬液や超純水によるウエット洗浄が用いられて
いる。
2. Description of the Related Art In the manufacturing process of a semiconductor device, there is a step of removing foreign matters (fine particles) adhering to the wafer surface before each step in order to improve the yield. Generally, wet cleaning with a chemical solution or ultrapure water is used to remove the foreign matter.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,ウエッ
ト洗浄においては,薬液や,超純水を使用するため,そ
れらの管理や洗浄装置の設置のためにコストアップにな
るという問題があった。
However, in wet cleaning, since a chemical solution or ultrapure water is used, there is a problem that the cost increases because of management of them and installation of a cleaning device.

【0004】本発明は上記従来技術の問題点を解決する
ためになされたもので,薬液や,超純水を使用する洗浄
工程を不要としてコストダウンを図るとともに,除去し
た異物を組成分析に適した状態に捕集/凝集することを
目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art. The cleaning step using a chemical solution or ultrapure water is not required, the cost is reduced, and the removed foreign matter is suitable for composition analysis. The purpose is to collect / aggregate in a closed state.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は,請求項1においては,原子量が10
以上の気体を流すことによりノズルの先端が負圧になる
ようにされたアスピレータと,前記ノズルの先端付近に
配置され,前記ノズルの先端とステージを相対的に移動
させるための位置制御装置と,からなり,前記ステージ
に載置された被検体の表面を前記アスピレータで掃引し
て前記被検体に付着した異物を吸引し,前記アスピレー
タの一端から吹き出すように構成したことを特徴とする
ものであり,
The structure of the present invention for solving the above-mentioned problems is the atomic weight of 10 in claim 1.
An aspirator in which the tip of the nozzle is made to have a negative pressure by flowing the above gas, a position control device arranged near the tip of the nozzle and relatively moving the tip of the nozzle and the stage, The surface of the subject placed on the stage is swept by the aspirator to suck foreign matter adhering to the subject, and blown out from one end of the aspirator. ,

【0006】請求項2においては,前記アスピレータの
後段にフィルタを配置して前記異物を捕集/凝集したこ
とを特徴とするものであり,請求項3においては,原子
量が10以上の気体を流すことにより前記ノズルの先端
が負圧になるようにされたアスピレータと,前記ノズル
の先端付近に配置され,前記ノズルの先端とステージを
相対的に移動させるための位置制御装置と,からなり,
前記ステージに載置された被検体の表面を前記アスピレ
ータで掃引して前記被検体に付着した異物を吸引し,前
記アスピレータの一端から吹き出すように構成し,前記
位置制御装置に前記被検体上に存在する異物を1個1個
検出し,それぞれ検出した1個1個の異物の各位置を記
憶した位置情報を入力し,その位置情報の座標位置に合
わせて被検体を配置し,異物が存在する箇所のみを選択
的に掃引することを特徴とするものである。
According to a second aspect of the present invention, a filter is arranged after the aspirator to collect / aggregate the foreign matter. In the third aspect, a gas having an atomic weight of 10 or more flows. An aspirator whose tip is made to have a negative pressure, and a position control device which is arranged near the tip of the nozzle and relatively moves the tip of the nozzle and the stage.
The surface of the subject placed on the stage is swept by the aspirator to suck foreign matter adhering to the subject, and is configured to be blown out from one end of the aspirator. The presence of foreign matter is detected by detecting the existing foreign matter one by one, inputting the position information that stores the position of each detected foreign matter, and aligning the subject according to the coordinate position of the position information. It is characterized in that only the portions to be swept are selectively swept.

【0007】[0007]

【作用】請求項1においては,負圧になったノズルの先
端が被検体の表面を掃引するので被検体に付着した異物
が吸引除去される。請求項2において,吸引された異物
は後段に配置されたフィルタに捕集/濃縮されるので組
成分析に適した状態となる。請求項3において,位置制
御装置に被検体上の1個1個の異物の各位置が記憶され
た位置情報が入力されているのでその位置情報に従って
選択的に掃引すると効率的に異物の除去が可能となる。
According to the first aspect of the present invention, the tip of the nozzle having a negative pressure sweeps the surface of the subject, so that the foreign matter attached to the subject is sucked and removed. In the second aspect, since the sucked foreign matter is collected / concentrated by the filter arranged in the subsequent stage, it becomes a state suitable for composition analysis. In Claim 3, since the position information in which each position of each foreign matter on the subject is stored is input to the position control device, if the sweep is selectively performed according to the position information, the foreign matter can be removed efficiently. It will be possible.

【0008】[0008]

【実施例】図1は本発明の異物除去装置の一実施例を示
す構成図である図において1は吸引ノズル2を有するア
スピレータであり,このアスピレータ1の一端には流量
制御弁3を介して配管が接続され,他端には流量計4が
接続されている。5は真空容器7内に配置されたステー
ジで,このステージ上には例えば半導体ウエハやLCD
(液晶表示板)等の被検体8が載置される。9は駆動装
置でステージ5をX,Y,Z方向に移動させたり,回転
運動を与えることにより被検体8の表面とノズル2の先
端を所定の距離に保ちながら移動して掃引する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the foreign matter removing apparatus of the present invention. In FIG. 1, reference numeral 1 denotes an aspirator having a suction nozzle 2 and one end of this aspirator 1 has a flow control valve 3 interposed. The pipe is connected and the flowmeter 4 is connected to the other end. Reference numeral 5 denotes a stage arranged in the vacuum container 7, on which, for example, a semiconductor wafer or an LCD is mounted.
A subject 8 such as a (liquid crystal display plate) is placed. A driving device 9 moves and sweeps the surface of the subject 8 and the tip of the nozzle 2 at a predetermined distance by moving the stage 5 in the X, Y and Z directions or by giving a rotational motion.

【0009】11は流量計4の信号に基づいて駆動装置
の移動速度を制御する位置制御装置である。12は真空
ポンプ,13は電磁弁で真空容器7中の空気を排気す
る。14はイオナイザー15によりイオン化された気体
を真空容器中に充満させる。図2は図1に示すアスピレ
ータの一実施例を示すもので,長さ30mm程度のボデ
ィ20に例えば直径3mm程度の貫通孔23が形成さ
れ,この貫通孔の途中に略直角方向に例えば入口,出口
の直径が6mm程度で中に入るに従って径が細くなるテ
ーパ状の貫通孔23が形成され,その貫通孔23の途中
にこの孔にほぼ直角に連通する直径1mm程度の貫通穴
を有するノズル2が形成されている。
A position control device 11 controls the moving speed of the drive device based on the signal from the flow meter 4. Reference numeral 12 is a vacuum pump, and 13 is an electromagnetic valve for exhausting the air in the vacuum container 7. 14 fills the vacuum container with the gas ionized by the ionizer 15. FIG. 2 shows an embodiment of the aspirator shown in FIG. 1. A body 20 having a length of about 30 mm is provided with a through hole 23 having a diameter of, for example, about 3 mm. A nozzle 2 having a diameter of the outlet of about 6 mm and a tapered through hole 23 whose diameter becomes smaller as it goes inside and a through hole having a diameter of about 1 mm which communicates with this hole at a substantially right angle is formed in the middle of the through hole 23. Are formed.

【0010】上記の構成において,真空ポンプ12を駆
動して真空容器7中の空気を排出し,その後図示しない
気体供給手段から流量制御装置14を介して原子量が1
0以上の気体(例えば空気やAr,N2ガス)を1気圧
より僅かに高い圧力で充満させ,引き続き毎分200m
l程度を注入する。次に位置制御装置11により駆動装
置9を駆動してステージ上の被検体8の表面にノズル2
の先端を例えば20μm程度に近接させ,図示しない気
体供給手段から流量制御装置3を介して例えば毎分30
0ml程度の原子量が10以上の気体(例えば空気やA
r,N2ガス)を貫通孔の一方の側から供給する。その
結果とノズル2の先端が負圧になり,被検体8の表面と
ノズル2の先端を相対的に掃引することにより被検体8
に付着した異物を吸引して除去することができる。
In the above structure, the vacuum pump 12 is driven to evacuate the air in the vacuum vessel 7, and then the atomic weight of 1 is supplied from the gas supply means (not shown) via the flow rate controller 14.
Fill 0 or more gas (eg air, Ar, N 2 gas) at a pressure slightly higher than 1 atm, and continue to 200 m / min
Inject about l. Next, the position control device 11 drives the drive device 9 to move the nozzle 2 to the surface of the subject 8 on the stage.
The tip of each of them is brought close to, for example, about 20 μm, and, for example, 30
A gas with an atomic weight of about 0 ml is 10 or more (for example, air or A
(r, N 2 gas) is supplied from one side of the through hole. As a result, the tip of the nozzle 2 becomes a negative pressure, and the surface of the subject 8 and the tip of the nozzle 2 are relatively swept, so that the subject 8
Foreign matter adhering to the can be suctioned and removed.

【0011】図3はアスピレータ1と真空容器7に注入
する気体をN2ガス(原子量14.0)とした場合と同
じくHeガス(原子量4.0)とした場合のキャリアガ
ス流量と吸引流量の関係を示すものであり,矢印A方向
に供給されるガスをキャリアガス流量(S1),矢印B
方向に吸入されるガスを吸入流量(S2)としている。
一般にアスピレータの吸引効率は吸引流量をキャリア流
量で除した比で表わすことができ,通常はS2/S1<1
であるが,吸引効率を上げることで1に近づけ若しくは
1以上にすることも可能である。
FIG. 3 shows the carrier gas flow rate and the suction flow rate when the gas injected into the aspirator 1 and the vacuum chamber 7 is He gas (atomic weight 4.0), as well as when the gas is N 2 gas (atomic weight 14.0). The relationship between the flow rate of the gas supplied in the direction of arrow A and the flow rate of the carrier gas (S 1 ) and arrow B is shown.
The gas sucked in the direction is defined as the suction flow rate (S 2 ).
Generally, the suction efficiency of an aspirator can be expressed by the ratio of the suction flow rate divided by the carrier flow rate, and usually S 2 / S 1 <1
However, it is also possible to bring the value closer to 1 or more than 1 by increasing the suction efficiency.

【0012】即ち図3において,使用ガスをHeとした
場合はキャリアガス流量(S1)が毎分400ml程度
に対して吸入流量(S2)は毎分300ml程度で吸引
効率S2/S1は0.75しかないが,使用ガスをN2
した場合はキャリアガス流量(S1)が毎分200ml
程度に対して吸入流量(S2)は毎分600ml程度と
吸引効率が3となり吸引流量が4倍に飛躍的に向上して
いることが分る。この吸引流量(S2)は図2に示すノ
ズル2の先端と被検体8のギャップを狭くすると減少す
るが,その減少分は吸引力に転換される。従ってS2
1が大きいほど大きな吸引力が得られる。
That is, in FIG. 3, when the used gas is He, the carrier gas flow rate (S 1 ) is about 400 ml / min, and the suction flow rate (S 2 ) is about 300 ml / min, and the suction efficiency is S 2 / S 1 Is 0.75, but when the used gas is N 2 , the carrier gas flow rate (S 1 ) is 200 ml / min.
It can be seen that the suction flow rate (S 2 ) is about 600 ml / min, and the suction efficiency is 3, and the suction flow rate is dramatically increased four times. The suction flow rate (S 2 ) is reduced by narrowing the gap between the tip of the nozzle 2 and the subject 8 shown in FIG. 2, but the reduced amount is converted into suction force. Therefore S 2 /
The larger S 1 is, the larger the suction force can be obtained.

【0013】上記本発明によれば,比較的簡単な構成で
被検体上の異物を除去することができる。なお,被検体
上に存在する異物を1個1個検出し,それぞれ検出した
1個1個の異物の各位置を記憶する手段(例えばCD−
ROM)を備えた異物位置検出装置が知られている。そ
の公知の装置を用いて予め被検体に付着した異物の位置
情報を記憶し,その位置情報を記憶したCD−ROMを
本発明の異物除去装置の位置制御装置11に取り込む。
そして異物位置検出装置に取り付けたと同様の座標位置
に被検体の座標位置を合わせて配置し,異物が存在する
箇所のみを選択的に掃引するようにすれば効率のよい異
物除去が可能となる。
According to the present invention, the foreign matter on the subject can be removed with a relatively simple structure. It should be noted that means for detecting each foreign substance present on the subject and storing each position of each detected foreign substance (for example, CD-
A foreign matter position detection device including a ROM) is known. The position information of the foreign matter attached to the subject is stored in advance using the known device, and the CD-ROM storing the position information is loaded into the position control device 11 of the foreign matter removing device of the present invention.
Then, if the coordinate position of the object is aligned with the same coordinate position as that of the foreign matter position detecting device and only the place where the foreign matter exists is selectively swept, the foreign matter can be removed efficiently.

【0014】また,被検体に付着した異物の発生原因や
発生個所を知るために異物(元素)の種類のとその大き
さを分析する装置として,本出願人が提案したマイクロ
波誘導プラズマを利用した分析装置が知られている。こ
のマイクロ波誘導プラズマを利用した分析装置について
図4を用いて簡単に説明する。図4において31はディ
スパーサであり,この中には測定すべき固体微粒子(図
示せず)が付着したフィルタ32が配置されている。3
3は同じくディスパーサ1内に配置されたアスピレータ
で,フィルタ32に付着した固体微粒子を吸引し反応管
4に供給する。なお,ディスパーサ31内は吸引ポンプ
35により空気が排出された後置換ガス導入口38から
Heガスが導入されて大気圧より僅かに高い圧力に維持
されている。39はキャリアガス(He)導入口,37
a〜37dは開閉弁である。43はマイクロ波源,44
はマイクロ波源からのマイクロ波が導入されたキャビテ
ィである。
Further, the microwave induction plasma proposed by the present applicant is used as an apparatus for analyzing the kind of foreign matter (element) and its size in order to know the cause and location of the foreign matter attached to the subject. A known analyzer is known. An analyzer using this microwave induction plasma will be briefly described with reference to FIG. In FIG. 4, 31 is a disperser, in which a filter 32 to which solid fine particles (not shown) to be measured adhere is arranged. Three
Reference numeral 3 is an aspirator similarly arranged in the disperser 1, and sucks the solid particles adhering to the filter 32 and supplies them to the reaction tube 4. It should be noted that the inside of the disperser 31 is maintained at a pressure slightly higher than the atmospheric pressure by introducing He gas from the replacement gas introducing port 38 after the air is exhausted by the suction pump 35. 39 is a carrier gas (He) inlet, 37
a to 37d are opening / closing valves. 43 is a microwave source, 44
Is a cavity into which the microwave from the microwave source is introduced.

【0015】46は反応管4の他端に設けられた検出
窓,47は検出窓46に向けて設けられた光学窓であ
る。48は集光系であって凹面鏡48aと反射鏡48b
を有している。49は反射鏡48bで反射した光を信号
処理部50に導くスリットである。信号処理部50には
4本の光ファイバ50cを介してそれぞれ光を受光する
4台の分光器50b及びこれらの分光器の出力が入力さ
れるCPUが配置されている。
Reference numeral 46 is a detection window provided at the other end of the reaction tube 4, and 47 is an optical window provided toward the detection window 46. Reference numeral 48 denotes a condensing system, which is a concave mirror 48a and a reflecting mirror 48b.
have. Reference numeral 49 is a slit for guiding the light reflected by the reflecting mirror 48b to the signal processing unit 50. The signal processing unit 50 is provided with four spectroscopes 50b that respectively receive light via the four optical fibers 50c and a CPU to which outputs of these spectroscopes are input.

【0016】上記の構成において,マイクロ波源43か
ら周波数が2.45GHzのマイクロ波をキャビティ4
4内に導くと,反応管34内に4000°K以上のプラ
ズマが生成される。一方ディスパーサ31から反応管3
4内に導かれた固体微粒子はプラズマ中で原子化されて
励起され基底状態に落ちるときに発光する。この発光ス
ペクトルは反応管34から軸方向に取り出され,光学窓
47を介して集光系48内に導かれて集光され,その
後,スリット49を通り分光器50bで分光されてCP
Uで信号処理され試料中の元素が測定表示される。とこ
ろで,この様な分析装置ではフィルタ上の微粒子の個数
が少ないと確率的に分析できない元素が出現する。本発
明ではアスピレータの後段にフィルタを配置して単に異
物除去のみに用いるのではなく,複数の被検体から吸引
した異物をフィルタを介して捕集/濃縮する。そして,
捕えた異物(微粒子)を公知の分析装置で分析すること
により異物の組成や元素を特定することができ,発塵源
の特定など,きめの細かな管理を行うことが可能とな
る。
In the above structure, the microwave source 43 supplies the microwave having the frequency of 2.45 GHz to the cavity 4
When it is introduced into the chamber 4, plasma above 4000 ° K is generated in the reaction tube 34. Meanwhile, the disperser 31 to the reaction tube 3
The solid fine particles introduced into 4 are atomized in plasma and excited to emit light when they fall to the ground state. This emission spectrum is taken out from the reaction tube 34 in the axial direction, guided into the condensing system 48 through the optical window 47 and condensed, and then passes through the slit 49 and is dispersed by the spectroscope 50b to be CP.
The signal is processed by U and the elements in the sample are measured and displayed. By the way, in such an analyzer, elements that cannot be analyzed stochastically appear when the number of fine particles on the filter is small. In the present invention, a filter is arranged in the latter stage of the aspirator and is not used only for removing foreign substances, but foreign substances sucked from a plurality of subjects are collected / concentrated via the filters. And
By analyzing the captured foreign matter (fine particles) with a known analyzer, the composition and element of the foreign matter can be specified, and fine control such as specification of dust source can be performed.

【0017】[0017]

【発明の効果】以上詳しく説明したような本発明によれ
ば,平板に載置された試料微粒子をアスピレータで吸引
して吹き出すように構成したので,薬液や,超純水を使
用する洗浄工程を不要としてコストダウンを図るととも
に,アスピレータの後段にフィルタを配置して複数の被
検体から吸引した異物(微粒子)を捕集/濃縮すること
ができる。また,公知の異物位置検出装置と組み合わせ
ることにより短時間で異物の除去を行うことができる。
According to the present invention as described in detail above, since the sample fine particles placed on the flat plate are sucked and blown by the aspirator, the cleaning step using a chemical solution or ultrapure water can be performed. The cost can be reduced because it is unnecessary, and a filter can be arranged in the latter stage of the aspirator to collect / concentrate foreign matter (fine particles) sucked from a plurality of subjects. Further, the foreign matter can be removed in a short time by combining with a known foreign matter position detecting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成説明図である。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【図2】アスピレータの構成説明図である。FIG. 2 is an explanatory diagram of a configuration of an aspirator.

【図3】アスピレータにN2ガスを流した場合とHeガ
スを流した場合の吸引流量の比較を示す図である。
FIG. 3 is a diagram showing a comparison of suction flow rates when N 2 gas and He gas are passed through the aspirator.

【図4】公知のマイクロ波誘導プラズマを利用した分析
装置を示す構成図である。
FIG. 4 is a configuration diagram showing an analyzer using a known microwave induction plasma.

【符号の説明】[Explanation of symbols]

1 アスピレータ 2 ノズル 3,14 流量制御装置 4 流量計 5 ステージ 7 真空容器 8 被検体 9 駆動装置 11 位置制御装置 12 真空ポンプ 13 電磁弁 15 イオナイザ 1 Aspirator 2 Nozzle 3,14 Flow Control Device 4 Flow Meter 5 Stage 7 Vacuum Container 8 Subject 9 Drive Device 11 Position Control Device 12 Vacuum Pump 13 Solenoid Valve 15 Ionizer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子量が10以上の気体を流すことにより
ノズルの先端が負圧になるようにされたアスピレータ
と,前記ノズルの先端付近に配置され,前記ノズルの先
端とステージを相対的に移動させるための位置制御装置
と, からなり,前記ステージに載置された被検体の表面を前
記アスピレータで掃引して前記被検体に付着した異物を
吸引し,前記アスピレータの一端から吹き出すように構
成したことを特徴とする異物除去装置。
1. An aspirator in which a tip of a nozzle is made to have a negative pressure by flowing a gas having an atomic weight of 10 or more, and the aspirator is arranged near the tip of the nozzle and relatively moves the tip of the nozzle and the stage. And a position control device for controlling the position of the subject, and the surface of the subject placed on the stage is swept by the aspirator to suck foreign matter adhering to the subject and blown out from one end of the aspirator. A foreign matter removing device characterized in that
【請求項2】前記アスピレータの後段にフィルタを配置
して前記異物を捕集/凝集したことを特徴とする請求項
1記載の異物除去装置。
2. The foreign matter removing device according to claim 1, wherein a filter is arranged at a stage subsequent to the aspirator to collect / aggregate the foreign matter.
【請求項3】原子量が10以上の気体を流すことにより
前記ノズルの先端が負圧になるようにされたアスピレー
タと,前記ノズルの先端付近に配置され,前記ノズルの
先端とステージを相対的に移動させるための位置制御装
置と, からなり,前記ステージに載置された被検体の表面を前
記アスピレータで掃引して前記被検体に付着した異物を
吸引し,前記アスピレータの一端から吹き出すように構
成し,前記位置制御装置に前記被検体上に存在する異物
を1個1個検出し,それぞれ検出した1個1個の異物の
各位置を記憶した位置情報を入力し,その位置情報の座
標位置に合わせて被検体を配置し,異物が存在する箇所
のみを選択的に掃引することを特徴とする異物除去装
置。
3. An aspirator in which a tip of the nozzle is made to have a negative pressure by flowing a gas having an atomic weight of 10 or more, and an aspirator arranged near the tip of the nozzle so that the tip of the nozzle and the stage are relatively positioned. A position control device for moving the object, the surface of the subject placed on the stage is swept by the aspirator to suck foreign matter adhering to the subject, and blown out from one end of the aspirator. Then, the foreign matter existing on the subject is detected one by one in the position control device, and the positional information storing the respective positions of the detected foreign matter is inputted, and the coordinate position of the positional information is inputted. The foreign matter removing device is characterized in that the object is arranged according to the above, and only the portion where the foreign matter exists is selectively swept.
JP29050393A 1993-11-19 1993-11-19 Foreign matter removal device Expired - Fee Related JP3307485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29050393A JP3307485B2 (en) 1993-11-19 1993-11-19 Foreign matter removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29050393A JP3307485B2 (en) 1993-11-19 1993-11-19 Foreign matter removal device

Publications (2)

Publication Number Publication Date
JPH07142437A true JPH07142437A (en) 1995-06-02
JP3307485B2 JP3307485B2 (en) 2002-07-24

Family

ID=17756866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29050393A Expired - Fee Related JP3307485B2 (en) 1993-11-19 1993-11-19 Foreign matter removal device

Country Status (1)

Country Link
JP (1) JP3307485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895782B1 (en) * 2003-01-13 2009-05-08 한국항공우주산업 주식회사 Tube Cleaning and Inspection System
JP2010142671A (en) * 2008-12-16 2010-07-01 Mitsuboshi Diamond Industrial Co Ltd Dust suction method and dust suction device
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895782B1 (en) * 2003-01-13 2009-05-08 한국항공우주산업 주식회사 Tube Cleaning and Inspection System
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging
JP2010142671A (en) * 2008-12-16 2010-07-01 Mitsuboshi Diamond Industrial Co Ltd Dust suction method and dust suction device

Also Published As

Publication number Publication date
JP3307485B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US11428619B2 (en) Detecting nanoparticles on production equipment and surfaces
JP4413921B2 (en) Sample analyzer and sample analysis method
US20020029791A1 (en) Processing apparatus having particle counter and cleaning device, cleaning method, cleanliness diagnosis method and semiconductor fabricating apparatus using the same
KR20170012259A (en) Measurement device and measurement method
JP6031372B2 (en) Particle detection system and particle detection method
KR20060079763A (en) Carrier robot
JPH0961315A (en) Collecting method for impurities in atmosphere and analyzer
CN102192870A (en) Particle number measurement method
US10712355B2 (en) High resolution surface particle detector
JPH07142437A (en) Dust particle eliminator
US4894529A (en) Real-time particle counter for liquids with nebulizer and dryer
KR101483224B1 (en) Apparatus for detecting particles in porous parts
JP2825131B2 (en) Apparatus for supplying liquid to an atomizer operated with an atomizer in a spectrometer
KR102226471B1 (en) Method of Sample solution sampling of substrate inspection machine and device therefor
KR100497514B1 (en) Apparatus collecting for particulate in air
JPH1183694A (en) Fine particle collection device
JP3242518B2 (en) Method and apparatus for measuring solution sample
JPH08181096A (en) Particle sampler
KR102587910B1 (en) System for Analyzing Contamination, Method for Analyzing Contamination, and Apparatus for Introducing Fluid
JPH09145555A (en) Particle sampler
US20240136168A1 (en) Methods and Apparatus for Washing Sampling Probe for Use in Mass Spectrometry Systems
EP4257948A1 (en) Method and system for inspecting a surface
JP2003156428A (en) Fine particulate detector
JP2000035397A (en) Air impurity monitor apparatus
US6835117B1 (en) Endpoint detection in chemical-mechanical polishing of patterned wafers having a low pattern density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees