JPH07140324A - Light projecting and receiving device - Google Patents

Light projecting and receiving device

Info

Publication number
JPH07140324A
JPH07140324A JP20164694A JP20164694A JPH07140324A JP H07140324 A JPH07140324 A JP H07140324A JP 20164694 A JP20164694 A JP 20164694A JP 20164694 A JP20164694 A JP 20164694A JP H07140324 A JPH07140324 A JP H07140324A
Authority
JP
Japan
Prior art keywords
light
wavelength
light emitting
semiconductor element
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20164694A
Other languages
Japanese (ja)
Inventor
Tsuguji Tanaka
嗣治 田中
Hironobu Kiyomoto
浩伸 清本
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP20164694A priority Critical patent/JPH07140324A/en
Publication of JPH07140324A publication Critical patent/JPH07140324A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To effectively detect the light of a specific wavelength region from a light projecting means with simple constitution. CONSTITUTION:Optical multilayered film interference filters 13 consisting of plural kinds of metal oxide thin-film layers which reflect light exclusive of the prescribed wavelength region are directly laminated on the light receiving surface of a light receiving semiconductor element 7 disposed in the light receiving part of this light projecting and receiving device. Dyes which absorb light of wavelengths exclusive of the desired wavelength are mixed in a resin molding package 14 for coating the semiconductor element 7, by which the matching of the band-pass characteristics and the light emitting wavelength of the light emitting element is optimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を物体に照射し、透
過光あるいは反射光を受光することにより物体を検出す
る投受光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting and receiving device for detecting an object by irradiating the object with light and receiving transmitted light or reflected light.

【0002】[0002]

【従来の技術】従来より、光を物体に照射し、透過光あ
るいは反射光を受光することにより物体を検出する投受
光装置が種々提案されている。この種の投受光装置には
投光部より発光する特定波長領域の光のみを透過し、外
乱光が受光部に入射するのを防止するため、バンドパス
フィルタが設けられている。従来のバンドパスフィルタ
付き受光素子としては、ガラス基板の両面に金属酸化物
を蒸着した干渉フィルタを受光素子の前に設置する構成
のものが知られている。
2. Description of the Related Art Conventionally, various light emitting and receiving devices have been proposed which detect an object by irradiating the object with light and receiving transmitted light or reflected light. This type of light projecting / receiving device is provided with a bandpass filter for transmitting only light in a specific wavelength region emitted from the light projecting unit and preventing ambient light from entering the light receiving unit. As a conventional light receiving element with a bandpass filter, there is known one having a structure in which an interference filter in which a metal oxide is deposited on both surfaces of a glass substrate is installed in front of the light receiving element.

【0003】また他の構成としては、図7に示すよう
に、基板101上に実装された受光素子102の受光面
側を、短波長の光をカットするフィルタ特性を有する染
料を配合させた透明樹脂103で被覆し、さらにその表
面に長波長の光をカットするフィルタ特性を有する染料
を配合させた透明樹脂104で被覆して、特定領域の波
長の光のみを透過させるようにしたものがある。なお、
基板101はケース105内に収納されており、ケース
105の上面には光が受光素子102に入射する開口部
106が形成されている。また受光素子102は基板1
01上の配線パターンにワイヤ107を介して接続され
ている。
As another structure, as shown in FIG. 7, the transparent side in which a dye having a filter characteristic for cutting light of short wavelength is mixed on the light receiving surface side of the light receiving element 102 mounted on the substrate 101. There is a resin which is covered with a resin 103 and further covered with a transparent resin 104 in which a dye having a filter characteristic for cutting long-wavelength light is mixed on the surface of the resin 103 so that only light having a wavelength in a specific region is transmitted. . In addition,
The substrate 101 is housed in a case 105, and an opening 106 through which light enters the light receiving element 102 is formed on the upper surface of the case 105. The light receiving element 102 is the substrate 1
The wiring pattern on 01 is connected via a wire 107.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ガラス
基板の両面に金属酸化物を蒸着した一般の干渉フィルタ
の場合、入射角が変化するとその透過特性が変化し(透
過領域が短波長側に移動)、所望の特定波長領域の光の
透過光量が減少してしまうという欠点がある。そのた
め、従来は光学フィルタを入射角が一定となる平行光路
中に配置する必要があり、結局、光学フィルタは受光レ
ンズの前段に配置することとなり、受光部の形状が大き
くなると共に、光学フィルタを入射角に対して一定の入
射角となるように配置しなければならず、製造コストが
高くなるといった問題がある。
However, in the case of a general interference filter in which a metal oxide is vapor-deposited on both surfaces of a glass substrate, its transmission characteristics change when the incident angle changes (the transmission region moves to the short wavelength side). However, there is a drawback that the amount of transmitted light in a desired specific wavelength region is reduced. Therefore, conventionally, it is necessary to arrange the optical filter in the parallel optical path where the incident angle is constant, and in the end, the optical filter is arranged in the preceding stage of the light receiving lens, and the shape of the light receiving section becomes large and the optical filter is arranged. It must be arranged so that the incident angle is constant with respect to the incident angle, which causes a problem of high manufacturing cost.

【0005】また、図7に示す受光素子の場合は、特に
長波長側の透過率減衰特性が図8に示すように、シャー
プカットな特性が得られないため、発光素子の波長分布
とのマッチングが悪く、十分な耐外乱光特性が得られな
かった。このような受光素子において、シャープカット
な特性を得るためには、透明樹脂104の上にさらにエ
ッジフィルタをコーティングする必要がある。この場
合、透明樹脂104への多層膜のコーティング技術は難
しいため、透過特性の信頼性の面で問題がある。
Further, in the case of the light receiving element shown in FIG. 7, since the transmittance attenuation characteristic on the long wavelength side is not sharp cut as shown in FIG. 8, it is matched with the wavelength distribution of the light emitting element. Was poor, and sufficient ambient light resistance was not obtained. In such a light receiving element, in order to obtain sharp cut characteristics, it is necessary to further coat an edge filter on the transparent resin 104. In this case, the technique of coating the transparent resin 104 with the multilayer film is difficult, and thus there is a problem in terms of reliability of transmission characteristics.

【0006】本発明は上記事情に鑑みてなされたもので
あり、簡単な構成で高耐外乱光特性を得ることができる
受光手段を有し、投光手段からの特定波長領域の光を効
率的に検出することのできる投受光装置を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and has light receiving means capable of obtaining a high disturbance light resistance with a simple structure, and efficiently emits light in a specific wavelength region from the light projecting means. It is an object of the present invention to provide a light emitting and receiving device capable of detecting light.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の本発明は、特定波長領域の光を発
光する発光手段(例えば図2の発光素子5)と、少なく
とも前記特定波長の一部の波長領域の光のみを透過する
光学フィルタを、可視光域から赤外光域までの光域にお
いて分光感度を有する半導体素子7の受光部表面に形成
した受光手段(例えば図2の受光部3)とを備えた投受
光装置1において、前記光学フィルタを、半導体素子7
の受光部表面に直接積層され、所定の波長領域以外の光
を反射する複数種類の金属酸化物薄膜層からなる光学多
層膜干渉フィルタ13で構成したことを特徴とする。
In order to achieve the above object, the present invention according to claim 1 provides a light emitting means for emitting light in a specific wavelength region (for example, the light emitting element 5 in FIG. 2), and at least the above. An optical filter that transmits only light in a partial wavelength region of a specific wavelength is formed on the surface of the light receiving portion of the semiconductor element 7 having a spectral sensitivity in the light region from the visible light region to the infrared light region (for example, as shown in FIG. In the light projecting / receiving device 1 including the two light receiving parts 3), the optical filter is replaced by the semiconductor element 7
The optical multi-layer interference filter 13 is directly laminated on the surface of the light receiving part and is composed of a plurality of types of metal oxide thin film layers that reflect light other than a predetermined wavelength range.

【0008】請求項2に記載の投受光装置は、光学多層
膜干渉フィルタ13は、前記所定の波長領域外の長短い
ずれか一方の波長の光を反射するとともに、他方の波長
の光を吸収する染料を配合させた透明樹脂(例えば図1
の樹脂モールドパッケージ14)で、少なくとも半導体
素子7の受光部表面を被覆したことを特徴とする。
According to a second aspect of the present invention, in the light emitting and receiving device, the optical multilayer interference filter 13 reflects the light of one of the long and short wavelengths outside the predetermined wavelength range and absorbs the light of the other wavelength. A transparent resin containing a dye (see, for example, FIG. 1).
At least the surface of the light receiving portion of the semiconductor element 7 is covered with the resin mold package 14).

【0009】請求項3に記載の投受光装置は、前記光学
フィルタを透過する光を収束させる集光レンズ6を、樹
脂モールドパッケージ14に一体に形成したことを特徴
とする。
According to a third aspect of the present invention, there is provided a light projecting / receiving device in which a condenser lens 6 for converging light passing through the optical filter is formed integrally with the resin mold package 14.

【0010】[0010]

【作用】請求項1に記載の投受光装置においては、シャ
ープな波長カット特性を有し、入射角の差によるカット
オフ波長のシフト量の少ない、複数種類の金属酸化物薄
膜層からなる光学多層膜干渉フィルタ13を半導体素子
7の受光部表面に蒸着することにより、干渉フィルタ1
3のバンドパス特性と発光素子5の発光波長とのマッチ
ングの最適化を図ることができる。
In the light emitting and receiving device according to the first aspect of the present invention, there is provided an optical multi-layer having a sharp wavelength cut characteristic and a plurality of kinds of metal oxide thin film layers having a small shift amount of the cutoff wavelength due to a difference in incident angle. By depositing the film interference filter 13 on the surface of the light receiving portion of the semiconductor element 7, the interference filter 1
It is possible to optimize the matching between the band pass characteristic of No. 3 and the emission wavelength of the light emitting element 5.

【0011】請求項2に記載の投受光装置においては、
干渉フィルタ13で所定の波長領域外の長短いずれか一
方の波長、例えば長波長側の光を反射させ、受光側の半
導体素子7を被覆する樹脂モールドパッケージ14に、
例えば短波長側の光を吸収する染料を配合させるように
したので、染料のフィルタ効果によりバンドパス特性を
補完することができる。この結果、干渉フィルタ13を
構成する金属酸化物薄膜層の製作工程を簡略化すること
ができ、より安価にバンドパス機能付半導体受光素子7
を供給することができる。
According to another aspect of the present invention, there is provided a light projecting / receiving device.
In the resin mold package 14 that covers the semiconductor element 7 on the light receiving side by reflecting the light of one of the long and short wavelengths outside the predetermined wavelength range by the interference filter 13, for example, the long wavelength side,
For example, since a dye that absorbs light on the short wavelength side is mixed, the bandpass characteristic can be complemented by the filter effect of the dye. As a result, the manufacturing process of the metal oxide thin film layer constituting the interference filter 13 can be simplified, and the semiconductor light receiving element 7 with the bandpass function can be manufactured at a lower cost.
Can be supplied.

【0012】請求項3に記載の投受光装置においては、
樹脂モールドパッケージ14に集光レンズ6を一体に形
成したので、簡単で小型の構成で光学フィルタを透過す
る光を半導体受光素子7上に収束させることができる。
In the light projecting / receiving device according to the third aspect,
Since the condenser lens 6 is formed integrally with the resin mold package 14, the light passing through the optical filter can be converged on the semiconductor light receiving element 7 with a simple and small structure.

【0013】[0013]

【実施例】以下、本発明の投受光装置の一実施例を図面
を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the light emitting and receiving device of the present invention will be described below with reference to the drawings.

【0014】図1及び図2に本発明の一実施例の構成を
示す。図2に示すように、本実施例の投受光装置1は、
特定波長領域の光を照射する投光部2と、投光部2から
照射された光を受光する受光部3とから構成されてお
り、投光部2の出射面と受光部3の入射面とが対向する
ように互いに配置されており、投光部2と受光部3の間
を紙面に対して直角の方向に物体4が移動し、投光部2
からの光を透過した光を受光部3で受光することにより
物体4を検出するようになっている。
1 and 2 show the structure of an embodiment of the present invention. As shown in FIG. 2, the light emitting and receiving device 1 of the present embodiment is
The light emitting unit 2 emits light in a specific wavelength range, and the light receiving unit 3 receives the light emitted from the light emitting unit 2. The light emitting unit 2 emits light and the light receiving unit 3 receives light. Are arranged so as to face each other, and the object 4 moves between the light projecting section 2 and the light receiving section 3 in a direction at a right angle to the paper surface.
The object 4 is detected by receiving the light that has transmitted the light from the light receiving unit 3.

【0015】投光部2は、特定波長の光を発光する発光
素子5と、発光素子5からの光を平行光にして投光部3
の出射面前方に投光する投光レンズ8とから構成されて
おり、例えば発光素子5としてのLEDが発光する光
は、図3に示すように、たとえば940nmを中心波長
とした対称な波長領域を有する光である。
The light projecting section 2 collimates the light from the light emitting element 5 which emits light of a specific wavelength and the light from the light emitting element 5 into the light projecting section 3.
The light emitted from the LED as the light emitting element 5 is, for example, as shown in FIG. 3, a symmetric wavelength region with a center wavelength of 940 nm. Is a light having.

【0016】図2に戻り、受光部3は、直接あるいは物
体4を透過した投光部2からの光を入射することによ
り、集光レンズ6により受光素子7の受光面に集光させ
るようになっている。そして、外乱光が集光レンズ6を
介して受光素子7の受光面に集光しないように、受光素
子7の後述する樹脂モールドパッケージのフィルタ特性
と、半導体受光面の金属酸化物薄膜層からなる干渉フィ
ルタによって、特定波長の光のみを受光面に透過させる
光学フィルタが配置されている。
Returning to FIG. 2, the light-receiving unit 3 causes the light from the light-projecting unit 2 which is transmitted directly or through the object 4 to be incident on the light-receiving surface of the light-receiving element 7 by the condenser lens 6. Has become. Then, in order to prevent ambient light from being collected on the light receiving surface of the light receiving element 7 via the condenser lens 6, the filter characteristics of the resin mold package of the light receiving element 7 which will be described later and the metal oxide thin film layer of the semiconductor light receiving surface. The interference filter is provided with an optical filter that transmits only light of a specific wavelength to the light receiving surface.

【0017】図1に受光部3の詳細な構成を示す。金属
リードフレーム11上には受光素子である半導体素子7
がダイボンディングされており、半導体素子7はワイヤ
12を介してワイボンディングされている。また半導体
素子7の受光部表面には金属酸化物多層膜からなる干渉
フィルタ13が直接積層形成されている。さらに半導体
素子7はトランスファーモールドにより樹脂モールドパ
ッケージ14で被覆されている。
FIG. 1 shows a detailed structure of the light receiving section 3. A semiconductor element 7 which is a light receiving element is provided on the metal lead frame 11.
Are die-bonded, and the semiconductor element 7 is wire-bonded via the wire 12. On the surface of the light receiving portion of the semiconductor element 7, the interference filter 13 made of a metal oxide multilayer film is directly laminated. Further, the semiconductor element 7 is covered with a resin mold package 14 by transfer molding.

【0018】樹脂モールドパッケージ14の成形に用い
られる樹脂は透明であり、フィルタ特性を決める染料が
配合されている。例えば所望する光の波長λ1を940
nmとすると、短波長の光をカットするフィルタ特性を
有する樹脂は、例えば住友化学工業株式会社製のOPT
−NIR−840Sのような、840nm近辺以下の波
長の光を吸収する染料を透明樹脂に混入することによっ
て得ることができる。
The resin used for molding the resin mold package 14 is transparent and contains a dye that determines the filter characteristics. For example, if the wavelength λ1 of the desired light is 940
The resin having filter characteristics for cutting light of short wavelength is, for example, OPT manufactured by Sumitomo Chemical Co., Ltd.
It can be obtained by mixing a dye such as -NIR-840S, which absorbs light having a wavelength of around 840 nm or shorter, into a transparent resin.

【0019】一方、所望する光の波長(λ1=940n
m)より長波長の光は干渉フィルタ13を構成する金属
酸化物多層膜によってカットされ、所望のフィルタ特性
が得られる。このようにして所望の波長領域になった光
は、樹脂モールドパッケージ14の入光面に一体に形成
された集光レンズ6により、半導体素子7の受光面に集
光される。
On the other hand, the desired wavelength of light (λ1 = 940n
m) Light having a longer wavelength is cut by the metal oxide multilayer film forming the interference filter 13, and desired filter characteristics are obtained. The light having the desired wavelength region in this manner is condensed on the light receiving surface of the semiconductor element 7 by the condenser lens 6 integrally formed on the light incident surface of the resin mold package 14.

【0020】前記干渉フィルタ13は、干渉膜のみによ
るバンドパスフィルタにより構成されている。そこで干
渉フィルタ13の透過特性は、図4に示すように、集光
レンズ6により集光した光の入射角により変化する。つ
まり、集光レンズ6の中心を透過する光は干渉フィルタ
13に対して入射角0度で入射するが、最外径に入射し
た光の場合は20度の入射角で干渉フィルタ13に入射
するので、入射角0度の波長特性λ0に対して入射角2
0度の波長特性λ1は、Δλ(=λ1−λ0)だけ短波長
側に平行シフトすることになる。
The interference filter 13 is composed of a bandpass filter consisting of only an interference film. Therefore, the transmission characteristic of the interference filter 13 changes depending on the incident angle of the light condensed by the condenser lens 6, as shown in FIG. That is, the light transmitted through the center of the condenser lens 6 is incident on the interference filter 13 at an incident angle of 0 degree, but the light incident on the outermost diameter is incident on the interference filter 13 at an incident angle of 20 degrees. Therefore, the incident angle is 2 with respect to the wavelength characteristic λ0 with the incident angle of 0 degree.
The wavelength characteristic λ1 of 0 degree is parallel-shifted by Δλ (= λ1−λ0) to the short wavelength side.

【0021】このΔλは、図5により次のように算出さ
れる。すなわち、図5(a)に示すように、干渉フィル
タ13を構成する基板13a上に形成された干渉膜13
b全体における等価屈折率をN、干渉膜13bの等価膜
厚をDとすると、等価的な光学膜厚D’は、垂直入射
(入射角0度)の場合、 D’=N・D ……(1) また、図5(b)に示すように、入射角がθの場合、 D’=N・D・cosθ’ ……(2) となる。ただし、θ’=arc sin{(1/N)・sinθ}
である。
This Δλ is calculated as follows from FIG. That is, as shown in FIG. 5A, the interference film 13 formed on the substrate 13 a forming the interference filter 13.
Assuming that the equivalent refractive index in the whole b is N and the equivalent film thickness of the interference film 13b is D, the equivalent optical film thickness D ′ is D ′ = N · D in the case of vertical incidence (incident angle of 0 degree). (1) Further, as shown in FIG. 5B, when the incident angle is θ, D ′ = N · D · cos θ ′ (2) However, θ '= arc sin {(1 / N) · sin θ}
Is.

【0022】(2)式から明らかなように、入射角θが
大きくなると、見かけの光学厚膜は薄くなり、すなわち
短波長側にシフトしたような等価特性となる。そこで、
垂直入射時にある特性を有する波長をλ1とすれば、入
射角θのときλ1と同じ特性値を示す波長λ0は、 λ0=λ1・cosθ’ ……(3) となる。したがって Δλ=λ1−λ0=λ1(1−cosθ’) ……(4) として算出される。
As is clear from the equation (2), when the incident angle θ becomes large, the apparent optical thick film becomes thin, that is, the equivalent characteristic is obtained by shifting to the short wavelength side. Therefore,
Assuming that the wavelength having a certain characteristic at the time of vertical incidence is λ1, the wavelength λ0 having the same characteristic value as λ1 at the incident angle θ is λ0 = λ1 · cosθ ′ (3). Therefore, it is calculated as Δλ = λ1−λ0 = λ1 (1-cosθ ′) (4).

【0023】図4の干渉フィルタ13の透過特性におい
て、透過帯域を広げると、外乱光(白色光)の透過量が
多くなるので、ノイズ成分が増大する。逆に透過帯域を
狭くすると、発光素子5が発光する光(信号光)の透過
量が少なくなる。上述したように、発光素子5の発光特
性は図3に示すような、ピーク波長λp=940(n
m)であるので、図1に示した受光部3の干渉フィルタ
13の90%以上の透過帯域を940±C(nm)(C
は所定の波長幅)とすると、入射角0度の光に対しては
効率よく発光素子5からの光を受光することができる
が、入射角20度の光に対しては、発光素子5の発光ス
ペクトルの長波成分の透過率が低下するので、本実施例
の干渉フィルタ13の透過特性は、以下のようになって
いる。
In the transmission characteristics of the interference filter 13 shown in FIG. 4, when the transmission band is widened, the amount of ambient light (white light) transmitted increases, so that the noise component increases. Conversely, if the transmission band is narrowed, the amount of light (signal light) emitted by the light emitting element 5 is reduced. As described above, the light emission characteristics of the light emitting element 5 have the peak wavelength λp = 940 (n
m), the transmission band of 90% or more of the interference filter 13 of the light receiving unit 3 shown in FIG. 1 is 940 ± C (nm) (C
Is a predetermined wavelength width), the light from the light emitting element 5 can be efficiently received with respect to the light having the incident angle of 0 degree, but the light of the light emitting element 5 can be received with respect to the light having the incident angle of 20 degrees. Since the transmittance of the long wave component of the emission spectrum decreases, the transmission characteristics of the interference filter 13 of this embodiment are as follows.

【0024】すなわち、図4の干渉フィルタ13の0度
入射と20度入射での特性の波長シフト量Δλに対し
て、干渉フィルタ13の90%以上透過帯域を(940
+Δλ/2)±C(nm)としている。言い換えれば、
発光素子5のピーク波長λpに対して、干渉フィルタ1
3の透過帯域の中心波長を、長波長側にΔλ/2ずらし
ている。
That is, 90% or more of the transmission band of the interference filter 13 is set to (940) with respect to the wavelength shift amount Δλ of the characteristics of the interference filter 13 of FIG.
+ Δλ / 2) ± C (nm). In other words,
For the peak wavelength λp of the light emitting element 5, the interference filter 1
The center wavelength of the transmission band of 3 is shifted by Δλ / 2 toward the long wavelength side.

【0025】このように本実施例の投受光装置1によれ
ば、受光部3への外乱光の入射を防ぐと共に、投光部2
からの所定波長領域の光を効率的に検出することができ
る。また、半導体素子7と干渉フィルタ13とを一体に
形成することにより、入射角変化による分光特性のシフ
ト量を最小とし、発光素子5の投光波長とのマッチング
を最適とすることができる。また、樹脂モールドパッケ
ージ14のフィルタ効果により短波長側のバンドパス機
能を持たせることにより、従来の平行光路上に光学フィ
ルタを配置する場合に比べて、装置の超小型化、低コス
ト化を図ることができる。
As described above, according to the light emitting and receiving device 1 of this embodiment, the disturbance light is prevented from entering the light receiving portion 3 and the light emitting portion 2 is also provided.
It is possible to efficiently detect the light in the predetermined wavelength region from. Further, by integrally forming the semiconductor element 7 and the interference filter 13, the shift amount of the spectral characteristic due to the change of the incident angle can be minimized and the matching with the projected wavelength of the light emitting element 5 can be optimized. Further, by providing a bandpass function on the short wavelength side by the filter effect of the resin mold package 14, the device can be made extremely compact and the cost can be reduced as compared with the case where the optical filter is arranged on the conventional parallel optical path. be able to.

【0026】なお、発光素子5の発光する光の発光スペ
クトルは、ピーク波長を中心に対称なスペクトルとした
が、これに限らず、非対称な発光スペクトルでも良い。
この場合、短波長側の発光光量と長波長側の発光光量が
等しくなるように設定される重心波長λGを上記の実施
例における発光素子5のピーク波長λpの代わりとする
ことにより、同等の効果を得ることができる。
Although the light emission spectrum of the light emitted from the light emitting element 5 is symmetrical with respect to the peak wavelength, it is not limited to this and may be an asymmetric light emission spectrum.
In this case, the same effect can be obtained by substituting the peak wavelength λp of the light emitting element 5 in the above embodiment for the center-of-gravity wavelength λG set so that the emitted light amount on the short wavelength side and the emitted light amount on the long wavelength side are equal. Can be obtained.

【0027】また、干渉フィルタ13の一例の構成とし
ては、SiO2、TiO2の2種類の金属酸化物の材料を
交互に20層に、半導体素子7の受光部に直接積層した
ものがある。
Further, as an example of the structure of the interference filter 13, there is a structure in which two layers of metal oxide materials of SiO 2 and TiO 2 are alternately laminated in 20 layers directly on the light receiving portion of the semiconductor element 7.

【0028】また、本実施例においては図2に示すよう
な透過型の投受光装置の例を用いて説明したが、これに
限らず、図6に示すように投光部2と受光部3を一体に
構成した投受光装置21でも良く、この場合、発光素子
5からの光を投光レンズ8により平行光として物体4に
照射し、物体4からの反射光を集光レンズ6により集光
させ、色樹脂フィルタとしての作用を有するパッケージ
14及び干渉フィルタ13を介して半導体素子7により
検出する。
Further, although the present embodiment has been described by using the example of the transmission type light emitting / receiving device as shown in FIG. 2, the present invention is not limited to this, and as shown in FIG. May be integrally formed. In this case, the light from the light emitting element 5 is irradiated onto the object 4 as parallel light by the light projecting lens 8, and the reflected light from the object 4 is condensed by the condensing lens 6. Then, it is detected by the semiconductor element 7 via the package 14 and the interference filter 13 which have the function of a color resin filter.

【0029】[0029]

【発明の効果】以上説明したように請求項1に記載の投
受光装置によれば、半導体素子7の受光部表面に金属酸
化物薄膜層からなる光学多層膜干渉フィルタを直接積層
したので、干渉フィルタのバンドパス特性と発光手段の
発光波長とのマッチングの最適化を図ることができ、安
定したバンドパス特性を得ることができる。
As described above, according to the light emitting and receiving device of the first aspect, since the optical multilayer interference filter made of the metal oxide thin film layer is directly laminated on the surface of the light receiving portion of the semiconductor element 7, the interference occurs. The matching between the bandpass characteristic of the filter and the emission wavelength of the light emitting means can be optimized, and stable bandpass characteristic can be obtained.

【0030】請求項2に記載の投受光装置によれば、受
光部の半導体素子を被覆する透明樹脂の中に、所望する
波長以外の波長の光を吸収する染料を混合したので、干
渉フィルタのバンドパス特性を補完し、安価な受光部に
より高耐外乱光特性を得ることができる。
According to the light emitting and receiving device of the second aspect, since the dye that absorbs light having a wavelength other than the desired wavelength is mixed in the transparent resin that covers the semiconductor element of the light receiving portion, It is possible to supplement the bandpass characteristic and obtain a high resistance to ambient light with an inexpensive light receiving section.

【0031】請求項3に記載の投受光装置によれば、受
光部の半導体素子を被覆する透明樹脂に集光レンズを一
体に形成したので、簡単で小型の構成で光学フィルタを
透過する光を半導体素子上に収束させることができる。
According to the light emitting and receiving device of the third aspect, since the condenser lens is integrally formed with the transparent resin which covers the semiconductor element of the light receiving portion, the light transmitted through the optical filter is simple and small in size. It can be focused on a semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の投受光装置の一実施例の受光部の構成
を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a configuration of a light receiving portion of an embodiment of a light emitting and receiving device of the present invention.

【図2】図1の受光部を有する投受光装置の一実施例の
構成を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the configuration of an embodiment of a light projecting / receiving device having the light receiving section of FIG.

【図3】図2の発光素子が照射する光の発光強度特性を
示す線図である。
FIG. 3 is a diagram showing a light emission intensity characteristic of light emitted by the light emitting element of FIG.

【図4】図1の受光部の光学フィルタの透過率と入射角
の関係を示す線図である。
FIG. 4 is a diagram showing the relationship between the transmittance and the incident angle of the optical filter of the light receiving section of FIG.

【図5】図1の受光部の半導体素子への光の入射角を示
す説明図である。
5 is an explanatory diagram showing an incident angle of light on a semiconductor element of the light receiving section of FIG. 1. FIG.

【図6】本発明の投受光装置の他の実施例の構成を示す
縦断面図である。
FIG. 6 is a vertical cross-sectional view showing the configuration of another embodiment of the light emitting and receiving device of the present invention.

【図7】従来の投受光装置の受光部の一例の構成を示す
構成図である。
FIG. 7 is a configuration diagram showing a configuration of an example of a light receiving section of a conventional light projecting and receiving device.

【図8】図7の受光部のフィルタの透過特性を示す線図
である。
8 is a diagram showing a transmission characteristic of a filter of the light receiving section of FIG. 7. FIG.

【符号の説明】[Explanation of symbols]

1 投受光装置 2 投光部 3 受光部 5 発光素子(発光手段) 6 集光レンズ 7 半導体素子(受光素子) 13 干渉フィルタ 14 樹脂モールドパッケージ(透明樹脂) DESCRIPTION OF SYMBOLS 1 Light emitting / receiving device 2 Light emitting section 3 Light receiving section 5 Light emitting element (light emitting means) 6 Condensing lens 7 Semiconductor element (light receiving element) 13 Interference filter 14 Resin mold package (transparent resin)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 特定波長領域の光を発光する発光手段
と、 少なくとも前記特定波長の一部の波長領域の光のみを透
過する光学フィルタを、可視光域から赤外光域までの光
域において分光感度を有する半導体素子の受光部表面に
形成した受光手段とを備えた投受光装置において、 前記光学フィルタを、前記半導体素子の受光部表面に直
接積層され、所定の波長領域以外の光を反射する複数種
類の金属酸化物薄膜層からなる光学多層膜干渉フィルタ
で構成したことを特徴とする投受光装置。
1. A light emitting means for emitting light in a specific wavelength range, and an optical filter for transmitting only light in at least a part of the specific wavelength range in a light range from a visible light range to an infrared light range. A light projecting / receiving device comprising a light receiving means formed on a light receiving portion surface of a semiconductor element having a spectral sensitivity, wherein the optical filter is directly laminated on the light receiving portion surface of the semiconductor element and reflects light other than a predetermined wavelength region. An optical multi-layer interference filter composed of a plurality of types of metal oxide thin film layers.
【請求項2】 前記光学多層膜干渉フィルタは、前記所
定の波長領域外の長短いずれか一方の波長の光を反射す
るとともに、他方の波長の光を吸収する染料を配合させ
た透明樹脂で、少なくとも前記半導体素子の受光部表面
を被覆したことを特徴とする請求項1に記載の投受光装
置。
2. The optical multilayer interference filter is a transparent resin containing a dye that reflects light of one of the long and short wavelengths outside the predetermined wavelength range and absorbs light of the other wavelength, The light emitting and receiving device according to claim 1, wherein at least the light receiving surface of the semiconductor element is covered.
【請求項3】 前記光学フィルタを透過する光を収束さ
せる集光レンズを、前記透明樹脂に一体に形成したこと
を特徴とする請求項2に記載の投受光装置。
3. The light projecting / receiving device according to claim 2, wherein a condensing lens for converging light passing through the optical filter is integrally formed with the transparent resin.
JP20164694A 1993-09-21 1994-08-26 Light projecting and receiving device Withdrawn JPH07140324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20164694A JPH07140324A (en) 1993-09-21 1994-08-26 Light projecting and receiving device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23448193 1993-09-21
JP5-234481 1993-09-21
JP20164694A JPH07140324A (en) 1993-09-21 1994-08-26 Light projecting and receiving device

Publications (1)

Publication Number Publication Date
JPH07140324A true JPH07140324A (en) 1995-06-02

Family

ID=26512909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20164694A Withdrawn JPH07140324A (en) 1993-09-21 1994-08-26 Light projecting and receiving device

Country Status (1)

Country Link
JP (1) JPH07140324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332018B1 (en) * 1999-06-19 2002-04-10 박원희 Image sensing module
JP2014167974A (en) * 2013-02-28 2014-09-11 Toyoda Gosei Co Ltd Screening method of fluorescent materials and light-emitting apparatus
JP2019039801A (en) * 2017-08-25 2019-03-14 日本電産コパル株式会社 Object detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332018B1 (en) * 1999-06-19 2002-04-10 박원희 Image sensing module
JP2014167974A (en) * 2013-02-28 2014-09-11 Toyoda Gosei Co Ltd Screening method of fluorescent materials and light-emitting apparatus
JP2019039801A (en) * 2017-08-25 2019-03-14 日本電産コパル株式会社 Object detector

Similar Documents

Publication Publication Date Title
KR100219016B1 (en) Optical device with splitting or composition of light with plural wavelength
JP4785033B2 (en) Optical water drop sensor
CN112525823A (en) Optical sensing module
JPH06338630A (en) Semiconductor light-emitting element, and optical detector, optical information processor, optical coupler and light-emitting device using the light-emitting element
JPH03203715A (en) Multi-wavelength beam splitter device
US7405873B2 (en) UV-bandpass filter and application to UV-detecting apparatus or light-emitting apparatus
CA1277406C (en) Semiconductor laser apparatus for optical head
JPH06229829A (en) Photoreceptor element array
JP2004257885A (en) Multi-element type infrared detector
JP6836428B2 (en) Spectral filter and spectrophotometer
JPH07140324A (en) Light projecting and receiving device
TWI796413B (en) Angle of incidence restriction for optical filters
JPH0415630B2 (en)
JPH06273232A (en) Light intercepting optical system for colorimeter
JPH0829542A (en) Optical apparatus and light receiving method
JP3716118B2 (en) Optical module
WO2004076997A1 (en) Spectroscope
JPH05241017A (en) Optical interference multilayered film having yellow filter function
CN110109128B (en) Infrared emission and detection integrated chip
US4864345A (en) Distance measuring and light measuring optical system
JP7265370B2 (en) line lighting source
US12066329B2 (en) Sensor array spectrometer
JPH04359858A (en) Surface light source device
JP6856295B1 (en) Semiconductor light receiving element
JPH06310750A (en) Monochrome sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106