JPH07142068A - Porous electrode base material and its manufacture - Google Patents

Porous electrode base material and its manufacture

Info

Publication number
JPH07142068A
JPH07142068A JP5285224A JP28522493A JPH07142068A JP H07142068 A JPH07142068 A JP H07142068A JP 5285224 A JP5285224 A JP 5285224A JP 28522493 A JP28522493 A JP 28522493A JP H07142068 A JPH07142068 A JP H07142068A
Authority
JP
Japan
Prior art keywords
fiber
base material
electrode base
sheet
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5285224A
Other languages
Japanese (ja)
Other versions
JP3437862B2 (en
Inventor
Hiroaki Yoneyama
弘明 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28522493A priority Critical patent/JP3437862B2/en
Publication of JPH07142068A publication Critical patent/JPH07142068A/en
Application granted granted Critical
Publication of JP3437862B2 publication Critical patent/JP3437862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To utilize effectively electric conductivity in the width direction of carbon fiber, and provide a porous electrode base material excellent in thickness directional electric conductivity by making carbonaceous milled fiber having a prescribed fiber length exist in the vertical direction to the surface of the electrode base material in a matrix part of the electrode base material. CONSTITUTION:Carbonaceous milled fiber is manufactured by pulverizing ordinary carbon fiber (containing graphite fiber), and though a fiber length is not more than 1.0mm, in this case, fiber not more than 0.1mm is particularly used. When the fiber length becomes longer than 0.1mm, inflow of a porous carbon fiber sheet-like material in the void is hindered. Here, resin solution or melting solution in which carbonaceous milled fiber having a fiber length of not more than 0.1mm and bulk density of 0.2 to 0.5g/cm<3> is mixed by a prescribed quantity is injected into the void of the carbon fiber sheet-like material of a porous structure. Then, when the carbonaceous milled fiber is flowed in, shearing stress acts, and mixed solution or the like flows in abundantly from the vertical direction to a surface, and is arranged in the vertical direction to a surface of the sheet-like material. Thereby, thickness directional electric conductivity of an electrode base material is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてりん酸型等の
燃料電池に用いられる多孔質電極基材及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous electrode base material mainly used for phosphoric acid type fuel cells and a method for producing the same.

【0002】[0002]

【従来の技術】近年、新型二次電池を用いて夜間等の余
剰電力を貯蔵し、それを昼間の需要増大時に対応しよう
とする、電気需要の平準化の試みや、新規エネルギー開
拓の一貫として、燃料電池の開発が進み何れも実証テス
トの段階にきている。これらの電池の電極基材には高温
特性、電気伝導性、耐薬品性、耐熱酸化性に優れる等の
理由で炭素繊維の多孔板が利用されているが、炭素繊維
の導電性は確かに繊維軸方向には優れるが断面方向には
必ずしも高くはなく、しかも強度との関係で繊維長を長
くすると得られる成型物は面方向に並行配列しやすく、
電極基材の厚み方向の導電性は必ずしも高くないもので
あった。
2. Description of the Related Art Recently, a new type of secondary battery is used to store surplus power at night and to cope with the increase in demand during the daytime. The development of fuel cells is progressing, and both are in the stage of verification test. Porous plates of carbon fiber are used for the electrode base material of these batteries because of their excellent high-temperature characteristics, electrical conductivity, chemical resistance, and thermal oxidation resistance. It is excellent in the axial direction but not necessarily high in the cross-sectional direction, and the molded product obtained by lengthening the fiber length in relation to the strength is easy to arrange in parallel in the plane direction,
The conductivity of the electrode base material in the thickness direction was not necessarily high.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解消し、厚み方向の導電性に優れた多孔質電極
基材及びその製造方法の提供を課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the prior art and to provide a porous electrode substrate having excellent conductivity in the thickness direction and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の手段を採る。すなわち、本発明の第
1の要旨は、炭素繊維−炭素からなる多孔質構造の電極
基材のマトリックス部に、繊維長0.1mm以下の炭素
質ミルド繊維を、電極基材の面に対して垂直方向に存在
させることを特徴とする多孔質電極基材にあり、
The present invention adopts the following means in order to solve the above problems. That is, the first gist of the present invention is that a carbonaceous milled fiber having a fiber length of 0.1 mm or less is added to the surface of the electrode base material in the matrix portion of the electrode base material having a porous structure composed of carbon fiber-carbon. In a porous electrode substrate characterized by being present in the vertical direction,

【0005】第2の要旨は、炭素繊維からなる多孔質構
造を有するシート状物の空隙中に、繊維長が0.1mm
以下であり、且つ炭素質ミルド繊維の嵩密度が0.2乃
至0.5g/cm3 の炭素質ミルド繊維を10乃至1w
t%含有する熱硬化性樹脂溶液を注入し、脱溶剤後、所
定の厚さに積層して熱硬化させ、更に不活性雰囲気中で
2000℃以上の温度で熱処理することを特徴とする多
孔質電極基材の製造方法にあり、
The second gist is that the fiber length is 0.1 mm in the void of the sheet-like material having a porous structure made of carbon fiber.
10 to 1 w of carbonaceous milled fiber having a bulk density of 0.2 to 0.5 g / cm 3 below.
A porous material characterized by injecting a thermosetting resin solution containing t%, removing the solvent, laminating it to a predetermined thickness to heat-harden it, and further heat-treating it at a temperature of 2000 ° C. or more in an inert atmosphere. In the manufacturing method of the electrode base material,

【0006】また第3の要旨は、炭素繊維からなる多孔
質構造を有するシート状物と、繊維長が0.1mm以下
であり、且つ炭素質ミルド繊維の嵩密度が0.2乃至
0.5g/cm3 の炭素質ミルド繊維を含む熱硬化性樹
脂フイルムとを交互に積層し、熱溶融させて、シート状
物の空隙中に加圧注入し、しかる後硬化させ、更に不活
性雰囲気中で2000℃以上の温度で熱処理することを
特徴とする多孔質電極基材の製造方法にある。
A third gist is a sheet-like material having a porous structure made of carbon fibers, a fiber length of 0.1 mm or less, and a bulk density of carbonaceous milled fibers of 0.2 to 0.5 g. / Cm 3 of thermosetting resin film containing carbonaceous milled fibers are alternately laminated, heat-melted, injected under pressure into the voids of the sheet-like material, then cured, and further in an inert atmosphere. A method for producing a porous electrode substrate is characterized by performing heat treatment at a temperature of 2000 ° C. or higher.

【0007】本発明を更に詳細に説明すると、繊維長
0.1mm以下、嵩密度0.2乃至0.5g/cm3
炭素質ミルド繊維の所定量を混入した樹脂溶液又は溶融
液を、多孔質構造の炭素繊維シート状物の空隙中に注入
すると、炭素質ミルド繊維の流入に際して剪断応力が働
くと共に、シート状物の場合、面に垂直方向からの混合
溶液又は溶融液の流入が圧倒的に多く、多孔質炭素繊維
シート状物面に対して垂直方向に配列する。このことに
より電極基材の厚さ方向の導電性の向上が計られるので
ある。
The present invention will be described in more detail. A resin solution or a melt containing a predetermined amount of carbonaceous milled fibers having a fiber length of 0.1 mm or less and a bulk density of 0.2 to 0.5 g / cm 3 is prepared by porosity. When it is injected into the voids of a carbon fiber sheet-like material with a fine structure, shear stress acts when the carbonaceous milled fiber flows in, and in the case of a sheet-like material, the inflow of a mixed solution or melt from the direction perpendicular to the surface is overwhelming. Most of them are arranged in the direction perpendicular to the surface of the porous carbon fiber sheet. This improves the conductivity of the electrode base material in the thickness direction.

【0008】炭素質ミルド繊維は通常の炭素繊維(黒鉛
繊維を含む)を粉砕して製造され、繊維長は1.0mm
以下のものであるが、本発明においては0.1mm以下
の物が用いられる。炭素質としてはポリアクリロニトリ
ル、フエノール、セルローズ系等有機物質を焼成して得
られる炭素繊維、および石油、石炭等の無機系物質から
得られる炭素繊維の何れでもよいが、繊維長が0.1m
mより長くなると多孔質炭素繊維シート状物の空隙中へ
の流入が妨げられる。嵩密度が0.2g/cm3 より小
さいと樹脂液への混入が困難となり、0.5g/cm3
より大きいと樹脂含浸液中での分散性が悪くムラの要因
となるので好ましくない。また繊維の直径は特に制限は
ないが、通常の炭素繊維径3乃至12μmの範囲が好ま
しい。
The carbonaceous milled fiber is produced by crushing ordinary carbon fiber (including graphite fiber) and has a fiber length of 1.0 mm.
The followings are used, but those of 0.1 mm or less are used in the present invention. The carbonaceous material may be either polyacrylonitrile, phenol, carbon fiber obtained by firing an organic material such as cellulose, or carbon fiber obtained from an inorganic material such as petroleum or coal, but the fiber length is 0.1 m.
If it is longer than m, the porous carbon fiber sheet-like material is prevented from flowing into the voids. If the bulk density is less than 0.2 g / cm 3 , it becomes difficult to mix it with the resin liquid, and 0.5 g / cm 3
If it is larger than the above range, the dispersibility in the resin impregnating liquid becomes poor and it causes unevenness, which is not preferable. The diameter of the fiber is not particularly limited, but the normal carbon fiber diameter is preferably in the range of 3 to 12 μm.

【0009】本発明に用いられる炭素繊維(黒鉛繊維を
含む)からなる多孔質構造を有するシート状物(シー
ト、ペーパー、フエルト、織物、編物等)は、ポリアク
リロニトリル、フエノール樹脂、セルローズ等の有機物
を焼成して得られる炭素繊維、及び石油、石炭を原料と
する無機物からなるピッチ系繊維を焼成して得られるピ
ッチ系炭素繊維からなるものであるが、強度特性及び加
工特性の面からはポリアクリロニトリル系からのものが
優れている。
The sheet-like material (sheet, paper, felt, woven fabric, knitted material, etc.) having a porous structure made of carbon fiber (including graphite fiber) used in the present invention is an organic material such as polyacrylonitrile, phenol resin, cellulose and the like. The carbon fiber obtained by firing, and the pitch-based carbon fiber obtained by firing a pitch-based fiber made of an inorganic material from petroleum, coal as a raw material, but in terms of strength characteristics and processing characteristics Those from the acrylonitrile series are excellent.

【0010】本発明に用いる熱硬化性樹脂は常温におい
て粘着性或いは流動性を示す物で、フエノール樹脂、フ
ラン樹脂等が用いられる。フエノール樹脂としては、ア
ルカリ触媒存在下にフエノール類とアルデヒド類の反応
によって得られるレゾールタイプフエノール樹脂を用い
ることが出来る。又レゾールタイプの流動性フエノール
樹脂に、公知の方法によって酸性触媒下にフエノール類
とアルデヒト類の反応によって生成する固体の、熱融着
性を示すノボラックタイプのフエノール樹脂を溶解混入
させることも出来るが、この場合は硬化材、例えばヘキ
サメチレンジアミンを含有した、自己架橋タイプのもの
が好ましい。
The thermosetting resin used in the present invention is adhesive or fluid at room temperature, and a phenol resin, a furan resin or the like is used. As the phenol resin, a resol-type phenol resin obtained by reacting a phenol with an aldehyde in the presence of an alkali catalyst can be used. It is also possible to dissolve and mix a solid, heat-fusible novolak type phenolic resin produced by the reaction of phenols and aldechts with an acidic catalyst by a known method in a resol type fluid phenolic resin. In this case, a self-crosslinking type containing a hardening material such as hexamethylenediamine is preferable.

【0011】フエノール類としては、例えばフエノー
ル、レゾルシン、クレゾール、キシロール等が用いられ
る、アルデヒト類としては、例えばホルマリン、パラホ
ルムアルデヒト、フルフラール等が用いられる。又これ
らを混合物としても用いることができる。これらのフエ
ノール樹脂として市販品を利用することも可能である。
As the phenols, for example, phenol, resorcin, cresol, xylol, etc. are used. As the aldechts, formalin, paraformaldehyde, furfural, etc. are used. Also, these can be used as a mixture. It is also possible to use commercially available products as these phenolic resins.

【0012】フラン樹脂としては、フラン樹脂初期縮合
物を用いる。フラン樹脂初期縮合物としては、フルフリ
ルアルコール縮合物、フルフリルアルコール−フルフラ
ール共縮合物が用いられる。この場合フルフリルアルコ
ール、或いはフルフリルアルコール−フルフラール混合
物に酸性触媒を添加し、加熱して適度の粘度にした後、
冷却して用いるとよい。又これら初期縮合物から揮発あ
るいは中和等の手段で常温で触媒活性を消去させて用い
ることも出来る。
A furan resin initial condensate is used as the furan resin. A furfuryl alcohol condensate and a furfuryl alcohol-furfural cocondensate are used as the furan resin initial condensate. In this case, furfuryl alcohol or a furfuryl alcohol-furfural mixture is added with an acidic catalyst and heated to a proper viscosity,
It is recommended to use it after cooling. It is also possible to eliminate the catalytic activity from these initial condensates at room temperature by means such as volatilization or neutralization.

【0013】本発明に用いる好ましい樹脂含浸液の樹脂
濃度は5wt%乃至40wt%である。5wt%より低
い濃度では、多孔質炭素繊維シート状物の構造が粗な構
造となり、電極基板の強度特性が低下するので好ましく
ない。また40wt%より濃度が高くなると多孔質炭素
繊維シート状物の構造は密になり電極基板の強度は上昇
するが、空孔率が小さくなり、ガス透過性も劣るものと
なり好ましくない。
The resin concentration of the preferred resin impregnating liquid used in the present invention is 5 wt% to 40 wt%. If the concentration is lower than 5 wt%, the structure of the porous carbon fiber sheet material becomes a rough structure and the strength characteristics of the electrode substrate deteriorate, which is not preferable. When the concentration is higher than 40 wt%, the structure of the porous carbon fiber sheet-like material becomes dense and the strength of the electrode substrate increases, but the porosity becomes small and the gas permeability becomes poor, which is not preferable.

【0014】本発明に於いては樹脂液中に混入する炭素
質ミルド繊維の量は1乃至10wt%が好ましい。ミル
ド繊維の混入量が1wt%より少ないと厚さ方向の導電
性改善の効果が小さく、10wt%を越えると改善の効
果は平衡に達し、多くなるとコストアップの要因となる
ので好ましくない。
In the present invention, the amount of carbonaceous milled fiber mixed in the resin liquid is preferably 1 to 10 wt%. If the amount of the milled fibers mixed is less than 1 wt%, the effect of improving the conductivity in the thickness direction is small, and if it exceeds 10 wt%, the effect of improvement reaches the equilibrium, and if it is more, it becomes a factor of cost increase, which is not preferable.

【0015】多孔質炭素繊維シート状物の空隙中への炭
素質ミルド繊維が混入した樹脂溶液の注入は、比較的溶
液粘度が低い場合はスプレー法等でシート状物面に垂直
に吹きつけるか、含浸液を表面から裏面方向へ流入させ
る真空吸着法等の手段を用いることができる。溶融状態
の比較的粘度の高い場合には、加圧下で注入させる必要
があるが、要は空隙中に流入しやすい方法であれば特に
制約はない。
When the resin solution containing the carbonaceous milled fibers is injected into the voids of the porous carbon fiber sheet-like material, when the solution viscosity is relatively low, is it sprayed vertically to the surface of the sheet-like material? A means such as a vacuum adsorption method in which the impregnating liquid is allowed to flow from the front surface to the back surface can be used. When it is in a molten state and has a relatively high viscosity, it is necessary to inject it under pressure, but there is no particular limitation as long as it is a method in which it is easy to flow into the void.

【0016】多孔質炭素繊維シート状物の空隙中への、
炭素質ミルド繊維を混入した樹脂含浸液の注入量は、シ
ート状物重量に対して500乃至2000%好ましくは
800乃至1200wt%である。500%より小さい
と空孔率が大きくなって、強度特性が低下し、2000
%より多いとガス透過特性が低下するので好ましくな
い。
In the voids of the porous carbon fiber sheet,
The injection amount of the resin impregnating liquid mixed with the carbonaceous milled fiber is 500 to 2000%, preferably 800 to 1200 wt% with respect to the weight of the sheet material. If it is less than 500%, the porosity increases and the strength characteristics deteriorate, resulting in 2000
When it is more than%, the gas permeability is deteriorated, which is not preferable.

【0017】樹脂溶液のシート状物空隙中への注入量の
制御には圧縮又はロールによる絞りを用いるよりも吸引
法の方が厚さ方向に繊維が配列しやすいために好まし
い。脱溶剤は真空乾燥機中で熱硬化の生じない70℃以
下の温度で行うことが望ましいが、極く短い時間であれ
ば90℃位の温度でも特に問題は生じない。積層硬化に
は通常プレス成型機又はオートクレーブ等を用いて反応
ガスの除去を効果的に行いながら公知の方法で実施す
る。
In order to control the injection amount of the resin solution into the voids of the sheet-like material, the suction method is preferable to the method using compression or squeezing with a roll because the fibers are easily arranged in the thickness direction. Desolvation is preferably performed in a vacuum dryer at a temperature of 70 ° C. or lower at which heat curing does not occur, but if the temperature is extremely short, a temperature of about 90 ° C. does not cause any particular problem. Lamination curing is usually carried out by a known method using a press molding machine or an autoclave while effectively removing the reaction gas.

【0018】続いて窒素、アルゴン等の不活性ガス雰囲
気中で10℃/min以下の昇温速度で昇温させ200
0℃以上の温度で10秒以上の時間で熱処理することに
より、厚み方向の導電性に優れた本発明の多孔質構造の
電極基材を製造することが出来る。
Then, the temperature is raised to 200 at a heating rate of 10 ° C./min or less in an atmosphere of an inert gas such as nitrogen or argon.
By heat-treating at a temperature of 0 ° C. or more for a time of 10 seconds or more, it is possible to manufacture the electrode substrate having a porous structure of the present invention, which has excellent conductivity in the thickness direction.

【0019】[0019]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、実施例中の各物性値等は以下の方法で測定し
た。すなわち、
EXAMPLES The present invention will be described in more detail with reference to examples below. The physical properties and the like in the examples were measured by the following methods. That is,

【0020】電極基材の「空気透過度」はJIS P8
117に準じて行い、100ccの空気が通過する秒数
(t)を測定し次式より計算した。 透過度(cc/sec.cm2 .cmAq) =100/t×0.64(透過面積)×13.2(透過
圧)
The "air permeability" of the electrode base material is JIS P8.
The number of seconds (t) through which 100 cc of air passes was measured and calculated according to the following formula. Permeability (cc / sec.cm 2 .cmAq) = 100 / t × 0.64 (permeation area) × 13.2 (permeation pressure)

【0021】電極基材の「厚さ方向の比抵抗」は試料を
銅板にはさみ電流を流したときの抵抗値を測定し次式よ
り求めた。 比抵抗値(Ωcm) =測定抵抗値(Ω)×試料面積(cm2 )÷試料厚み
(cm)
The "specific resistance in the thickness direction" of the electrode base material was obtained from the following equation by measuring the resistance value when the sample was sandwiched between copper plates and a current was applied. Specific resistance value (Ωcm) = measured resistance value (Ω) × sample area (cm 2 ) / sample thickness (cm)

【0022】電極基材の「曲げ強度」は測定スパン(L
mm)と試料の厚さ(tmm)の比を32を標準とし
て、歪み速度300mm/minで3点曲げ法により測
定し、次式により求めた。 曲げ強度(kg/cm2 ) =3P(破断荷重)L(スパン)/2W(試料の幅)t
2 (厚み)
The "bending strength" of the electrode substrate is the measurement span (L
mm) and the thickness (tmm) of the sample with 32 as a standard, the strain rate was measured by the three-point bending method at 300 mm / min, and the value was calculated by the following formula. Bending strength (kg / cm 2 ) = 3P (breaking load) L (span) / 2W (width of sample) t
2 (thickness)

【0023】電極基材の「空孔率」は次式より計算し
た。 空孔率(%) ={1−W(試料重量)/ρ(試料真の密度)V(試料
体積}100
The "porosity" of the electrode base material was calculated from the following equation. Porosity (%) = {1-W (weight of sample) / ρ (true density of sample) V (volume of sample) 100

【0024】(実施例1)弾性率24t/mm2 のポリ
アクリロニトリル(以下PANと略称)系炭素繊維から
なる繊維長12mmのチョツプド繊維を用いて長網法で
抄紙し、単位面積当たりの質量30g/m2 の炭素繊維
ペーパーを製造した。フエノール樹脂(フエノライト5
900.大日本インキKK製)30wt%のメタノール
溶液中に平均繊維長70μm、嵩密度0.35g/cm
3 のPAN系炭素質ミルド繊維を表1に示した濃度で混
入させて、含浸溶液(1)〜(4)を調整した。
(Example 1) Paper was made by a Fourdrinier method using chopped fibers having a fiber length of 12 mm and made of polyacrylonitrile (hereinafter abbreviated as PAN) -based carbon fiber having an elastic modulus of 24 t / mm 2 , and a mass per unit area was 30 g. / M 2 of carbon fiber paper was produced. Phenol resin (Phenolite 5
900. (Manufactured by Dainippon Ink KK) 30 wt% methanol solution, average fiber length 70 μm, bulk density 0.35 g / cm
The impregnating solutions (1) to (4) were prepared by mixing PAN-based carbonaceous milled fiber (3) at the concentration shown in Table 1.

【0025】比較のため炭素質ミルド繊維を混入しない
含浸溶液(5)も調整した。炭素繊維ペーパーを樹脂含
浸溶液中に含浸させ、ペーパーの空隙中に十分の量充填
させて吸引装置で吸着し、炭素繊維ペーパー重量の約1
0倍量の樹脂溶液を吸着させた後、温度60℃の真空乾
燥機で脱溶剤し、プリプレグ1〜5を作成した。
For comparison, an impregnation solution (5) containing no carbonaceous milled fiber was also prepared. Carbon fiber paper is impregnated with a resin impregnating solution, and a sufficient amount is filled into the voids of the paper and adsorbed by a suction device.
After adsorbing 0 times the amount of the resin solution, the solvent was removed with a vacuum dryer at a temperature of 60 ° C. to prepare prepregs 1 to 5.

【0026】上記プリプレグをそれぞれ50cm×50
cmの大きさに裁断し、積層枚数16枚を用いて、プレ
ス圧5kg/cm2 、温度180℃、時間30分で加熱
硬化させた。更に窒素雰囲気中で温度2400℃で焼成
し多孔質構造の電極基材を製造した。それぞれの電極基
材の性能を表1に示す。
50 cm × 50 each of the above prepregs
It was cut into a size of cm, and 16 sheets were laminated and heat-cured at a pressing pressure of 5 kg / cm 2 , a temperature of 180 ° C., and a time of 30 minutes. Further, it was fired at a temperature of 2400 ° C. in a nitrogen atmosphere to produce an electrode substrate having a porous structure. The performance of each electrode substrate is shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例2)弾性率22t/mm2 のPA
N系炭素繊維からなる繊維長24mmのチョツプド繊維
を用いて長網法で抄紙し、単位面積当たりの質量20g
/m2 の炭素繊維ペーパーを製造した。実施例1のフエ
ノール樹脂20wt%のメタノール溶液中に繊維長50
μm、嵩密度0.40g/cm3 のPAN系炭素質ミル
ド繊維を3wt%となるように混入した。スプレーを用
い、炭素繊維ペーパーに垂直に噴霧して炭素繊維重量の
12倍となるようペーパーの空隙中に注入し、90℃の
熱風中で10分間乾燥させてプリプレグとした。
Example 2 PA having an elastic modulus of 22 t / mm 2
20 g of mass per unit area is produced by the Fourdrinier method using chopped fibers made of N-based carbon fibers and having a fiber length of 24 mm.
/ M 2 of carbon fiber paper was produced. In a methanol solution containing 20 wt% of the phenol resin of Example 1, the fiber length was 50.
A PAN-based carbonaceous milled fiber having a particle size of 0.4 μm and a bulk density of 0.40 g / cm 3 was mixed at 3 wt%. Using a spray, the carbon fiber paper was vertically sprayed and injected into the voids of the paper so as to have 12 times the weight of the carbon fiber, and dried in hot air at 90 ° C. for 10 minutes to obtain a prepreg.

【0029】このプリプレグを1.2m×1.2mに裁
断し、積層することなく大型プレスを用いて加熱硬化さ
せた。次いで不活性ガス中で2000℃で焼成し、厚さ
0.1mmの多孔質電極基材を製造した。得られた多孔
質電極基材の空孔率は75%、電気比抵抗は0.04Ω
cm、空気透過度は6cc/sec.cm2 .cmAq
であり、電極基材として充分な性能を有するものであっ
た。
This prepreg was cut into 1.2 m × 1.2 m, and heat-cured using a large press without laminating. Then, it was fired at 2000 ° C. in an inert gas to manufacture a porous electrode base material having a thickness of 0.1 mm. The obtained porous electrode substrate has a porosity of 75% and an electrical resistivity of 0.04Ω.
cm, air permeability is 6 cc / sec. cm 2 . cmAq
And had sufficient performance as an electrode base material.

【0030】(実施例3)フエノール樹脂(フエノライ
ト5900)60wt%メタノール溶液中に、繊維長5
0μm.嵩密度0.40g/cm3 の炭素質ミルド繊維
18wt%を混入してよく撹拌し、ガラス板上に流展し
て単位面積当たりの質量30g/m2 のミルド繊維混入
樹脂よりなるフイルムを作成し、50×50cmに裁断
した。
(Example 3) A phenol resin (Phenolite 5900) in a 60 wt% methanol solution was added with a fiber length of 5
0 μm. 18 wt% of carbonaceous milled fiber having a bulk density of 0.40 g / cm 3 is mixed, stirred well, and spread on a glass plate to prepare a film made of a resin mixed with milled fiber having a mass per unit area of 30 g / m 2 Then, it was cut into 50 × 50 cm.

【0031】一方厚さ4mm.単位面積当たりの質量4
0g/m2 の炭素繊維フエルトを50×50cmに裁断
しフエルトの両面に樹脂フイルムを1枚づつを積層し
て、プレスを用いて温度80℃で圧力10kg/cm2
で樹脂フイルムをフエルトの空隙中に注入した。次いで
温度を180℃に上昇させて加熱硬化させた。更にN2
ガス雰囲気中で2200℃で焼成し、厚さ0.2mmの
多孔質電極基材を製造した。
On the other hand, the thickness is 4 mm. Mass per unit area 4
A carbon fiber felt of 0 g / m 2 is cut into 50 × 50 cm, one resin film is laminated on each side of the felt, and the pressure is 10 kg / cm 2 at a temperature of 80 ° C. using a press.
The resin film was poured into the felt cavity. Then, the temperature was raised to 180 ° C. and heat-cured. Further N 2
Firing was performed at 2200 ° C. in a gas atmosphere to manufacture a porous electrode base material having a thickness of 0.2 mm.

【0032】得られた多孔質電極基材の空孔率は70
%、電気比抵抗は0.03Ωcm、空気透過度は2.8
cc/sec.cm2 .cmAq、曲げ強度は370k
g/cm2 であり、電極基材として十分な性能を有する
ものであった。
The porosity of the obtained porous electrode substrate is 70.
%, Electrical resistivity 0.03 Ωcm, air permeability 2.8.
cc / sec. cm 2 . cmAq, bending strength is 370k
It was g / cm 2 and had sufficient performance as an electrode base material.

【0033】[0033]

【発明の効果】上述の如く構成された本発明によれば、
電極基材のマトリックス部に、繊維長0.1mm以下の
炭素質ミルド繊維を、電極基材の面に対して垂直方向に
存在させたので、炭素繊維の軸方向の電気伝導性が有効
に活用され、厚み方向の導電性に優れた多孔質電極基材
が得られるという優れた効果を奏するものである。
According to the present invention constructed as described above,
Since the carbonaceous milled fiber having a fiber length of 0.1 mm or less was present in the matrix portion of the electrode base material in the direction perpendicular to the surface of the electrode base material, the electrical conductivity in the axial direction of the carbon fiber was effectively utilized. In addition, the porous electrode substrate having excellent conductivity in the thickness direction can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維−炭素からなる多孔質構造の電
極基材のマトリックス部に、繊維長0.1mm以下の炭
素質ミルド繊維を、電極基材の面に対して垂直方向に存
在させることを特徴とする多孔質電極基材。
1. A carbonaceous milled fiber having a fiber length of 0.1 mm or less is present in a matrix portion of a carbon fiber-carbon porous structure electrode base material in a direction perpendicular to a surface of the electrode base material. A porous electrode substrate characterized by:
【請求項2】 炭素繊維からなる多孔質構造を有するシ
ート状物の空隙中に、繊維長が0.1mm以下であり、
且つ炭素質ミルド繊維の嵩密度が0.2乃至0.5g/
cm3 の炭素質ミルド繊維を1乃至10wt%含有する
熱硬化性樹脂溶液を注入し、脱溶剤後、所定の厚さに積
層して熱硬化させ、更に不活性雰囲気中で2000℃以
上の温度で熱処理することを特徴とする多孔質電極基材
の製造方法。
2. The fiber length is 0.1 mm or less in the voids of the sheet-like material having a porous structure made of carbon fibers,
In addition, the bulk density of the carbonaceous milled fiber is 0.2 to 0.5 g /
After injecting a thermosetting resin solution containing 1 to 10 wt% of carbonaceous milled fiber of 3 cm3, after removing the solvent, it is laminated to a predetermined thickness to be thermoset, and further in an inert atmosphere at a temperature of 2000 ° C or more. A method for producing a porous electrode base material, which comprises heat-treating.
【請求項3】 炭素繊維からなる多孔質構造を有するシ
ート状物と、繊維長が0.1mm以下であり、且つ炭素
質ミルド繊維の嵩密度が0.2乃至0.5g/cm3
炭素質ミルド繊維を含む熱硬化性樹脂フイルムとを交互
に積層し、熱溶融させて、シート状物の空隙中に加圧注
入し、しかる後硬化させ、更に不活性雰囲気中で200
0℃以上の温度で熱処理することを特徴とする多孔質電
極基材の製造方法。
3. A sheet-like material having a porous structure composed of carbon fibers, carbon having a fiber length of 0.1 mm or less, and a carbonaceous milled fiber having a bulk density of 0.2 to 0.5 g / cm 3 . Thermosetting resin film containing fine milled fibers are alternately laminated, heat-melted, injected under pressure into the voids of the sheet-like material, then cured, and further cured in an inert atmosphere at 200
A method for producing a porous electrode substrate, which comprises performing a heat treatment at a temperature of 0 ° C. or higher.
JP28522493A 1993-11-15 1993-11-15 Porous electrode substrate and method for producing the same Expired - Lifetime JP3437862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28522493A JP3437862B2 (en) 1993-11-15 1993-11-15 Porous electrode substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28522493A JP3437862B2 (en) 1993-11-15 1993-11-15 Porous electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07142068A true JPH07142068A (en) 1995-06-02
JP3437862B2 JP3437862B2 (en) 2003-08-18

Family

ID=17688715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28522493A Expired - Lifetime JP3437862B2 (en) 1993-11-15 1993-11-15 Porous electrode substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3437862B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776055A1 (en) * 1995-11-24 1997-05-28 PETOCA, Ltd Negative electrode material for use in lithium-ion secondary battery and process for producing the same
WO2001056103A1 (en) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
US20100189990A1 (en) * 2007-09-19 2010-07-29 Breault Richard D High thermal conductivity electrode substrate
JP2014240123A (en) * 2013-06-11 2014-12-25 独立行政法人産業技術総合研究所 Three-dimensional fiber structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776055A1 (en) * 1995-11-24 1997-05-28 PETOCA, Ltd Negative electrode material for use in lithium-ion secondary battery and process for producing the same
WO2001056103A1 (en) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
EP1942536A1 (en) 2000-01-27 2008-07-09 Mitsubishi Rayon Co., Ltd. Porous carbon electrode substrate and its production method and carbon fiber paper
US20100189990A1 (en) * 2007-09-19 2010-07-29 Breault Richard D High thermal conductivity electrode substrate
JP2014240123A (en) * 2013-06-11 2014-12-25 独立行政法人産業技術総合研究所 Three-dimensional fiber structure

Also Published As

Publication number Publication date
JP3437862B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
CN108914681B (en) Preparation method of carbon fiber paper
CN101611509B (en) Electrode substrate for electrochemical cell from carbon and cross-linkable resin fibers
WO2001056103A1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
CN107127907B (en) A kind of preparation process of ultra-thin Carbon fibe paper
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
CN104230368A (en) Pitch-based carbon fiber nonwoven felt insulation board and manufacturing method thereof
US9397350B2 (en) Carbon fiber web including polymer nanofibers
KR20180023830A (en) A manufacturing method of carbon paper for fuel cell gas diffusion layers which adds pitch-based carbon fibers and aqueous binders, and carbon paper for the fuel cell gas diffusion layers using the same
JP3437862B2 (en) Porous electrode substrate and method for producing the same
JP3608669B2 (en) Method for producing electrode substrate
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP4523829B2 (en) Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP6172131B2 (en) Porous carbon electrode substrate
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JP2001240477A (en) Carbonaceous porous body and its manufacturing method
JP2780987B2 (en) Manufacturing method of carbon plate
JP2007012440A (en) Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
JP3028571B2 (en) Manufacturing method of carbon fiber insulation
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH11185771A (en) Manufacture of paper and porous carbon plate for fuel cell
JPH0517260A (en) Production of carbonaceous porous body
JPH0235707B2 (en)
JPH052625B2 (en)
JPH05194056A (en) Production of porous carbon plate having high compression resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term