JPH06330292A - Apparatus for production of thin film and production method therefor - Google Patents

Apparatus for production of thin film and production method therefor

Info

Publication number
JPH06330292A
JPH06330292A JP12275093A JP12275093A JPH06330292A JP H06330292 A JPH06330292 A JP H06330292A JP 12275093 A JP12275093 A JP 12275093A JP 12275093 A JP12275093 A JP 12275093A JP H06330292 A JPH06330292 A JP H06330292A
Authority
JP
Japan
Prior art keywords
thin film
electron beam
beam evaporation
shaped substrate
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12275093A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Kaji Maezawa
可治 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12275093A priority Critical patent/JPH06330292A/en
Publication of JPH06330292A publication Critical patent/JPH06330292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To efficiently produce thin films of a multilayered structure having excellent film characteristics, such as recording and reproducing characteristics by enhancing the efficiency of utilizing the atoms of an evaporating source. CONSTITUTION:A shielding plate 9 arranged between an electron beam evaporating source 7 and band-shaped substrate traveling space of the apparatus for production of the thin films for forming the thin films by an electron beam vapor deposition method on the band-shaped substrate 4 moving along the surfaces of an endless band body 5 in a vacuum is provided with plural openings A1, A2 and the thin films are formed plural times on the band-shaped substrate 4 by the same electron beam evaporating source 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気テープ等の薄膜を製
造する装置及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for producing a thin film such as a magnetic tape.

【0002】[0002]

【従来の技術】現代社会において薄膜の果たす役割は非
常に大きく、その使用分野も広範囲であって、日常生活
の様々な分野において薄膜が利用されている。磁気テー
プの分野においても記録媒体の高密度化を目指し、薄膜
磁気記録媒体の研究開発が盛んである。高密度薄膜磁気
記録媒体の中でも、Co系酸化物薄膜は既にビデオテー
プとして商品化されており、注目を集めている。
2. Description of the Related Art Thin films play an extremely important role in modern society, and their fields of use are wide-ranging, and thin films are used in various fields of daily life. Also in the field of magnetic tapes, research and development of thin film magnetic recording media have been actively conducted with the aim of increasing the density of recording media. Among the high-density thin film magnetic recording media, the Co-based oxide thin film has already been commercialized as a video tape and has attracted attention.

【0003】テープ状のCo系酸化物薄膜記録媒体を製
造する方法としては、連続巻き取り真空蒸着法が特にそ
の生産性において他を凌いでいる。この方法によれば、
図2に示すように、長尺帯状の高分子基板4aが円筒状
キャン5aの周面に沿って走行する間に、電子ビーム6
aを照射された蒸発源7aを用いて蒸着することによっ
て、磁性層を形成することができ、磁気記録媒体の量産
ができる。磁性体として、電子ビーム蒸着源7aから蒸
発するCo、またはCo−Niを用い、酸素ガス供給口
8aから供給される酸素の雰囲気中で蒸着を行うことに
よって長尺の磁気テープが生産できる。
As a method for producing a tape-shaped Co-based oxide thin film recording medium, the continuous winding vacuum vapor deposition method is particularly superior in productivity. According to this method
As shown in FIG. 2, while the long strip-shaped polymer substrate 4a travels along the circumferential surface of the cylindrical can 5a, the electron beam 6
A magnetic layer can be formed by vapor deposition using the evaporation source 7a irradiated with a, and mass production of magnetic recording media can be performed. A long magnetic tape can be produced by using Co or Co—Ni that evaporates from the electron beam evaporation source 7a as a magnetic material and performing evaporation in an atmosphere of oxygen supplied from the oxygen gas supply port 8a.

【0004】[0004]

【発明が解決しようとする課題】基板4a上に真空蒸着
法によって薄膜磁性層を形成するにあたっては、基板4
a面への蒸気の入射方向が磁気特性及び記録再生性に大
きな影響を与える。そのため、Co系酸化物薄膜テープ
では斜め蒸着によって磁性層を形成し、ノイズの低減の
ために磁性層の多層化が検討されている。
When the thin film magnetic layer is formed on the substrate 4a by the vacuum deposition method, the substrate 4 is used.
The incident direction of the vapor on the a-plane has a great influence on the magnetic characteristics and the recording / reproducing property. Therefore, in the Co-based oxide thin film tape, a magnetic layer is formed by oblique vapor deposition, and multi-layering of the magnetic layer is under study to reduce noise.

