JPH07141655A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH07141655A
JPH07141655A JP5287946A JP28794693A JPH07141655A JP H07141655 A JPH07141655 A JP H07141655A JP 5287946 A JP5287946 A JP 5287946A JP 28794693 A JP28794693 A JP 28794693A JP H07141655 A JPH07141655 A JP H07141655A
Authority
JP
Japan
Prior art keywords
substrate
evaporation
vaporizing
recording medium
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287946A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Tatsuro Ishida
達朗 石田
Kazuya Yoshimoto
和也 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5287946A priority Critical patent/JPH07141655A/en
Priority to US08/325,125 priority patent/US5549936A/en
Priority to KR1019940026599A priority patent/KR100239102B1/en
Priority to EP94116433A priority patent/EP0650159B1/en
Priority to DE69426748T priority patent/DE69426748T2/en
Publication of JPH07141655A publication Critical patent/JPH07141655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a thin film magnetic recording medium having high S/N by providing a vaporizing source with two vaporizing zones along the travelling direction of a substrate when a magnetic layer is formed on the travelling substrate by vacuum deposition. CONSTITUTION:A substrate 1 is supplied from a supply roll 4, travelled along the cylindrical can 2 in the direction of an arrow, and wound on a roll 5. The vapor source 8 has vaporizing zones 11, 12 along the travelling direction of the substrate. The vaporizing zone 11 is disposed near the vertical line 13 crossing the starting part of film forming, while the vaporizing part 12 is disposed near the vertical line 14 crossing the finishing part of film forming. Thus, high productivity can be expected. Vaporized atoms from the vaporizing zones pass through the aperture between shielding plates 3A, 3B and deposit on the substrate 1. An O2 inlet 10 is disposed at the end of the shielding plate 3B and the vapor source 8 is filled with the vapor source material 7. By raising the vaporizing rate in the vaporizing zone 11 higher than that in the vaporizing zone 12, higher S/N can be obtd. The higher the film deposition rate in the starting part of film forming, the higher crystalline orientation of the magnetic layer can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度記録特性の優れ
た薄膜型磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film magnetic recording medium having excellent high density recording characteristics.

【0002】[0002]

【従来の技術】磁気記録再生装置は年々高密度化してお
り、短波長記録再生特性の優れた磁気記録媒体が要望さ
れている。現在では基板上に磁性粉を塗布した塗布型磁
気記録媒体が主に使用されており、上記要望を満足すべ
く特性改善がなされているが、ほぼ限界に近づいてい
る。
2. Description of the Related Art The density of magnetic recording / reproducing devices is increasing year by year, and a magnetic recording medium having excellent short wavelength recording / reproducing characteristics is desired. At present, a coated magnetic recording medium in which magnetic powder is coated on a substrate is mainly used, and the characteristics have been improved so as to satisfy the above-mentioned demand, but it is almost the limit.

【0003】この限界を越えるものとして薄膜型磁気記
録媒体が開発されている。薄膜型磁気記録媒体は真空蒸
着法、スパッタリング法、メッキ法等により作製され、
優れた短波長記録再生特性を有する。薄膜型磁気記録媒
体における磁性層としては、例えば、Co、Co−N
i、Co−Ni−P、Co−O、Co−Ni−O、Co
−Cr、Co−Ni−Cr、Co−Cr−Ta、Co−
Cr−Pt等が検討されている。
Thin film magnetic recording media have been developed to exceed this limit. The thin film magnetic recording medium is manufactured by a vacuum deposition method, a sputtering method, a plating method, etc.
It has excellent short wavelength recording / reproducing characteristics. Examples of the magnetic layer in the thin film magnetic recording medium include Co and Co—N.
i, Co-Ni-P, Co-O, Co-Ni-O, Co
-Cr, Co-Ni-Cr, Co-Cr-Ta, Co-
Cr-Pt and the like are being studied.

【0004】磁気テープへの応用の点からは、これらの
中でCo−O、Co−Ni−Oが最も適していると考え
られており、Co−Ni−Oを磁性層とした蒸着テープ
が既にHi8方式VTR用テープとして実用化されてい
る。
From the viewpoint of application to a magnetic tape, Co-O and Co-Ni-O are considered to be most suitable among them, and a vapor deposition tape having Co-Ni-O as a magnetic layer is considered. It has already been put into practical use as a tape for a Hi8 system VTR.

【0005】Hi8方式VTR用蒸着テープの製造方法
の一例を、図2を用いて以下に説明する。図2は蒸着テ
ープを作製するための、従来の真空蒸着装置内部の構成
の一例である。高分子材料よりなる基板1は円筒状キャ
ン2に沿って矢印6の向きに走行する。蒸発物質7を入
れた蒸発源8から蒸発した蒸発原子9が、基板1に付着
することにより磁性層が形成される。蒸発源8としては
電子ビーム蒸発源が適しており、この中に蒸発物質7と
して、例えばCo、Co−Ni等の合金を充填する。な
お、蒸発源8として電子ビーム蒸発源を用いるのは、C
o等の高融点金属を高い蒸発速度で蒸発させるためであ
る。
An example of a method of manufacturing a vapor deposition tape for VTR of Hi8 system will be described below with reference to FIG. FIG. 2 shows an example of the internal structure of a conventional vacuum vapor deposition apparatus for producing a vapor deposition tape. A substrate 1 made of a polymer material runs along a cylindrical can 2 in the direction of arrow 6. Evaporated atoms 9 evaporated from the evaporation source 8 containing the evaporation substance 7 adhere to the substrate 1 to form a magnetic layer. An electron beam evaporation source is suitable as the evaporation source 8, and an alloy such as Co or Co—Ni is filled therein as the evaporation material 7. The electron beam evaporation source is used as the evaporation source 8 because
This is because the refractory metal such as o is evaporated at a high evaporation rate.

【0006】円筒状キャン2周囲の一部には不要な蒸発
原子9が基板1に付着するのを防ぐために遮蔽板3A及
び3Bが設けられている。遮蔽板3Aは膜形成開始部に
おける蒸発原子の基板への入射角を規制し、遮蔽板3B
は膜形成終了部における蒸発原子の基板への入射角を規
制する。θiは膜形成開始部の入射角であり、θfは膜形
成終了部の入射角である。
Shielding plates 3A and 3B are provided in a part of the periphery of the cylindrical can 2 in order to prevent unnecessary evaporated atoms 9 from adhering to the substrate 1. The shield plate 3A regulates the incident angle of vaporized atoms at the film formation start portion to the substrate, and the shield plate 3B
Regulates the angle of incidence of vaporized atoms on the substrate at the film formation end. θ i is the incident angle at the film formation start portion, and θ f is the incident angle at the film formation end portion.

【0007】遮蔽板3Bの端部には蒸着時に真空槽内に
酸素を導入するための酸素導入口10が設けられ、酸素
導入量を最適にすることにより、記録再生特性及び実用
特性の優れた蒸着テープが得られる。また、基板1は供
給ロール4に巻き付けられており、磁性層が形成された
後、巻き取りロール5に巻き取られる。
An oxygen introducing port 10 for introducing oxygen into the vacuum chamber at the time of vapor deposition is provided at the end of the shielding plate 3B. By optimizing the amount of oxygen introduced, excellent recording / reproducing characteristics and practical characteristics are achieved. A vapor deposition tape is obtained. The substrate 1 is wound around the supply roll 4, and after the magnetic layer is formed, the substrate 1 is wound around the winding roll 5.

【0008】[0008]

【発明が解決しようとする課題】今後、薄膜型磁気テー
プには短波長領域における高S/Nばかりでなく、高い
生産性が要求される。
In the future, thin film magnetic tapes are required to have high productivity as well as high S / N in the short wavelength region.

【0009】走行しつつある基板上に真空蒸着法によっ
て高S/Nを有する磁性層を形成するためには、膜形成
開始部の入射角θi及び膜形成終了部の入射角θfを大き
くすればよいことが一般に知られている。しかしなが
ら、θi及びθfを大きくすると高S/Nは得られるもの
の、成膜時の基板走行速度を遅くせざるを得ず、生産性
が低下する。
In order to form a magnetic layer having a high S / N ratio on a moving substrate by a vacuum deposition method, the incident angle θ i at the film forming start portion and the incident angle θ f at the film forming end portion are increased. It is generally known that this should be done. However, if θ i and θ f are increased, a high S / N can be obtained, but the substrate traveling speed at the time of film formation must be slowed down, and productivity is reduced.

【0010】本発明は、従来のこのような課題を解決
し、高い生産性で高S/Nを有する磁気記録媒体を製造
する方法を提供することを目的とするものである。
An object of the present invention is to provide a method for solving the above-mentioned conventional problems and manufacturing a magnetic recording medium having high S / N with high productivity.

【0011】[0011]

【課題を解決するための手段】本発明は、走行しつつあ
る基板上に真空蒸着法によって磁性層を形成する際に、
1台の蒸発源の蒸発部を基板走行方向において2箇所設
ける磁気記録媒体の製造方法である。
According to the present invention, when a magnetic layer is formed on a moving substrate by a vacuum deposition method,
This is a method of manufacturing a magnetic recording medium in which two evaporation portions of one evaporation source are provided in the substrate traveling direction.

【0012】[0012]

【作用】本発明は、走行しつつある基板上に真空蒸着法
によって磁性層を形成する際に、1台の蒸発源の蒸発部
を基板走行方向において2箇所設けることにより、遮蔽
板3Aと3Bとの間の開口部が従来よりも広くても、蒸
発原子の基板への入射角を大きくできるので、高い生産
性で高S/Nを有する磁気記録媒体を提供できる。
According to the present invention, when the magnetic layer is formed on the moving substrate by the vacuum vapor deposition method, two evaporation portions of one evaporation source are provided in the substrate traveling direction, so that the shielding plates 3A and 3B are provided. Even if the opening between and is wider than before, the angle of incidence of vaporized atoms on the substrate can be increased, so that a magnetic recording medium having high S / N can be provided with high productivity.

【0013】[0013]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0014】図1は、本発明にかかる一実施例の磁気記
録媒体の製造方法を実施するための真空蒸着装置内部の
一例を示す。すなわち、高分子材料よりなる基板1は、
供給ロール4に巻き付けられており、円筒状キャン2に
沿って矢印6の向きに走行し、巻き取りロール5に巻き
取られる。
FIG. 1 shows an example of the inside of a vacuum vapor deposition apparatus for carrying out a method of manufacturing a magnetic recording medium according to an embodiment of the present invention. That is, the substrate 1 made of a polymer material is
It is wound around the supply roll 4, runs along the cylindrical can 2 in the direction of the arrow 6, and is wound up by the winding roll 5.

【0015】蒸発源8は基板走行方向において11及び
12の2箇所の蒸発部を有し、ここから蒸発原子が蒸発
する。ここで、膜形成部の位置と蒸発部の位置との間の
関係は限定されるものではなく、どのような位置関係で
あっても、従来の方法に比べて本発明の方法の方が高い
生産性を有し本発明の価値は大きいが、特に、蒸発部1
1を膜形成開始部を通る鉛直線13の近傍に位置させ、
蒸発部12を膜形成終了部を通る鉛直線14の近傍に位
置させることにより、より高い生産性が期待できる。こ
れらの蒸発部から蒸発した蒸発原子は、遮蔽板3Aと3
Bの間の開口部を通過して基板1に付着する。遮蔽板3
Bの端部には真空槽内に酸素を導入するための酸素導入
口10が配置されている。蒸発源8には蒸発物質7が充
填されている。
The evaporation source 8 has two evaporation portions 11 and 12 in the substrate traveling direction, from which evaporated atoms are evaporated. Here, the relationship between the position of the film forming portion and the position of the evaporation portion is not limited, and whatever the positional relationship is, the method of the present invention is higher than the conventional method. Although the present invention has high productivity and is of great value, it is particularly useful for the evaporation unit 1.
1 is located in the vicinity of the vertical line 13 passing through the film formation start portion,
Higher productivity can be expected by locating the evaporation part 12 near the vertical line 14 passing through the film formation end part. The vaporized atoms vaporized from these vaporization parts are shielded by the shield plates 3A and 3A.
It passes through the openings between B and adheres to the substrate 1. Shield plate 3
An oxygen inlet 10 for introducing oxygen into the vacuum chamber is arranged at the end of B. The evaporation source 8 is filled with the evaporation material 7.

【0016】以上のような構成で基板1を走行させつつ
磁性層を形成することにより、図2で示される従来の方
法で磁性層を作製した場合に比べて、θi及びθfを図2
の場合と同じに設定すると、遮蔽板3Aと3Bの間の開
口部の幅を広くすることができる。なお、本発明の図1
においては、θi及びθfは次のように測定する。θi
膜形成開始部側の蒸発部11の中心と膜形成開始部を結
ぶ直線と、膜形成開始部を通る円筒状キャンの半径との
なす角であり、θfは膜形成終了部側の蒸発部12の中
心と膜形成終了部を結ぶ直線と、膜形成終了部を通る円
筒状キャンの半径とのなす角である。このようにして測
定したθi及びθfは、従来の図2のθi及びθfと対応づ
けられることを実験的に確認している。すなわち、本発
明の図1の構成の真空蒸着装置で作製した磁性層と、従
来の図2の構成の真空蒸着装置で作製した磁性層は、そ
れぞれのθiとθfをそれぞれ同一の値に設定すると、ほ
ぼ等しい磁気特性及び記録再生特性を有する。
By forming the magnetic layer while the substrate 1 is running with the above-described structure, θ i and θ f can be calculated as shown in FIG. 2 as compared with the case where the magnetic layer is manufactured by the conventional method shown in FIG.
By setting the same as in the above case, the width of the opening between the shielding plates 3A and 3B can be increased. It should be noted that FIG.
At, θ i and θ f are measured as follows. θ i is the angle formed by the straight line connecting the center of the evaporation part 11 on the film formation start part side and the film formation start part, and the radius of the cylindrical can passing through the film formation start part, and θ f is the film formation end part side. Is an angle formed by a straight line connecting the center of the evaporation portion 12 and the film formation end portion and the radius of the cylindrical can passing through the film formation end portion. It has been experimentally confirmed that the θ i and θ f measured in this manner are associated with the conventional θ i and θ f of FIG. That is, the magnetic layer produced by the vacuum vapor deposition apparatus having the configuration of FIG. 1 of the present invention and the magnetic layer produced by the conventional vacuum vapor deposition apparatus having the configuration of FIG. 2 have the same θ i and θ f , respectively. When set, they have almost the same magnetic characteristics and recording / reproducing characteristics.

【0017】なお、実際の生産装置においては、基板の
幅は50cm以上ある。この場合には蒸発源を上からみた
形状は、一般に紙面に垂直方向に長い長方形をしている
ので、蒸発部11及び12は、紙面に垂直方向に長く伸
ばせばよい。すなわち、蒸発部11及び12を、蒸発源
の斜視図の概略を示した図3の点線のように、幅方向に
伸ばせばよい。このような蒸発部の状態は、電子銃から
照射される電子ビームをスキャンすることにより容易に
実現できる。なお、1台の電子銃でこのようなスキャン
をすると、電子ビームが蒸発部11から12へ、あるい
は12から11へ移る領域が存在するが、この領域の影
響が出ないようにするためには、この移動をすばやく行
うようなスキャンをすればよい。実際にはこのようなス
キャンを行うので、本発明ではこの点は考慮していな
い。
In an actual production device, the width of the substrate is 50 cm or more. In this case, since the shape of the evaporation source viewed from above is generally a rectangle long in the direction perpendicular to the paper surface, the evaporation portions 11 and 12 may be extended in the direction perpendicular to the paper surface. That is, the evaporation units 11 and 12 may be extended in the width direction as shown by the dotted line in FIG. 3 which is a schematic perspective view of the evaporation source. Such a state of the evaporation portion can be easily realized by scanning the electron beam emitted from the electron gun. Note that when such a scan is performed with one electron gun, there is a region where the electron beam moves from the evaporation part 11 to 12 or from 12 to 11, but in order to prevent the influence of this region from occurring, , It is sufficient to perform a scan that makes this movement quick. In the present invention, this point is not taken into consideration because such scanning is actually performed.

【0018】なお本発明の効果は、蒸発部11及び12
からの蒸発原子の蒸発速度に依存するものではないが、
膜形成開始部側の蒸発部11の蒸発速度を膜形成終了部
側の蒸発部12の蒸発速度よりも高くすることにより、
両蒸発部からの蒸発速度を同じにした場合よりも高いS
/Nが得られる。この理由は、膜形成開始部における膜
堆積速度は高い方が、磁性層の結晶配向性が高いためだ
と考えられる。
The effect of the present invention is that the evaporators 11 and 12 are
Although it does not depend on the evaporation rate of atoms,
By making the evaporation rate of the evaporation section 11 on the film formation start side higher than that of the evaporation section 12 on the film formation end side,
S that is higher than that when the evaporation rate from both evaporation parts is the same
/ N is obtained. The reason for this is considered to be that the higher the film deposition rate at the film formation start portion, the higher the crystal orientation of the magnetic layer.

【0019】以上のような方法で、蒸発物質としてC
o、Co−Ni、Co−Cr、Co−Ni−Cr、Co
−Fe、Co−Ni−Fe等を使用して磁性層を形成す
ることにより、記録再生特性の優れた磁気テープを高い
生産性で得ることができる。
By the above-mentioned method, C is used as the vaporized substance.
o, Co-Ni, Co-Cr, Co-Ni-Cr, Co
By forming the magnetic layer using —Fe, Co—Ni—Fe, or the like, a magnetic tape having excellent recording / reproducing characteristics can be obtained with high productivity.

【0020】以下に、上記実施例を具体例を用いて説明
し、本発明の方法で作製した蒸着テープと、従来の方法
で作製した蒸着テープの記録再生特性の比較を行なう。
The above examples will be described below with reference to specific examples, and the recording / reproducing characteristics of the vapor deposition tape produced by the method of the present invention and the vapor deposition tape produced by the conventional method will be compared.

【0021】本発明の第1の実施例として、図1のよう
な基本構成を有する真空蒸着装置を用いて、蒸着テープ
を作製した。円筒状キャン2の直径は1.5mとし、テ
ープ厚7μmのポリエチレンテレフタレートフィルムを
基板1として使用した。蒸発物質7としてはCoを用い
た。蒸発部11と12の間隔は10cmとした。θiは8
2゜、θfは60゜になるように遮蔽板3A、3Bを設
定した。このとき、遮蔽板3Aと3Bの間の開口部の幅
は25cmであった。以上のような構成で、平均の膜堆積
速度を0.3μm/sとして、膜厚0.1μmの磁性層を形
成した。酸素導入口10からは、0.8l/minの割合で
酸素を導入した。なお、成膜時の基板の走行速度は45
m/minであった。
As a first embodiment of the present invention, a vapor deposition tape was produced using a vacuum vapor deposition apparatus having a basic structure as shown in FIG. The diameter of the cylindrical can 2 was 1.5 m, and a polyethylene terephthalate film having a tape thickness of 7 μm was used as the substrate 1. Co was used as the evaporation material 7. The distance between the evaporation parts 11 and 12 was 10 cm. θ i is 8
The shielding plates 3A and 3B were set so that 2 ° and θ f were 60 °. At this time, the width of the opening between the shielding plates 3A and 3B was 25 cm. With the above structure, a magnetic layer having a film thickness of 0.1 μm was formed with an average film deposition rate of 0.3 μm / s. Oxygen was introduced from the oxygen inlet 10 at a rate of 0.8 l / min. The traveling speed of the substrate during film formation is 45
It was m / min.

【0022】次に、本発明の第2の実施例として、蒸発
部11からの蒸発速度を蒸発部12からの蒸発速度の
1.5倍として、磁性層を形成した。この蒸発速度以外
の条件は、第1の実施例の場合と全く同様にした。蒸発
速度は、電子銃からの電子ビームの照射時間が、蒸発部
11の方が蒸発部12よりも長くなるように制御して調
節した。遮蔽板3Aと3Bの間の開口部の幅は25cmで
あった。成膜時の基板の走行速度は45m/minであっ
た。
Next, as a second embodiment of the present invention, the magnetic layer was formed by setting the evaporation rate from the evaporation section 11 to 1.5 times the evaporation rate from the evaporation section 12. The conditions other than this evaporation rate were exactly the same as in the case of the first embodiment. The evaporation rate was controlled and adjusted so that the irradiation time of the electron beam from the electron gun was longer in the evaporation unit 11 than in the evaporation unit 12. The width of the opening between the shielding plates 3A and 3B was 25 cm. The traveling speed of the substrate during film formation was 45 m / min.

【0023】次に、比較例として、従来の方法で磁性層
を形成した。真空蒸着装置の基本構成は、上記の図1の
場合と同様であるが、蒸発部が図2に示すように1箇所
になっている点が異なる。θi及びθfを上記の実施例と
同じ値、すなわち、θi=82゜、θf=60゜に設定し
た。このようにするためには、遮蔽板3Aと3Bの間の
開口部の幅を17cmにしなければならなかった。以上の
ような構成で、平均の膜堆積速度を0.3μm/sとし
て、膜厚0.1μmの磁性層を形成した。酸素導入口1
0からは、0.8l/minの割合で酸素を導入した。この
ときの基板の走行速度は、31m/minであり、本発明の
実施例に比べ大幅に遅かった。
Next, as a comparative example, a magnetic layer was formed by a conventional method. The basic structure of the vacuum vapor deposition apparatus is the same as that in the case of FIG. 1 described above, except that the evaporation portion is provided at one location as shown in FIG. θ i and θ f were set to the same values as those in the above-mentioned embodiment, that is, θ i = 82 ° and θ f = 60 °. In order to do this, the width of the opening between the shielding plates 3A and 3B had to be 17 cm. With the above structure, a magnetic layer having a film thickness of 0.1 μm was formed with an average film deposition rate of 0.3 μm / s. Oxygen inlet 1
From 0, oxygen was introduced at a rate of 0.8 l / min. The traveling speed of the substrate at this time was 31 m / min, which was significantly slower than that of the examples of the present invention.

【0024】以上のようにして作製した媒体をテープ状
にスリットし、センダストから成るギャップ長0.15
μmのリング形磁気ヘッドを用いて記録再生特性の評価
を行なった。測定の結果、従来の方法で作製した磁気テ
ープと、本発明の第1の実施例で作製した磁気テープの
再生出力及びノイズはほぼ同等の値を示した。また、本
発明の第2の実施例で作製した磁気テープは、本発明の
第1の実施例で作製した磁気テープよりも再生出力が高
く、記録波長0.5μmで+1.5dBであった。
The medium produced as described above was slit into a tape shape, and the gap length of sendust was 0.15.
The recording / reproducing characteristics were evaluated using a ring type magnetic head of μm. As a result of the measurement, the reproduction output and noise of the magnetic tape manufactured by the conventional method and the magnetic tape manufactured by the first embodiment of the present invention showed almost the same value. Further, the magnetic tape manufactured in the second embodiment of the present invention had a reproduction output higher than that of the magnetic tape manufactured in the first embodiment of the present invention, and was +1.5 dB at a recording wavelength of 0.5 μm.

【0025】上記の如く、本発明の方法で作製した磁気
テープは、従来の方法で作製した磁気テープと同等のS
/Nを有しているにもかかわらず、従来の方法よりも大
幅に高い生産性で成膜できる。
As described above, the magnetic tape manufactured by the method of the present invention has the same S as the magnetic tape manufactured by the conventional method.
Despite having / N, the film can be formed with significantly higher productivity than the conventional method.

【0026】なお、蒸発部を本発明のように2箇所にせ
ずに、蒸発部は1箇所のままで基板走行方向における蒸
発部の長さを長くしても、遮蔽板3A、3B間の開口部
の幅を広くすることは可能である。しかしこのようにす
ると、電子銃に供給する電力が一定の場合、蒸発部の単
位面積及び単位時間当たりに供給される電力は本発明の
場合よりも低下してしまうために、膜形成速度が本発明
の場合よりも低くなってしまう。
Even if the length of the evaporation portion in the substrate traveling direction is increased by leaving the evaporation portion at one position as in the present invention instead of providing the evaporation portion at two positions as in the present invention, the opening between the shield plates 3A and 3B is formed. It is possible to widen the width of the part. However, in this case, when the electric power supplied to the electron gun is constant, the unit area of the evaporation unit and the electric power supplied per unit time are lower than those of the present invention. It will be lower than in the case of the invention.

【0027】また、蒸発源を基板走行方向に2台並べて
配置することも考えられるが、現実の蒸発源の物理的サ
イズから判断すると、このような配置では2箇所の蒸発
部の間の間隔を狭くすることは困難であり、本発明のよ
うな効果は得られない。
It is also possible to arrange two evaporation sources side by side in the substrate running direction. However, judging from the physical size of the actual evaporation source, in such arrangement, the interval between the two evaporation portions is set to be small. It is difficult to reduce the width, and the effect of the present invention cannot be obtained.

【0028】上記実施例では、蒸発物質としてCoを用
いる場合について説明したが、これに限ったものではな
く、蒸発物質としてCo−Ni、Co−Fe、Co−N
i−Fe、Co−Cr、Co−Ni−Cr合金等を用い
る場合についても全く同様の本発明の効果が得られる。
In the above embodiment, the case where Co is used as the evaporating substance has been described, but the present invention is not limited to this, and Co-Ni, Co-Fe, Co-N can be used as the evaporating substance.
Even when i-Fe, Co-Cr, Co-Ni-Cr alloy or the like is used, the same effect of the present invention can be obtained.

【0029】また、上記実施例では、基板としてポリエ
チレンテレフタレートフィルムを用いて説明したが、こ
れに限らず、例えばポリイミドフィルム、ポリアミドフ
ィルム、ポリエーテルイミドフィルム、ポリエチレンナ
フタレートフィルム等の高分子フィルム、あるいは下地
層の形成されている高分子フィルムでも、全く同様であ
ることは言うまでもない。
Further, in the above embodiments, the polyethylene terephthalate film was used as the substrate for explanation, but the present invention is not limited to this, for example, a polymer film such as a polyimide film, a polyamide film, a polyetherimide film, a polyethylene naphthalate film, or the like. It goes without saying that the same applies to a polymer film having an underlayer.

【0030】また、蒸発原子の基板への入射角や蒸発部
の間隔なども、上記実施例の値に限定されるものではな
い。
Further, the incident angle of the vaporized atoms to the substrate, the interval between the vaporized portions, etc. are not limited to the values in the above embodiment.

【0031】[0031]

【発明の効果】以上述べたところから明らかなように、
本発明は高S/Nを有する薄膜型磁気記録媒体を高い生
産性で製造することができるという長所を有する。
As is apparent from the above description,
The present invention has an advantage that a thin film magnetic recording medium having a high S / N can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる一実施例の磁気記録媒体の製造
方法を実施するための真空蒸着装置内部の概略を示す図
FIG. 1 is a diagram showing an outline of the inside of a vacuum vapor deposition apparatus for carrying out a method of manufacturing a magnetic recording medium according to an embodiment of the present invention.

【図2】従来の真空蒸着装置内部の概略を示す図FIG. 2 is a diagram showing an outline of the inside of a conventional vacuum vapor deposition apparatus.

【図3】本発明にかかる一実施例の磁気記録媒体の製造
方法を実施するための蒸発源の概略の斜視図
FIG. 3 is a schematic perspective view of an evaporation source for carrying out a method of manufacturing a magnetic recording medium according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 円筒状キャン 3A、3B 遮蔽板 4 供給ロール 5 巻き取りロール 6 基板走行方向 7 蒸発物質 8 蒸発源 9 蒸発原子 10 酸素導入口 11 膜形成開始部を通る鉛直線の近傍に位置する蒸発
部 12 膜形成終了部を通る鉛直線の近傍に位置する蒸発
部 13 膜形成開始部を通る鉛直線 14 膜形成終了部を通る鉛直線
1 Substrate 2 Cylindrical can 3A, 3B Shielding plate 4 Supply roll 5 Winding roll 6 Substrate traveling direction 7 Evaporated material 8 Evaporation source 9 Evaporated atom 10 Oxygen inlet 11 Evaporation located near the vertical line passing through the film formation start part Part 12 Evaporation part located near the vertical line passing the film formation end part 13 Vertical line passing the film formation start part 14 Vertical line passing the film formation end part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉本 和也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Yoshimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】走行しつつある基板上に真空蒸着法によっ
て磁性層を形成する際に、1台の蒸発源の蒸発部を基板
走行方向において2箇所設けることを特徴とする磁気記
録媒体の製造方法。
1. A method of manufacturing a magnetic recording medium, characterized in that, when a magnetic layer is formed on a moving substrate by a vacuum vapor deposition method, two evaporation portions of one evaporation source are provided in the traveling direction of the substrate. Method.
【請求項2】2箇所の蒸発部を膜形成開始部を通る鉛直
線の近傍、及び膜形成終了部を通る鉛直線の近傍とする
ことを特徴とする請求項1記載の磁気記録媒体の製造方
法。
2. The magnetic recording medium according to claim 1, wherein the two evaporation portions are near a vertical line passing through the film formation start portion and near a vertical line passing through the film formation end portion. Method.
【請求項3】膜形成開始部に近い蒸発部における蒸発速
度が膜形成開始部から遠い蒸発部における蒸発速度より
も高いことを特徴とする請求項1または2記載の磁気記
録媒体の製造方法。
3. The method for producing a magnetic recording medium according to claim 1, wherein the evaporation rate in the evaporation section near the film formation start section is higher than the evaporation rate in the evaporation section far from the film formation start section.
JP5287946A 1993-10-20 1993-11-17 Production of magnetic recording medium Pending JPH07141655A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5287946A JPH07141655A (en) 1993-11-17 1993-11-17 Production of magnetic recording medium
US08/325,125 US5549936A (en) 1993-10-20 1994-10-18 Manufacturing method of magnetic recording medium
KR1019940026599A KR100239102B1 (en) 1993-10-20 1994-10-18 Manufacturing method of magnetic recording medium
EP94116433A EP0650159B1 (en) 1993-10-20 1994-10-19 Manufacturing method of magnetic recording medium
DE69426748T DE69426748T2 (en) 1993-10-20 1994-10-19 Process for producing a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287946A JPH07141655A (en) 1993-11-17 1993-11-17 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH07141655A true JPH07141655A (en) 1995-06-02

Family

ID=17723788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287946A Pending JPH07141655A (en) 1993-10-20 1993-11-17 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07141655A (en)

Similar Documents

Publication Publication Date Title
JPH0853763A (en) Production of thin film
US5418059A (en) Magnetic recording medium and method for producing the same
KR0185237B1 (en) Method for producing a magnetic recording medium
US5298282A (en) Production of magnetic recording medium
JPH07141655A (en) Production of magnetic recording medium
JP3139181B2 (en) Manufacturing method of magnetic recording medium
US5759710A (en) Magnetic recording medium with a magnetic layer having a specific oxygen signal strength profile in the thickness direction
JP3241538B2 (en) Manufacturing method of magnetic recording medium
JPH0689430A (en) Production of magnetic recording medium
JP2001143235A (en) Magnetic recording medium, its manufacturing method and manufacturing device
JP3446356B2 (en) Thin film manufacturing method and manufacturing apparatus
JPH0689431A (en) Production of magnetic recording medium
JPH08221753A (en) Production of magnetic recording medium
JPH06330292A (en) Apparatus for production of thin film and production method therefor
JPH0773430A (en) Magnetic recording medium and its recording method
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH117627A (en) Magnetic recording medium and its method and device of manufacturing
JP3335803B2 (en) Method for manufacturing magnetic recording medium, apparatus for manufacturing thin film, and magnetic recording medium
JPS6156563B2 (en)
JPH08124157A (en) Production of magnetic recording medium
JPS5966106A (en) Magnetic recording medium
JPH06111310A (en) Vapordeposition device for magnetic recording medium
JPH04222918A (en) Magnetic recording medium, its production, and method of magnetic recording
JPS60217524A (en) Magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium