JPH0714202U - Vibration suppressor for work equipment - Google Patents

Vibration suppressor for work equipment

Info

Publication number
JPH0714202U
JPH0714202U JP4827193U JP4827193U JPH0714202U JP H0714202 U JPH0714202 U JP H0714202U JP 4827193 U JP4827193 U JP 4827193U JP 4827193 U JP4827193 U JP 4827193U JP H0714202 U JPH0714202 U JP H0714202U
Authority
JP
Japan
Prior art keywords
valve
circuit
hydraulic
opening
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4827193U
Other languages
Japanese (ja)
Inventor
泰介 草場
健蔵 木元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4827193U priority Critical patent/JPH0714202U/en
Publication of JPH0714202U publication Critical patent/JPH0714202U/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】 【目的】 油圧ショベルのブーム昇降停止時に発生する
振動を抑制するとともに、振動抑制動作を任意に選択で
きるようにする。 【構成】 ブームシリンダ5のボトム回路14とヘッド
回路16との連通回路30に、電磁切換弁32、絞り弁
33、パイロット油圧で回路を開く第1開閉弁34、回
路を閉じる第2開閉弁35を介装し、第1開閉弁34の
パイロット油圧回路43に絞り弁44を設ける。方向制
御弁11を操作してブームシリンダ5を縮め、ブームを
下げて停止すると作業機の慣性によりボトム室15に高
圧が発生する。方向制御弁11操作中は第1開閉弁34
は開き、第2開閉弁35は閉じている。ブーム下げ操作
を停止すると第2開閉弁35は開き、第1開閉弁は絞り
弁44の働きでやや遅れて閉じる。その間連通回路30
は連通しており、ボトム室15の油はヘッド室17に逃
げ、ピーク圧を下げて振動を抑制する。オペレータは電
磁切換弁32を操作して振動抑制回路のON−OFFを
任意に選択できる。
(57) [Summary] [Purpose] To suppress the vibration generated when the boom of the hydraulic excavator stops moving up and down, and to enable the vibration suppression operation to be selected arbitrarily. [Composition] In a communication circuit 30 between the bottom circuit 14 of the boom cylinder 5 and the head circuit 16, an electromagnetic switching valve 32, a throttle valve 33, a first opening / closing valve 34 for opening the circuit with pilot hydraulic pressure, and a second opening / closing valve 35 for closing the circuit. The throttle valve 44 is provided in the pilot hydraulic circuit 43 of the first opening / closing valve 34. When the directional control valve 11 is operated to contract the boom cylinder 5 and lower the boom to stop, a high pressure is generated in the bottom chamber 15 due to the inertia of the work machine. During operation of the direction control valve 11, the first opening / closing valve 34
Is open and the second on-off valve 35 is closed. When the boom lowering operation is stopped, the second opening / closing valve 35 is opened, and the first opening / closing valve is closed by the action of the throttle valve 44 with a slight delay. Meanwhile, the communication circuit 30
Are communicating with each other, and the oil in the bottom chamber 15 escapes to the head chamber 17 to reduce the peak pressure and suppress the vibration. The operator can operate the electromagnetic switching valve 32 to arbitrarily select ON-OFF of the vibration suppressing circuit.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、建設機械、特には油圧ショベルや油圧クレーン等の、作業機停止時 に発生するショックを軽減する作業機の振動抑制装置に関する。 The present invention relates to a vibration suppressing device for a construction machine, particularly a work machine such as a hydraulic excavator or a hydraulic crane, which reduces a shock generated when the work machine is stopped.

【0002】[0002]

【従来の技術】[Prior art]

図4は油圧ショベルの側面図であり、下部走行体1に装着された上部旋回体2 には作業機3のブーム4が揺動自在に装着されている。上部旋回体2とブーム4 とはブームシリンダ5により連結されており、ブームシリンダ5の伸縮によりブ ーム4は昇降する。6はアーム、7はバケットである。 FIG. 4 is a side view of the hydraulic excavator. The boom 4 of the working machine 3 is swingably mounted on the upper swing body 2 mounted on the lower traveling body 1. The upper swing body 2 and the boom 4 are connected by a boom cylinder 5, and the boom 4 moves up and down as the boom cylinder 5 expands and contracts. 6 is an arm and 7 is a bucket.

【0003】 図5は従来の油圧ショベルのブームシリンダ駆動油圧回路図であり、10は作 業機用の油圧ポンプ、20はパイロット回路用油圧ポンプ、11はブームシリン ダ5への圧油を制御する方向制御弁、12は方向制御弁11の上げ側パイロット ポート、13は下げ側パイロットポートである。14はブームシリンダ5のボト ム側油室15と方向制御弁11とを接続するボトム回路、16はブームシリンダ 5のヘッド側油室17と方向制御弁11とを接続するヘッド回路である。 21は方向制御弁11を制御するパイロット油圧操作弁、22は操作レバーで あり、23はパイロット油圧操作弁21と上げ側パイロットポート12とを接続 するパイロット油圧回路、24はパイロット油圧操作弁21と下げ側パイロット ポート13とを接続するパイロット油圧回路である。25はパイロット油圧操作 弁21とオイルタンク18とを接続するドレン回路であり、操作レバー22が中 立N位置のときにはパイロット油圧回路23、24はドレン回路25に連通して いる。FIG. 5 is a boom cylinder drive hydraulic circuit diagram of a conventional hydraulic excavator. 10 is a hydraulic pump for an operating machine, 20 is a hydraulic pump for a pilot circuit, 11 is a hydraulic oil for controlling the boom cylinder 5. Is a rising side pilot port of the directional control valve 11, and 13 is a lowering side pilot port. Reference numeral 14 is a bottom circuit connecting the bottom side oil chamber 15 of the boom cylinder 5 and the direction control valve 11, and 16 is a head circuit connecting the head side oil chamber 17 of the boom cylinder 5 and the direction control valve 11. Reference numeral 21 is a pilot hydraulic operating valve for controlling the directional control valve 11, 22 is an operating lever, 23 is a pilot hydraulic circuit connecting the pilot hydraulic operating valve 21 and the raising pilot port 12, and 24 is a pilot hydraulic operating valve 21. It is a pilot hydraulic circuit that connects the lower pilot port 13. A drain circuit 25 connects the pilot hydraulic operation valve 21 and the oil tank 18. The pilot hydraulic circuits 23 and 24 communicate with the drain circuit 25 when the operation lever 22 is in the neutral N position.

【0004】 次に作動について説明する。中立N位置にある操作レバー22を上げU側に操 作すると、パイロット油圧ポンプ20からの圧油はパイロット油圧回路23を経 て上げ側パイロットポート12に至り、方向制御弁11を右側に移動させる。方 向制御弁11はU位置となって油圧ポンプ10の圧油はボトム回路14を経てブ ームシリンダ5のボトム側油室15に供給され、ブームシリンダ5は伸びてブー ム4を上昇させる。操作レバー22をN位置に戻すとパイロット油圧回路23、 24の油圧はオイルタンク18の圧力に低下し、方向制御弁11はばねの力によ りN位置となり、ブームシリンダポートとオイルタンクポートとは遮断されてブ ームシリンダ5の伸びは終了し、ブーム4は停止する。 操作レバー22を下げD側に操作するとパイロット油圧はパイロット油圧回路 24を経て下げ側パイロットポート13に至り、方向制御弁11をD位置に移動 させ、圧油はヘッド回路16を経てブームシリンダ5のヘッド側油室17に供給 され、ブームシリンダ5は縮んでブーム4を下降させる。操作レバー22をN位 置に戻すとブーム4は停止する。Next, the operation will be described. When the operating lever 22 at the neutral N position is raised and operated to the U side, the pressure oil from the pilot hydraulic pump 20 reaches the raising pilot port 12 via the pilot hydraulic circuit 23 and moves the directional control valve 11 to the right. . The direction control valve 11 is in the U position, and the pressure oil of the hydraulic pump 10 is supplied to the bottom side oil chamber 15 of the boom cylinder 5 via the bottom circuit 14, and the boom cylinder 5 extends to raise the boom 4. When the operating lever 22 is returned to the N position, the hydraulic pressure of the pilot hydraulic circuits 23 and 24 drops to the pressure of the oil tank 18, and the directional control valve 11 is moved to the N position by the force of the spring, so that the boom cylinder port and the oil tank port are not connected. Is interrupted, the boom cylinder 5 finishes extending, and the boom 4 stops. When the operating lever 22 is lowered and operated to the D side, the pilot oil pressure reaches the lower pilot port 13 via the pilot oil pressure circuit 24, moves the directional control valve 11 to the D position, and the pressure oil passes through the head circuit 16 and the boom cylinder 5 moves. It is supplied to the head side oil chamber 17, and the boom cylinder 5 contracts to lower the boom 4. The boom 4 stops when the operating lever 22 is returned to the N position.

【0005】 上記のブーム下げの作動を図3のタイムチャートにより説明する。(a)は操 作レバー21変位、(b)は方向制御弁11変位、(c)はブームシリンダボト ム側油室15の圧力、(d)はブームシリンダヘッド側油室17の圧力の時間に 対する変化をそれぞれ示している。 いま、(a)に示すように操作レバー21を中立N位置から下げD位置に、時 刻t0 で操作開始し、t1 でフルストローク動かすと、パイロット油圧は方向切 換弁11に供給され、(b)に示すようにt2 で移動開始しt3 で最大変位とな る。t2 −t0 は応答遅れであり、管路内の作動油の圧縮性、粘度、および圧力 損失、回路に用いられるゴムホースの弾性等により生ずる。 圧油はt2 でブームシリンダ5のヘッド側油室17に流入し、ブーム4は下降 を開始し、(d)に示すようにブームシリンダ5のヘッド側圧力はt3 で最大と なる。(a)に示すように時刻t4 で操作レバー14をD位置からN位置に操作 開始し、t6 で操作を終了すると(b)に示すようにt5 で方向切換弁11は移 動を開始し、t7 で終了する。方向制御弁11の戻り速度は両端に設けられたば ねの力と、パイロット油圧回路23、24およびパイロット油圧操作弁21の内 部に生ずる圧力損失、油の粘度等で決まる。この時点でブーム4は下降停止とな る。The operation of lowering the boom will be described with reference to the time chart of FIG. (A) is the displacement of the operating lever 21, (b) is the displacement of the directional control valve 11, (c) is the pressure in the boom cylinder bottom side oil chamber 15, and (d) is the time in the boom cylinder head side oil chamber 17. The changes for the Now, as shown in (a), when the operation lever 21 is lowered from the neutral N position to the D position, operation is started at time t 0 , and a full stroke is moved at t 1 , pilot hydraulic pressure is supplied to the direction switching valve 11, As shown in (b), movement starts at t 2 and reaches maximum displacement at t 3 . t 2 -t 0 is the response delay, the compressibility of the hydraulic fluid in the conduit, viscosity, and pressure loss, caused by the elastic like rubber hoses used in the circuit. The pressure oil flows into the head side oil chamber 17 of the boom cylinder 5 at t 2 , the boom 4 starts to descend, and the head side pressure of the boom cylinder 5 becomes maximum at t 3 as shown in (d). As shown in (a), the operation lever 14 is started from the D position to the N position at time t 4 , and when the operation is finished at t 6 , the directional control valve 11 is moved at t 5 as shown in (b). It starts and ends at t 7 . The return speed of the directional control valve 11 is determined by the force of the springs provided at both ends, the pressure loss generated inside the pilot hydraulic circuits 23, 24 and the pilot hydraulic operation valve 21, the viscosity of the oil, and the like. At this point, the boom 4 stops descending.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

前述のごとく、方向切換弁をD位置からN位置に戻し始めるとブーム4は下降 停止しはじめ、図3(c)に示すように方向制御弁11の操作終了時にブームシ リンダ5のボトム圧は急激に上昇し、t7 においてピーク圧P1 を示す。これは 作業機3の慣性が大きいためである。 t7 でブーム4の下降は停止し、次にはボトム側の圧力の反力でブームは上昇 し、作業機の慣性でブームシリンダのヘッド側の圧力が上昇し、(d)に示すよ うにt8 でヘッド側のピーク圧はP2 となりブームの上昇は止まる。以後はこの ようにブームシリンダのボトム圧とヘッド圧とが交互に上昇、下降を繰り返し、 ブームシリンダが伸縮して作業機は上下に揺動(振動)を繰り返し、次第に減衰 するが、この振動は図3の(c)、(d)に示すように相当長く継続する。 この現象は作業機の下げ動作停止時のみならず、上げ動作停止時にも同様に発 生する。 この作業機の振動は油圧ショベル本体をも揺らすこととなり、作業機の作動停 止の都度、オペレータは不快感を覚え、疲労の増大を招く。 また、図4に示すように、バケットに土砂等を積み込んでいると振動により積 み荷がこぼれ落ちることがあり、安全性、生産性の上からも問題となっている。 そのため、この振動を抑制させたいわけであるが、振動を抑制すると動作が緩 慢になるのが一般的である。しかしながら、油圧ショベルの作業では、たとえば バケット7の底面を打ちつけて地面を締め固める転圧作業のように短時間のうち に作業機3の上げ下げを繰り返す必要のある作業もあり、以上の相反する要求を 同時に解決する方策が求められている。 また、振動抑制方策を採用した場合、低温時に油の粘度が大きくなり、極端な 作動遅れを生ずる危険性もある。As described above, when the directional control valve starts returning from the D position to the N position, the boom 4 begins to descend and stop, and the bottom pressure of the boom cylinder 5 suddenly increases at the end of the operation of the directional control valve 11 as shown in FIG. 3 (c). , And shows a peak pressure P 1 at t 7 . This is because the work machine 3 has a large inertia. At t 7 , the boom 4 stops descending, then the boom rises due to the reaction force of the pressure on the bottom side, the pressure on the head side of the boom cylinder rises due to the inertia of the work machine, and as shown in (d). At t 8 , the peak pressure on the head side becomes P 2 and the boom stops rising. After that, the bottom pressure and the head pressure of the boom cylinder alternately rise and fall repeatedly in this way, the boom cylinder expands and contracts, the work machine repeatedly swings up and down (vibrates), and is gradually damped. As shown in (c) and (d) of FIG. This phenomenon occurs not only when the lowering operation of the work implement is stopped, but also when the raising operation is stopped. This vibration of the working machine also rocks the main body of the hydraulic excavator, and every time the working machine is stopped, the operator feels uncomfortable and increases fatigue. Further, as shown in FIG. 4, when soil or the like is loaded in the bucket, the load may spill due to vibration, which is a problem from the viewpoint of safety and productivity. Therefore, it is desirable to suppress this vibration, but if the vibration is suppressed, the operation generally becomes slow. However, in the work of the hydraulic excavator, there is a work in which it is necessary to repeatedly raise and lower the work implement 3 within a short period of time, such as a compaction work in which the bottom surface of the bucket 7 is struck and the ground is compacted. There is a need for a solution that simultaneously solves Also, if vibration suppression measures are adopted, the viscosity of the oil will increase at low temperatures, and there is the danger of an extreme delay in operation.

【0007】 上記作業機の振動抑制のためには、特願平3−351350あるいは特開平4 −343925により提案がなされているが、前者はマイコンを必要とするため 高価であり、普及している油圧パイロット式油圧ショベルには採用困難という問 題があり、後者においては制御バルブ数が多く高価であるという問題がある。[0007] Japanese Patent Application No. 3-351350 or Japanese Patent Application Laid-Open No. 4-343925 proposes to suppress the vibration of the working machine, but the former requires a microcomputer and is therefore expensive and is widely used. The hydraulic pilot hydraulic excavator has a problem that it is difficult to adopt, and the latter has a problem that the number of control valves is large and it is expensive.

【0008】 本考案は上記の問題点に着目してなされたもので、作業機の上昇、下降の動作 停止時に発生する振動を抑制するとともに、必要に応じて例えば、短時間のうち に作業機の上げ下げを繰り返す必要がある場合には、運転者の意志で振動抑制装 置をOFFにする事が可能で、かつ、油温が低く油の粘度が大きく、作動おくれ が大きくなりすぎる場合には、強制的に振動抑制装置をOFFにする事が可能な 振動抑制装置を経済的に提供することを目的としている。The present invention has been made in view of the above problems, and suppresses the vibration generated when the operation of the working machine is stopped from rising and lowering, and if necessary, for example, in a short time. If it is necessary to repeatedly raise and lower the oil pressure, it is possible for the driver to turn off the vibration suppression device, and if the oil temperature is low and the oil viscosity is high and the operation delay is too large, The purpose is to economically provide a vibration suppression device that can forcibly turn off the vibration suppression device.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的達成のため、本考案に係る作業機の振動抑制装置の第1の考案にお いては、本体に揺動自在に装着された作業機を昇降自在に支持する油圧シリンダ と、油圧源から該油圧シリンダに供給する圧油を制御するパイロット油圧式方向 制御弁と、該方向制御弁を制御するパイロット油圧操作弁とを備えた建設機械の 油圧回路において、前記油圧シリンダのヘッド側とボトム側とを連通する連通回 路を設け、前記連通回路上に絞り弁と、前記連通回路を開閉する切換弁と、パイ ロット油圧式の第1開閉弁と、第2開閉弁とを直列に介装することを特徴として おり、第2の考案においては、前記パイロット油圧操作弁のパイロット油圧回路 と、パイロット油圧を受けて前記連通回路を開く前記第1開閉弁のパイロットポ ートと、パイロット油圧を受けて前記連通回路を閉じる第2開閉弁のパイロット ポートとを、高圧側の油を選択導入するシャトルバルブを介して接続し、前記パ イロット油圧回路と前記第1開閉弁のパイロットポートとを連通する回路上に絞 り弁を介装することを特徴としており、第3の考案においては、本体に揺動自在 に装着された作業機を昇降自在に支持する油圧シリンタと、油圧源から該油圧シ リンダに供給する圧油を制御するパイロット油圧式方向制御弁と、前記方向制御 弁を制御するパイロット油圧操作弁とを備えた建設機械の油圧回路において、前 記油圧シリンダのヘッド側とボトム側とを連通する連通回路を設け、前記連通回 路上に絞り弁と、前記連通回路を開閉する電磁切換弁と、パイロット油圧式の第 1開閉弁および第2開閉弁とを直列に介装し、前記電磁切換弁に接続する電気回 路上にON−OFFスイッチと、予め定められた油温に達すると信号を受けて前 記電気回路をカットする温度センサとを配設せることを特徴としている。 In order to achieve the above-mentioned object, in a first invention of a vibration suppressor for a working machine according to the present invention, a hydraulic cylinder for swingably supporting a working machine mounted on a main body and a hydraulic power source are provided. In a hydraulic circuit of a construction machine equipped with a pilot hydraulic type directional control valve for controlling pressure oil supplied from the hydraulic cylinder to the hydraulic cylinder, and a pilot hydraulic operating valve for controlling the directional control valve, a head side and a bottom side of the hydraulic cylinder A communication circuit for communicating with the side is provided, and a throttle valve on the communication circuit, a switching valve for opening and closing the communication circuit, a pilot hydraulic first opening / closing valve, and a second opening / closing valve are connected in series. In the second invention, a pilot hydraulic circuit of the pilot hydraulic operation valve, a pilot port of the first opening / closing valve that receives the pilot hydraulic pressure and opens the communication circuit, and a pilot The pilot port of the second on-off valve that receives the hydraulic pressure and closes the communication circuit is connected via a shuttle valve that selectively introduces high-pressure oil, and the pilot hydraulic circuit and the pilot port of the first on-off valve are connected. The third invention is characterized in that a throttle valve is provided on a circuit communicating with the hydraulic cylinder and a hydraulic cylinder for supporting a working machine that is swingably mounted on the main body so that the working machine can move up and down. In a hydraulic circuit of a construction machine equipped with a pilot hydraulic type directional control valve for controlling pressure oil supplied from the hydraulic cylinder to the hydraulic cylinder, and a pilot hydraulic operating valve for controlling the directional control valve, the head side of the hydraulic cylinder described above. And a bottom side are provided with a communication circuit, and a throttle valve on the communication circuit, an electromagnetic switching valve that opens and closes the communication circuit, and a pilot hydraulic first opening / closing valve and a second opening / closing valve. An ON-OFF switch and a temperature sensor that cuts off the electric circuit upon receiving a signal when a predetermined oil temperature is reached are provided on an electric circuit connected in series and connected to the electromagnetic switching valve. It is characterized by that.

【0010】[0010]

【作用】[Action]

上記構成によれば、作業機を昇降させる油圧シリンダのヘッド側とボトム側と を連通する連通回路を設け、連通回路上に絞り弁と、連通回路を開閉する切換弁 と、パイロット油圧操作弁のパイロット油圧を受けて連通回路を開くパイロット 油圧式の第1開閉弁と、該パイロット油圧を受けて連通回路を閉じる第2開閉弁 とを設けた。そしてパイロット油圧操作弁のパイロット回路と、第1、第2開閉 弁のパイロットポートとを、高圧側の油を選択導入するシャトルバルブを介して 接続し、該パイロット回路と第1開閉弁とを接続する回路上に絞り弁を介装した 。 そのため、切換弁を開き、パイロット油圧操作弁を上げ、下げ、どちらかに操 作すると油圧シリンダは伸縮する。同時にシャトルバルブを介して圧油は第1開 閉弁を開き、第2開閉弁を閉じる。つぎに、パイロット油圧操作弁を中立にする と油圧シリンダは停止し、第1開閉弁は閉じ、第2開閉弁は開く。このとき、第 1と第2開閉弁は絞り弁の働きにより開閉時期にタイムラグを生じ、短時間両方 の開閉弁が開の状態となる。したがって、油圧シリンダのヘッド側とボトム側と はこの間、連通し、絞り弁を介して少量の油が高圧側から低圧側に流入し、ピー ク圧を低減する。 切換弁を閉じた場合には、従来の油圧装置と同一の回路となり従来と同様な働 きをする。 また、前記連通回路上に回路を開閉する電磁切換弁を介装し、その電気回路上 にON−OFFスイッチと油温により回路をカットする温度センサとを設けたた め、油が予め定められた温度に達すると電気回路がカットされ、ON−OFFス イッチを操作しても振動抑制装置が作動しないようになる。 According to the above configuration, a communication circuit that connects the head side and the bottom side of the hydraulic cylinder that raises and lowers the working machine is provided, and the throttle valve, the switching valve that opens and closes the communication circuit, and the pilot hydraulic operation valve are provided on the communication circuit. A pilot hydraulic type first opening / closing valve that receives the pilot oil pressure to open the communication circuit and a second opening / closing valve that receives the pilot oil pressure and closes the communication circuit are provided. Then, the pilot circuit of the pilot hydraulic operating valve and the pilot ports of the first and second opening / closing valves are connected via a shuttle valve that selectively introduces high-pressure side oil, and the pilot circuit and the first opening / closing valve are connected. A throttle valve was installed on the circuit. Therefore, open the switching valve, raise and lower the pilot hydraulic operation valve, and operate either way to expand or contract the hydraulic cylinder. At the same time, the pressure oil opens the first opening / closing valve and closes the second opening / closing valve via the shuttle valve. Next, when the pilot hydraulic operation valve is neutralized, the hydraulic cylinder is stopped, the first opening / closing valve is closed, and the second opening / closing valve is opened. At this time, there is a time lag in the opening and closing timing of the first and second on-off valves due to the action of the throttle valve, and both on-off valves are open for a short time. Therefore, the head side and the bottom side of the hydraulic cylinder communicate with each other during this period, and a small amount of oil flows from the high pressure side to the low pressure side via the throttle valve, reducing the peak pressure. When the switching valve is closed, the circuit becomes the same as the conventional hydraulic system and the same operation as the conventional one is performed. Further, since an electromagnetic switching valve for opening and closing the circuit is provided on the communication circuit, and an ON-OFF switch and a temperature sensor for cutting the circuit by the oil temperature are provided on the electric circuit, oil is predetermined. When the temperature reaches a certain temperature, the electric circuit is cut and the vibration suppressor does not operate even if the ON-OFF switch is operated.

【0011】[0011]

【実施例】【Example】

以下に、本考案に係る作業機の振動抑制装置の実施例について、図面を参照し て詳述する。 図1は第1実施例のブームシリンダ駆動油圧回路図である。ブームシリンダ5 、油圧ポンプ10、方向制御弁11、上げ側パイロットポート12、下げ側パイ ロットポート13、ボトム回路14、ボトム側油室15、ヘッド回路16、ヘッ ド側油室17、オイルタンク18、パイロット油圧ポンプ20、パイロット油圧 操作弁21、操作レバー22、パイロット油圧回路23,24、ドレン回路25 の部品およびその働きは従来のものと同一なので説明は省略し、異なる部分につ いて説明する。 ブームシリンダ5のボトム回路14とヘッド回路16との間には連通回路30 が設けられ、連通回路30上にはON−OFFスイッチ31を備えた電磁切換弁 32、絞り弁33、パイロット油圧式の第1開閉弁34、第2開閉弁35が直列 に介装されている。パイロット油圧回路23、24を連通する回路40には高圧 側の油を選択導入するシャトルバルブ41が設けられ、回路40と第2開閉弁3 5のパイロットポート37とはシャトルバルブ41を介して回路42により接続 されている。第1開閉弁34のパイロットポート36と回路42とを接続する回 路43上には絞り弁44が配設されている。 Hereinafter, an embodiment of a vibration suppressing device for a working machine according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a boom cylinder drive hydraulic circuit diagram of the first embodiment. Boom cylinder 5, hydraulic pump 10, directional control valve 11, raising pilot port 12, lower pilot port 13, bottom circuit 14, bottom oil chamber 15, head circuit 16, head oil chamber 17, oil tank 18 The parts of the pilot hydraulic pump 20, the pilot hydraulic operating valve 21, the operating lever 22, the pilot hydraulic circuits 23 and 24, and the drain circuit 25 and their functions are the same as those of the conventional ones, and therefore the description thereof will be omitted and different parts will be described. . A communication circuit 30 is provided between the bottom circuit 14 and the head circuit 16 of the boom cylinder 5, and an electromagnetic switching valve 32 having an ON-OFF switch 31 on the communication circuit 30, a throttle valve 33, a pilot hydraulic type. A first opening / closing valve 34 and a second opening / closing valve 35 are provided in series. A shuttle valve 41 for selectively introducing high-pressure oil is provided in a circuit 40 that connects the pilot hydraulic circuits 23 and 24. The circuit 40 and the pilot port 37 of the second opening / closing valve 35 are connected via the shuttle valve 41. It is connected by 42. A throttle valve 44 is arranged on a circuit 43 connecting the pilot port 36 of the first opening / closing valve 34 and the circuit 42.

【0012】 つぎに作用について説明する。オペレータがON−OFFスイッチ31をON にすると電磁切換弁32はB位置となり開になる。そして、たとえば、パイロッ ト油圧操作弁21の操作レバー22を下げD側に操作するとパイロット油圧回路 24の油圧は下げ側パイロットポート13に至り方向制御弁11を左に移動する 。方向制御弁11はD位置となって圧力油はヘッド回路16を経てブームシリン ダ5のヘッド側油室17に供給され、ボトム側油室15はボトム回路14を経て オイルタンク18に連通してブームシリンダ5は縮んでブーム4は下降する。こ のとき、パイロット油圧回路23はドレン回路25を介してオイルタンク18と 連通しており油圧は低い。したがって、シャトルバルブ41は高圧のパイロット 油圧回路24の油を回路42、43に送る。第2開閉弁35は右に移動してB位 置となり閉じる。第1開閉弁34は絞り弁44を経て僅かに遅れて右に移動し、 B位置となって開く。しかしながら、前述のごとく第2開閉弁34が閉じている ため連通回路30は閉じており、従来のものと同一の通常状態となっている。Next, the operation will be described. When the operator turns ON the ON-OFF switch 31, the electromagnetic switching valve 32 is in the B position and is opened. Then, for example, when the operation lever 22 of the pilot oil pressure operation valve 21 is lowered and operated to the D side, the oil pressure of the pilot hydraulic circuit 24 reaches the lower pilot port 13 and moves the directional control valve 11 to the left. The directional control valve 11 is in the D position and pressure oil is supplied to the head side oil chamber 17 of the boom cylinder 5 through the head circuit 16, and the bottom side oil chamber 15 communicates with the oil tank 18 through the bottom circuit 14. The boom cylinder 5 contracts and the boom 4 descends. At this time, the pilot hydraulic circuit 23 communicates with the oil tank 18 via the drain circuit 25, and the hydraulic pressure is low. Therefore, the shuttle valve 41 sends the high-pressure pilot hydraulic circuit 24 oil to the circuits 42, 43. The second on-off valve 35 moves to the right to be in the B position and is closed. The first on-off valve 34 moves to the right via the throttle valve 44 with a slight delay, and opens to the B position. However, since the second opening / closing valve 34 is closed as described above, the communication circuit 30 is closed, and the normal state is the same as the conventional one.

【0013】 操作レバー22を中立Nの位置に戻すとパイロット回路23、24はともにオ イルタンク18に連通し、油圧は下がって方向制御弁11はN位置となり、ボト ム、ヘッド回路14、16は閉じてブームシリンダ5は停止し、ブーム下降は停 止する。回路42もオイルタンク18に連通し、油圧は低下して第2開閉弁35 は左に移動し、A位置となって回路は開く。回路43の圧油は絞り弁44を通る ため直ちに油圧が低下せず、時間遅れが生ずる。すなわち、第1開閉弁34がA 位置となって回路を閉じるまでの間はブームシリンダ5のボトム側油室15とヘ ッド側油室17とを連通する連通回路30は絞り弁33を介して連通する。 方向制御弁11がN位置に切り換わると前述のごとく作業機の慣性でボトム側 油室15の油圧は急激に上昇しようとする。しかしながら、このとき、連通回路 30は開いているため、ボトム側油室15の油は絞り弁33を介して極めて少量 ヘッド側油室17に逃げ、図3(c)の点線に示すようにピーク圧P1 はP3 に 低下する。しかしながら、ボトム側油室15の油圧の反動のため、つぎにヘッド 側油室17の油圧が高くなるが、同様にしてヘッド側油室17の油を少量ボトム 側油室15に逃がし、図3(d)の点線に示すようにピーク圧P2 はP4 に低下 する。この動作は回路43の油が絞り弁44を通ってオイルタンク18の油圧と 等しくなるまで続き、第1開閉弁34がA位置に戻った時点で連通回路30は閉 じ、通常状態となる。このようにしてブームシリンダ5内の油圧の変動は減少し 、作業機の振動は大幅に抑制される。When the operating lever 22 is returned to the neutral N position, the pilot circuits 23 and 24 both communicate with the oil tank 18, the hydraulic pressure decreases, the directional control valve 11 moves to the N position, and the bottom and head circuits 14 and 16 When closed, the boom cylinder 5 is stopped and the boom lowering is stopped. The circuit 42 also communicates with the oil tank 18, the hydraulic pressure decreases, the second opening / closing valve 35 moves to the left, and the circuit is opened at the A position. Since the pressure oil in the circuit 43 passes through the throttle valve 44, the oil pressure does not immediately drop and a time delay occurs. That is, the communication circuit 30 that connects the bottom side oil chamber 15 and the head side oil chamber 17 of the boom cylinder 5 through the throttle valve 33 until the first opening / closing valve 34 is in the A position and the circuit is closed. Communicate with each other. When the directional control valve 11 is switched to the N position, the hydraulic pressure of the bottom side oil chamber 15 will suddenly rise due to the inertia of the working machine as described above. However, at this time, since the communication circuit 30 is open, a very small amount of oil in the bottom side oil chamber 15 escapes to the head side oil chamber 17 via the throttle valve 33, and a peak occurs as shown by the dotted line in FIG. 3 (c). The pressure P 1 drops to P 3 . However, due to the reaction of the hydraulic pressure in the bottom side oil chamber 15, the hydraulic pressure in the head side oil chamber 17 next rises. Similarly, a small amount of the oil in the head side oil chamber 17 is released to the bottom side oil chamber 15 and the oil in the head side oil chamber 17 is released. As shown by the dotted line in (d), the peak pressure P 2 drops to P 4 . This operation continues until the oil in the circuit 43 passes through the throttle valve 44 and becomes equal to the oil pressure in the oil tank 18, and when the first opening / closing valve 34 returns to the A position, the communication circuit 30 closes and enters the normal state. In this way, the fluctuation of the hydraulic pressure in the boom cylinder 5 is reduced, and the vibration of the working machine is significantly suppressed.

【0014】 しかしながら、上述のごとき振動抑制を行うと不具合を生ずる場合がある。た とえば、作業機の上げ下げを繰り返して転圧作業を行うような場合、振動抑制装 置を作動させると作業機の動きが緩慢になり、オペレータの感覚と一致しない場 合が生ずる。このような場合にはON−OFFスイッチ31をOFFにして電磁 切換弁32をA位置に切り換えて連通回路30を閉じ、従来のものと全く同一の 状態にして作業する。However, if the vibration suppression as described above is performed, a problem may occur. For example, when performing rolling compaction work by repeatedly raising and lowering the work implement, the movement of the work implement becomes slow when the vibration suppression device is activated, which may not match the operator's feeling. In such a case, the ON-OFF switch 31 is turned OFF, the electromagnetic switching valve 32 is switched to the A position, the communication circuit 30 is closed, and the work is performed in the same state as the conventional one.

【0015】 上記の装置の内、電磁切換弁32は手動式の切換弁でも差し支えない。また、 パイロット油圧式の開閉弁34、35は電磁、パイロット油圧併用式の開閉弁で あってもよい。Of the above devices, the electromagnetic switching valve 32 may be a manual switching valve. Further, the pilot hydraulic on-off valves 34 and 35 may be electromagnetic and pilot hydraulic on-off valves.

【0016】 上述の第1実施例に説明した振動抑制装置の性能は絞り弁33と44の性能に 影響されること大である。回路を流れる油の粘度によって絞り弁33、44の特 性は変化を受けることは周知の通りであり、粘度の高い場合(作動油温の低い場 合)には絞り弁33、44を通過する油量は著しく少なくなり、作業機の動作が オペレータの意図と異なる場合が生じる。 図2は上記問題に対処するための第2実施例の油圧回路図であり、電磁切換弁 32のON−OFFスイッチ31の回路38に温度センサ50、51を介装して ある。その他の部分は第1実施例と同一なので説明は省略する。この温度センサ 50、51は油温が低温のときにOFFになるようになっている。温度検出場所 は、たとえば回路43の絞り弁44付近、および連通回路30の絞り弁33付近 とし、いずれかの油温が絞り弁33あるいは44の性能に悪影響をおよぼすと思 われる温度に達するとOFFになるようにしておく。このようにすることにより 、低温時にはオペレータがON−OFFスイッチ31をONにしても連通回路は 連通せず、低温時の作動で危険な現象が発生することを未然に防止することがで きる。The performance of the vibration suppressing device described in the first embodiment is largely influenced by the performance of the throttle valves 33 and 44. It is well known that the characteristics of the throttle valves 33 and 44 change depending on the viscosity of the oil flowing through the circuit. When the viscosity is high (when the hydraulic oil temperature is low), the throttle valves 33 and 44 pass through. The amount of oil is significantly reduced, and the operation of the work equipment may be different from the operator's intention. FIG. 2 is a hydraulic circuit diagram of the second embodiment for coping with the above problem, in which the temperature sensor 50, 51 is provided in the circuit 38 of the ON-OFF switch 31 of the electromagnetic switching valve 32. Since the other parts are the same as those in the first embodiment, the description thereof will be omitted. The temperature sensors 50 and 51 are turned off when the oil temperature is low. The temperature detection location is, for example, in the vicinity of the throttle valve 44 of the circuit 43 and in the vicinity of the throttle valve 33 of the communication circuit 30, and is turned off when any oil temperature reaches a temperature at which the performance of the throttle valve 33 or 44 is considered to be adversely affected. To be By doing so, even if the operator turns on the ON-OFF switch 31 at low temperature, the communication circuit does not communicate, and it is possible to prevent a dangerous phenomenon from occurring during operation at low temperature.

【0017】[0017]

【考案の効果】[Effect of device]

以上詳述したごとく、本考案は本体に揺動自在に装着された作業機を昇降自在 に支持する油圧シリンダと、油圧シリンダに供給する圧油を制御するパイロット 油圧式方向制御弁と、パイロット油圧式方向制御弁を制御するパイロット油圧操 作弁とを備えた建設機械の油圧回路において、油圧シリンダのヘッド側とボトム 側とを連通する連通回路を設け、連通回路上に絞り弁と、連通回路を開閉する切 換弁と、パイロット油圧を受けて回路を開く第1開閉弁と、パイロット油圧を受 けて回路を閉じる第2開閉弁とを直列に介装した。そして、パイロット油圧操作 弁のパイロット油圧回路と、第1、第2開閉弁のパイロットポートとをシャトル バルブを介して接続する回路を設け、第1開閉弁に接続する回路上に絞り弁を設 けた。 そのため、オペレータが切換弁を開にすると、作業機の作動停止時に油圧シリ ンダのヘッド側とボトム側とを連通する連通回路が短時間連通し、油圧シリンダ のピーク圧を発生した側の油を微量だけ他の側に逃がし、ピーク圧を低減して振 動を抑制し、オペレータの疲労を軽減できる。 オペレータが切換弁を閉にすると、油圧シリンダのヘッド側とボトム側との連 通回路は閉じられ従来の油圧回路と同一となるため、作動遅れが生じることはな く、短時間のうちに作業機の上げ下げの繰り返しが可能となる。 また、連通回路上に電磁切換弁を介装し、電磁切換弁の電気回路上にON−O FFスイッチと、予め定められた油温に達すると回路をカットする温度センサと を設けたため、油が低温となり絞り弁に悪い影響を与える予め定めた温度に達す ると電気回路はカットされ、ON−OFFスイッチを操作しても連通回路は常に 閉じていて低温時に危険な作動をすることを防止できる。 以上のような効果を奏する振動抑制装置を経済的に得ることができる。 As described in detail above, the present invention provides a hydraulic cylinder for swingably supporting a working machine mounted on a main body, a pilot hydraulic directional control valve for controlling pressure oil supplied to the hydraulic cylinder, and a pilot hydraulic pressure. In a hydraulic circuit of a construction machine equipped with a pilot hydraulic operation valve that controls a directional control valve, a communication circuit that connects the head side and the bottom side of a hydraulic cylinder is provided, and a throttle valve and a communication circuit are provided on the communication circuit. A switching valve that opens and closes the valve, a first opening and closing valve that receives the pilot hydraulic pressure to open the circuit, and a second opening and closing valve that receives the pilot hydraulic pressure and closes the circuit are interposed in series. Then, a circuit for connecting the pilot hydraulic circuit of the pilot hydraulic operating valve and the pilot ports of the first and second opening / closing valves via a shuttle valve was provided, and a throttle valve was provided on the circuit connecting to the first opening / closing valve. . Therefore, when the operator opens the switching valve, the communication circuit that connects the head side and the bottom side of the hydraulic cylinder communicates for a short time when the working machine stops operating, and the oil on the side that generated the peak pressure of the hydraulic cylinder is released. Only a small amount can be released to the other side, peak pressure can be reduced, vibration can be suppressed, and operator fatigue can be reduced. When the operator closes the switching valve, the communication circuit between the head side and the bottom side of the hydraulic cylinder is closed, and the hydraulic circuit is the same as the conventional hydraulic circuit. It is possible to repeatedly raise and lower the machine. In addition, an electromagnetic switching valve is installed on the communication circuit, and an ON-OFF switch and a temperature sensor that cuts the circuit when a predetermined oil temperature is reached are provided on the electric circuit of the electromagnetic switching valve. When the temperature reaches a preset temperature that causes a low temperature and adversely affects the throttle valve, the electric circuit is cut off and the communication circuit is always closed even if the ON-OFF switch is operated, preventing dangerous operation at low temperatures. it can. It is possible to economically obtain the vibration suppressing device that achieves the above effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の振動抑制装置の第1実施例を示すブー
ムシリンダ駆動油圧回路図である。
FIG. 1 is a boom cylinder drive hydraulic circuit diagram showing a first embodiment of a vibration suppressing device of the present invention.

【図2】本考案の振動抑制装置の第2実施例を示すブー
ムシリンダ駆動油圧回路図である。
FIG. 2 is a boom cylinder drive hydraulic circuit diagram showing a second embodiment of the vibration suppressing device of the present invention.

【図3】本考案の振動抑制装置の効果を示すブームシリ
ンダ駆動タイムチャートである。
FIG. 3 is a boom cylinder drive time chart showing the effect of the vibration suppressing device of the present invention.

【図4】油圧ショベルの全体側面図である。FIG. 4 is an overall side view of the hydraulic excavator.

【図5】従来の油圧ショベルのブームシリンダ駆動油圧
回路図である。
FIG. 5 is a boom cylinder drive hydraulic circuit diagram of a conventional hydraulic excavator.

【符号の説明】[Explanation of symbols]

5 ブームシリンダ 11 方向制御弁 14 ボトム回路 16 ヘッド回路 21 パイロット油圧操作弁 23、24 パイロット油圧回路 30 連通回路 31 ON−OFFスイッチ 32 電磁切換弁 33、44 絞り弁 34 第1開閉弁 35 第2開閉弁 41 シャトルバルブ 42、43 回路 50、51 温度センサ 5 Boom cylinder 11 Directional control valve 14 Bottom circuit 16 Head circuit 21 Pilot hydraulic operation valve 23, 24 Pilot hydraulic circuit 30 Communication circuit 31 ON-OFF switch 32 Electromagnetic switching valve 33, 44 Throttle valve 34 First opening / closing valve 35 Second opening / closing Valve 41 Shuttle valve 42, 43 Circuit 50, 51 Temperature sensor

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 本体に揺動自在に装着された作業機を昇
降自在に支持する油圧シリンダと、油圧源から該油圧シ
リンダに供給する圧油を制御するパイロット油圧式方向
制御弁と、該方向制御弁を制御するパイロット油圧操作
弁とを備えた建設機械の油圧回路において、前記油圧シ
リンダのヘッド側とボトム側とを連通する連通回路を設
け、前記連通回路上に絞り弁と、前記連通回路を開閉す
る切換弁と、パイロット油圧式の第1開閉弁および第2
開閉弁とを直列に介装することを特徴とする作業機の振
動抑制装置。
1. A hydraulic cylinder for swingably supporting a working machine mounted on a main body, a pilot hydraulic directional control valve for controlling pressure oil supplied from a hydraulic source to the hydraulic cylinder, and the direction. In a hydraulic circuit of a construction machine equipped with a pilot hydraulic operating valve for controlling a control valve, a communication circuit that connects the head side and the bottom side of the hydraulic cylinder is provided, and a throttle valve and the communication circuit are provided on the communication circuit. Switching valve for opening and closing the valve, and a pilot hydraulic first opening and closing valve and a second
A vibration suppressing device for a working machine, which is provided with an on-off valve in series.
【請求項2】 前記パイロット油圧操作弁のパイロット
油圧回路と、パイロット油圧を受けて前記連通回路を開
く前記第1開閉弁のパイロットポートと、パイロット油
圧を受けて前記連通回路を閉じる第2開閉弁のパイロッ
トポートとを、高圧側の油を選択導入するシャトルバル
ブを介して接続し、前記パイロット油圧回路と、前記第
1開閉弁のパイロットポートとを連通する回路上に絞り
弁を介装することを特徴とする請求項1の作業機の振動
抑制装置。
2. A pilot hydraulic circuit for the pilot hydraulic operating valve, a pilot port for the first opening / closing valve that receives the pilot hydraulic pressure to open the communication circuit, and a second opening / closing valve that receives the pilot hydraulic pressure and closes the communication circuit. And a pilot port of the first opening / closing valve are connected to each other through a shuttle valve that selectively introduces high-pressure oil, and a throttle valve is provided on a circuit that connects the pilot hydraulic circuit and the pilot port of the first opening / closing valve. The vibration suppressing device for a working machine according to claim 1.
【請求項3】 本体に揺動自在に装着された作業機を昇
降自在に支持する油圧シリンダと、油圧源から該油圧シ
リンダに供給する圧油を制御するパイロット油圧式方向
制御弁と、該方向制御弁を制御するパイロット油圧操作
弁とを備えた建設機械の油圧回路において、前記油圧シ
リンダのヘッド側とボトム側とを連通する連通回路を設
け、前記連通回路上に絞り弁と、前記連通回路を開閉す
る電磁切換弁と、パイロット油圧式の第1開閉弁および
第2開閉弁とを直列に介装し、前記電磁切換弁に接続す
る電気回路上にON−OFFスイッチと、予め定められ
た油温に達すると信号を受けて前記電気回路をカットす
る温度センサとを配設することを特徴とする作業機の振
動抑制装置。
3. A hydraulic cylinder for supporting a working machine which is swingably mounted on a main body so as to be able to move up and down, a pilot hydraulic directional control valve for controlling pressure oil supplied from a hydraulic source to the hydraulic cylinder, and the direction. In a hydraulic circuit of a construction machine equipped with a pilot hydraulic operating valve for controlling a control valve, a communication circuit that connects the head side and the bottom side of the hydraulic cylinder is provided, and a throttle valve and the communication circuit are provided on the communication circuit. An electromagnetic switching valve for opening and closing the valve, a pilot hydraulic first opening and closing valve, and a second opening and closing valve are interposed in series, and an ON-OFF switch is provided on an electric circuit connected to the electromagnetic switching valve. A vibration suppressing device for a working machine, comprising: a temperature sensor that receives a signal when the oil temperature is reached and cuts the electric circuit.
JP4827193U 1993-08-13 1993-08-13 Vibration suppressor for work equipment Pending JPH0714202U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4827193U JPH0714202U (en) 1993-08-13 1993-08-13 Vibration suppressor for work equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4827193U JPH0714202U (en) 1993-08-13 1993-08-13 Vibration suppressor for work equipment

Publications (1)

Publication Number Publication Date
JPH0714202U true JPH0714202U (en) 1995-03-10

Family

ID=12798786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4827193U Pending JPH0714202U (en) 1993-08-13 1993-08-13 Vibration suppressor for work equipment

Country Status (1)

Country Link
JP (1) JPH0714202U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298256A3 (en) * 2001-09-28 2005-06-15 Kobelco Construction Machinery Co., Ltd. Hydraulic system for suppression of vibrations of a working machine
KR20190056629A (en) * 2017-11-17 2019-05-27 현대건설기계 주식회사 Hydraulic Control Device FOR CONSTRUCTION MACHINERY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298256A3 (en) * 2001-09-28 2005-06-15 Kobelco Construction Machinery Co., Ltd. Hydraulic system for suppression of vibrations of a working machine
KR20190056629A (en) * 2017-11-17 2019-05-27 현대건설기계 주식회사 Hydraulic Control Device FOR CONSTRUCTION MACHINERY

Similar Documents

Publication Publication Date Title
JP3786733B2 (en) Tool control method for work machine
EP1403438A1 (en) Method for preventing bounce oscillations of inertial masses caused by accelerations in hydraulically powered equipment
JP5481269B2 (en) Front control device of work machine
KR102028416B1 (en) Hydraulic drive of construction machinery
EP1630303B1 (en) Hydraulic drive device
KR102663742B1 (en) hydraulic machinery
JPH0714203U (en) Vibration suppressor for work equipment
JP2607678Y2 (en) Work machine vibration suppression device
JPH08277548A (en) Vibration damper in construction traveling machine
JPH0714202U (en) Vibration suppressor for work equipment
JP3708380B2 (en) Hydraulic cylinder controller for construction machinery
CN110847274A (en) Excavator crushing control method, excavator controller and excavator
KR20220154485A (en) Hydraulic machine
JP3654562B2 (en) Hydraulic cylinder control circuit in construction machinery
JP3772281B2 (en) Vibration control device for work equipment
JPH0742385U (en) Switching device for dynamic damper of work vehicle
JP2880632B2 (en) Cylinder control device for construction machinery
US4767162A (en) Blade control system for concrete cutting apparatus
JPH07248004A (en) Hydraulic circuit for working machine
KR19990031196A (en) Apparatus for alleviating the impact generated during the boom lowering operation of the excavator
US20230193931A1 (en) Hydraulic machine
JPH0747602Y2 (en) Directional switching valve drive hydraulic circuit
EP4089288A1 (en) Hydraulic machine
JPH0513819Y2 (en)
JP2002061606A (en) Regenerating oil quantity control valve of hydraulic cylinder