【0005】しかしながら、図2に示すような方法で斜
め蒸着を行う場合、記録再生特性の向上のために蒸気の
入射角を適正範囲に制限すると、蒸発原子の利用効果が
非常に小さくなってしまう。又磁性層の多層化を行う場
合には工程が増加してコストアップを招く。本発明はこ
れらの問題点を解消することを課題とする。
However, when oblique vapor deposition is performed by the method shown in FIG. 2, if the incident angle of vapor is limited to an appropriate range in order to improve the recording / reproducing characteristics, the effect of utilizing vaporized atoms becomes very small. . Further, when the magnetic layer is formed in multiple layers, the number of steps is increased and the cost is increased. The present invention aims to solve these problems.

【0006】[0006]

【課題を解決するための手段】本発明は、真空中でエン
ドレス帯体の表面に沿って移動する帯状基板上に電子ビ
ーム蒸着法によって薄膜を形成する薄膜の製造装置にお
いて、電子ビーム蒸発源と帯状基板走行空間との間に配
した遮蔽板に複数の開口を設け、同一の電子ビーム蒸発
源によって、帯状基板に複数回にわたり薄膜を形成する
ように構成すると共に、帯状基板の走行位置、複数の開
口の配設位置及び電子ビーム蒸発源の設置位置の3者の
関係位置を、電子ビーム蒸発源から帯状基板に入射する
蒸気の入射角の複数回にわたる薄膜の形成を通して生ず
る変化が、単調増加、単調減少のいずれにもならないよ
うに、定めたことを特徴とする。
The present invention provides an electron beam evaporation source and an electron beam evaporation source in a thin film manufacturing apparatus for forming a thin film on a belt-like substrate moving along the surface of an endless belt in vacuum by an electron beam evaporation method. A plurality of openings are provided in a shield plate arranged between the strip substrate traveling space and the same electron beam evaporation source is used to form a thin film on the strip substrate a plurality of times. The relation between the position of the opening of the electron beam and the installation position of the electron beam evaporation source increases monotonically with the change in the incident angle of the vapor incident on the strip substrate from the electron beam evaporation source through multiple thin film formations. , Is specified so that it does not decrease monotonically.

【0007】又本発明は、真空中でエンドレス帯体の表
面に沿って移動する帯状基板上に電子ビーム蒸着法によ
って薄膜を形成する薄膜の製造方法において、帯状基板
の1走行中に複数回にわたり電子ビーム蒸発源からの蒸
着による薄膜形成を行い、かつ走行経路全体を通した蒸
気入射角の変化の極小、極大の合計が2以上あることを
特徴とする。
Further, the present invention is a thin film manufacturing method for forming a thin film by an electron beam evaporation method on a belt-shaped substrate which moves along the surface of an endless belt in vacuum, in a plurality of times during one run of the belt-shaped substrate. A thin film is formed by vapor deposition from an electron beam evaporation source, and the total minimum and maximum changes in the vapor incident angle over the entire traveling path are two or more.

【0008】[0008]

【作用】本発明によれば、エンドレス帯体を利用し、こ
れに沿って帯状基板を走行させているので、複数回の蒸
着位置の夫々において、帯状基板の走行方向を蒸気の入
射角が最適範囲になるように定めることが可能になり、
又帯状基板の走行方向を例えば直線状にすることによっ
て、蒸気の入射角の変化が比較的小さい状態での良好な
蒸着を可能とすることができる。そしてエンドレス帯体
に沿って帯状基板が1度走行する間に、後層形成時の蒸
気の入射角を前層形成時の初期入射角側に戻して薄膜の
積層ができる等、多層膜の形成を効率良く行うことがで
きる。
According to the present invention, since the endless strip is used and the strip-shaped substrate is made to travel along the endless strip, the vapor incident angle is optimized in the traveling direction of the strip-shaped substrate at each of a plurality of vapor deposition positions. It is possible to set it to be in the range,
Further, by making the traveling direction of the belt-shaped substrate linear, for example, it is possible to perform good vapor deposition in a state in which the change in the incident angle of vapor is relatively small. Then, while the strip-shaped substrate travels once along the endless strip, the incident angle of vapor at the time of forming the rear layer is returned to the initial incident angle side at the time of forming the front layer so that thin films can be laminated, and the formation of a multilayer film. Can be done efficiently.

【0009】[0009]

【実施例】図1に示す実施例について説明する。排気系
1によって真空排気された真空漕2の中で、巻き出しロ
ール3から回転方向12に沿って巻出された長尺の高分
子基板である帯状基板4は、ガイドロール11によって
巻回されているエンドレス状の金属薄帯(エンドレス帯
体)5の表面に沿って走行中に、電子ビーム6を照射さ
れている電子ビーム蒸発源7より遮蔽板9の開口部
1 、A2 において蒸着を受けた後に、巻き取りロール
10に巻きとられる。
EXAMPLE The example shown in FIG. 1 will be described. In the vacuum tank 2 evacuated by the exhaust system 1, the strip-shaped substrate 4 which is a long polymer substrate unwound from the unwinding roll 3 along the rotation direction 12 is wound by the guide roll 11. While traveling along the surface of the endless metal thin strip (endless strip) 5, the electron beam evaporation source 7 irradiated with the electron beam 6 evaporates at the openings A 1 and A 2 of the shield plate 9. After being received, it is taken up by the take-up roll 10.

【0010】帯状基板4と金属薄帯5の密着性を高める
ために、帯状基板4は金属薄帯5にニップロール16に
よって押し当てられた後に、薄膜の形成に先立って密着
用電子銃13から電子ビーム14を照射される。ニップ
ロール16及び密着用電子銃13は必要のない場合には
省略できる。ガス導入ノズル8を設置し、ここから酸素
を導入することによって反応蒸着によって薄膜を形成す
ることができる。
In order to enhance the adhesiveness between the strip-shaped substrate 4 and the metal ribbon 5, the strip-shaped substrate 4 is pressed against the metal ribbon 5 by the nip rolls 16, and then the electron gun 13 for electron emission is used before the thin film is formed. The beam 14 is irradiated. The nip roll 16 and the contact electron gun 13 can be omitted if unnecessary. A thin film can be formed by reactive vapor deposition by installing a gas introduction nozzle 8 and introducing oxygen from here.

【0011】エンドレス状の金属薄帯5は、図1に示す
ように5つのガイドロール11に懸回されて、エンドレ
ス回動し、巻き出しロール3から供給された帯状基板4
を斜下右方に導き、ここで第1回目の蒸着を行わせ、次
いで上方に導いた後、再び斜下右方に導き、ここで第2
回目の蒸着を行わせ、その後上方に導いて、巻き取りロ
ール10に渡している。第1回目の蒸着は、遮蔽板9の
第1の開口部A1 を利用して行い、その蒸気入射角を基
板法線に対し70度から50度に変化させている。第2
回目の蒸着は、遮蔽基板9の第2の開口部A2 を利用し
て行い、この場合も蒸気入射角を基板法線に対し70度
から50度に変化させている。
As shown in FIG. 1, the endless metal thin strip 5 is suspended by five guide rolls 11 to rotate endlessly, and the strip-shaped substrate 4 supplied from the unwinding roll 3.
To the lower right of the slant, where the first vapor deposition is performed, then to the upper part, and then to the lower right of the slant again, where the second
The vapor deposition is performed for the second time, and then it is guided upward and passed to the winding roll 10. The first vapor deposition is performed using the first opening A 1 of the shield plate 9, and the vapor incident angle is changed from 70 degrees to 50 degrees with respect to the substrate normal. Second
The second vapor deposition is performed using the second opening A 2 of the shield substrate 9, and in this case also, the vapor incident angle is changed from 70 degrees to 50 degrees with respect to the substrate normal.

【0012】帯状基板4としてポリエチレンテレフタレ
ートを用い、薄膜としてCo−O磁性層を2度形成し
た。従来の図2に示す方法で蒸気入射角を70度から5
0度にして、2層構造の磁性層を形成するためには、2
工程を必要としたが、本実施例の方法を用いれば、上記
のように1工程でこれを実現できる。本実施例の方法で
得たものと、従来法で得たものとを比較するため、MI
Gヘッドを用いて記録再生特性の比較試験を行ったとこ
ろ、本実施例の方法で得たものの方が低ノイズであるこ
とが判明した。又オージェデプスプロファイルによる分
析の結果、本実施例の方法で得たものの方が、磁性層間
の酸化物層が薄くなっており、ノイズの低減に貢献して
いるのではないかと考えられる。
Polyethylene terephthalate was used as the strip-shaped substrate 4, and a Co—O magnetic layer was formed twice as a thin film. With the conventional method shown in FIG. 2, the vapor incident angle is changed from 70 degrees to 5 degrees.
In order to form a two-layer magnetic layer at 0 degree, 2
Although the process was required, the use of the method of this embodiment can realize this in one step as described above. In order to compare the one obtained by the method of this example with the one obtained by the conventional method, MI
A comparative test of recording and reproducing characteristics was performed using a G head, and it was found that the one obtained by the method of this example had lower noise. As a result of analysis by Auger depth profile, it is considered that the oxide obtained by the method of this example has a thinner oxide layer between the magnetic layers and contributes to noise reduction.

【0013】なお、図1に示した実施例では蒸発源が1
つで、遮蔽板9の開口部が2カ所であったが、蒸発源や
開口部を増設したり、帯状基板上にあらかじめ下地層が
形成されている場合等においても本発明は有効である。
又実施例では薄膜としてCo−O磁性層を形成する場合
について述べたが、磁性層としてCo−Ni−Oを用い
た場合や、磁性層以外の薄膜を形成する場合についても
本発明は有効である。
In the embodiment shown in FIG. 1, the evaporation source is 1
Although the shielding plate 9 has two openings, the present invention is effective even when an evaporation source or an opening is added or a base layer is previously formed on the strip substrate.
Further, in the embodiments, the case where the Co—O magnetic layer is formed as the thin film is described, but the present invention is effective when the Co—Ni—O is used as the magnetic layer or when the thin film other than the magnetic layer is formed. is there.

【0014】[0014]

【発明の効果】本発明によれば、記録再生特性等の膜特
性のすぐれた多層構造の薄膜を、蒸発原子の利用効果を
高めて、効率良く得ることができる。
According to the present invention, it is possible to efficiently obtain a thin film having a multilayer structure having excellent film characteristics such as recording / reproducing characteristics by enhancing the effect of utilizing vaporized atoms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜の製造装置の1例を示す図であ
る。
FIG. 1 is a diagram showing an example of a thin film manufacturing apparatus of the present invention.

【図2】従来例の薄膜の製造装置を示す図である。FIG. 2 is a diagram showing a conventional thin film manufacturing apparatus.

【符号の説明】[Explanation of symbols]

4 帯状基板 5 エンドレス帯体 7 蒸発源 8 ガス導入ノズル A1 、A2 開口部4 Belt-shaped substrate 5 Endless strip 7 Evaporation source 8 Gas introduction nozzle A 1 , A 2 opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空中でエンドレス帯体の表面に沿って
移動する帯状基板上に電子ビーム蒸着法によって薄膜を
形成する薄膜の製造装置において、電子ビーム蒸発源と
帯状基板走行空間との間に配した遮蔽板に複数の開口を
設け、同一の電子ビーム蒸発源によって、帯状基板に複
数回にわたり薄膜を形成するように構成すると共に、帯
状基板の走行位置、複数の開口の配設位置及び電子ビー
ム蒸発源の設置位置の3者の関係位置を、電子ビーム蒸
発源から帯状基板に入射する蒸気の入射角の複数回にわ
たる薄膜の形成を通して生ずる変化が、単調増加、単調
減少のいずれにもならないように、定めたことを特徴と
する薄膜の製造装置。
1. A thin film manufacturing apparatus for forming a thin film on a belt-shaped substrate moving along the surface of an endless belt in a vacuum by an electron beam evaporation method, wherein an electron beam evaporation source and a belt-shaped substrate running space are provided. The shield plate is provided with a plurality of openings, and the same electron beam evaporation source is used to form a thin film on the belt-shaped substrate a plurality of times. The change in the three positions of the installation position of the beam evaporation source caused by the thin film formation of the incident angle of the vapor entering the strip substrate from the electron beam evaporation source is not monotonically increasing or monotonically decreasing. The thin-film manufacturing apparatus characterized in that
【請求項2】 真空中でエンドレス帯体の表面に沿って
移動する帯状基板上に電子ビーム蒸着法によって薄膜を
形成する薄膜の製造方法において、帯状基板の1走行中
に複数回にわたり電子ビーム蒸発源からの蒸着による薄
膜形成を行い、かつ走行経路全体を通した蒸気入射角の
変化の極小、極大の合計が2以上あることを特徴とする
薄膜の製造方法。
2. A thin film manufacturing method for forming a thin film by an electron beam evaporation method on a belt-shaped substrate moving along the surface of an endless belt in a vacuum, wherein electron beam evaporation is performed a plurality of times during one run of the belt-shaped substrate. A method for producing a thin film, characterized in that a thin film is formed by vapor deposition from a source, and the sum of the minimum and maximum changes in the vapor incident angle over the entire traveling path is 2 or more.
【請求項3】 帯状基板として高分子基板を用い、薄膜
としてCoとO、またはCoとNiとOを主成分とする
磁性層を形成することを特徴とする請求項2記載の薄膜
の製造方法。
3. The method for producing a thin film according to claim 2, wherein a polymer substrate is used as the strip substrate, and a magnetic layer containing Co and O or Co, Ni and O as main components is formed as the thin film. .
JP12275093A 1993-05-25 1993-05-25 Apparatus for production of thin film and production method therefor Pending JPH06330292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12275093A JPH06330292A (en) 1993-05-25 1993-05-25 Apparatus for production of thin film and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12275093A JPH06330292A (en) 1993-05-25 1993-05-25 Apparatus for production of thin film and production method therefor

Publications (1)

Publication Number Publication Date
JPH06330292A true JPH06330292A (en) 1994-11-29

Family

ID=14843679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12275093A Pending JPH06330292A (en) 1993-05-25 1993-05-25 Apparatus for production of thin film and production method therefor

Country Status (1)

Country Link
JP (1) JPH06330292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571728B1 (en) * 1999-04-21 2003-06-03 Tohoku Pioneer Corporation Process for producing organic electroluminescent display and apparatus for producing the same
WO2008111306A1 (en) * 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2010059519A (en) * 2008-09-05 2010-03-18 Panasonic Corp Vapor deposition apparatus and method for forming vapor deposited film using the same
CN102738447A (en) * 2011-03-31 2012-10-17 三星Sdi株式会社 Continuous deposition device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571728B1 (en) * 1999-04-21 2003-06-03 Tohoku Pioneer Corporation Process for producing organic electroluminescent display and apparatus for producing the same
WO2008111306A1 (en) * 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
KR101478844B1 (en) * 2007-03-09 2015-01-02 파나소닉 주식회사 Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2010059519A (en) * 2008-09-05 2010-03-18 Panasonic Corp Vapor deposition apparatus and method for forming vapor deposited film using the same
CN102738447A (en) * 2011-03-31 2012-10-17 三星Sdi株式会社 Continuous deposition device

Similar Documents

Publication Publication Date Title
US4521482A (en) Magnetic recording medium
US4702938A (en) Process for producing magnetic recording material
US4403002A (en) Vacuum evaporating apparatus
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPH06330292A (en) Apparatus for production of thin film and production method therefor
KR0185237B1 (en) Method for producing a magnetic recording medium
KR960013372B1 (en) Method for making a magnetic recording medium
JPH0445888B2 (en)
US5298282A (en) Production of magnetic recording medium
JPS61214134A (en) Production of magnetic recording medium
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JP3241538B2 (en) Manufacturing method of magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium
JPH05234075A (en) Film forming method and manufacture of magnetic recording medium
JPH0785467A (en) Method and apparatus for manufacturing magnetic recording medium
JPH07331438A (en) Device for producing metallic film body
JPH07121872A (en) Production of magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS5850629A (en) Production of magnetic recording medium
JPH0973621A (en) Magnetic recording medium
JP2005129157A (en) Magnetic recording medium, its manufacturing method and manufacturing device
JPH04283422A (en) Production of magnetic recording medium
JPH0689430A (en) Production of magnetic recording medium
JPH09245335A (en) Magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium