JPH04359858A - Surface light source device - Google Patents

Surface light source device

Info

Publication number
JPH04359858A
JPH04359858A JP13625291A JP13625291A JPH04359858A JP H04359858 A JPH04359858 A JP H04359858A JP 13625291 A JP13625291 A JP 13625291A JP 13625291 A JP13625291 A JP 13625291A JP H04359858 A JPH04359858 A JP H04359858A
Authority
JP
Japan
Prior art keywords
light
fluorescent tube
green
red
interference film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13625291A
Other languages
Japanese (ja)
Inventor
Toshihiro Yamaguchi
山口 俊博
Nobuaki Kabuto
展明 甲
Hiroshi Jitsukata
寛 實方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13625291A priority Critical patent/JPH04359858A/en
Publication of JPH04359858A publication Critical patent/JPH04359858A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the light utilization efficiency and increase the brightness by locating the opening in a fluorescent tube and the light incident surface of a light guide part so that they face each other, and forming an interferential film consisting of different types of optical films with differing refractive index on the inner surface or outer surface of the fluorescent tube opening. CONSTITUTION:An interferential film 103 is formed on the inner surface of a glass body 104 at the opening in a fluorescent tube 101. This film 103 shall consist of a laminate of a blue, green, and red interferential film element 10-12. The outgoing beam of light 102 emitted through the interferential film 103 is cast onto a light guide part 2, and the outgoing beam of light 3 therefrom is cast onto a transmission type display panel.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、主に透過形表示装置に
係り、特に、その高輝度化に好適な面光源装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates primarily to transmissive display devices, and particularly to a surface light source device suitable for increasing brightness.

【0002】0002

【従来の技術】特開昭61−185781号公報に記載
されている従来の面光源装置の構造を図16に示す。図
16は、透過型表示パネル1、導光部2、透過型表示パ
ネル1の背面に照射される光線3、透過型表示パネル1
の観視方向4、発光体としてのアパーチャ型蛍光管20
1、蛍光管201から導光部2の入射面に入射される光
線202を示す。この従来例は、発光体としてのアパー
チャ型蛍光管201の開口部を導光部2の光入射面が対
面するように配置し、蛍光管201からの出射光を集光
して光入射面に入射させ、その入射光を該導光部内部で
反射、拡散させ、照射面で均一な面光を得る面光源装置
である。
2. Description of the Related Art FIG. 16 shows the structure of a conventional surface light source device disclosed in Japanese Unexamined Patent Publication No. 185781/1981. FIG. 16 shows the transmissive display panel 1, the light guide section 2, the light beam 3 irradiated to the back surface of the transmissive display panel 1, and the transmissive display panel 1.
viewing direction 4, aperture type fluorescent tube 20 as a light emitter
1. A light ray 202 entering the incident surface of the light guide section 2 from the fluorescent tube 201 is shown. In this conventional example, the opening of an aperture-type fluorescent tube 201 serving as a light emitter is arranged so that the light incident surface of the light guide section 2 faces each other, and the light emitted from the fluorescent tube 201 is condensed onto the light incident surface. This is a surface light source device in which the incident light is reflected and diffused inside the light guide section to obtain uniform surface light on the irradiation surface.

【0003】図17は、アパーチャ型蛍光管201の断
面図と開口部からの出射光の強度分布を示したものであ
る。  図17は、反射膜203、アパーチャ型蛍光管
201のガラス体204、蛍光膜205、蛍光管内部の
励起紫外線206、開口角θ0、導光部2の光入射面2
09、光入射面209に入射される光線202、光入射
面209に入射されない光線207,208、開口部か
らの出射光の強度分布破線210を示す。通常の蛍光管
は、全周から光を出射するのに対し、アパーチャ型蛍光
管は、開口角θ0の開口部からのみ光を出射させ、光を
ある位置方向に集中させて出射させるようにした蛍光管
である。アパーチャ型蛍光管201は、蛍光管201内
部の開口部以外の部分のガラス体204内面に反射膜2
03を介し、蛍光膜205を塗布している。そのため、
蛍光管201内部の励起紫外線206が蛍光膜205と
衝突することにより発光する光束は、反射膜203によ
り、蛍光管外には出射されず、蛍光管内部に反射され、
数度、反射をくり返しながら、反射膜、蛍光膜が塗布さ
れていない開口部に集中され、蛍光管外部に出射される
FIG. 17 shows a cross-sectional view of the aperture type fluorescent tube 201 and the intensity distribution of light emitted from the aperture. FIG. 17 shows the reflective film 203, the glass body 204 of the aperture type fluorescent tube 201, the fluorescent film 205, the excitation ultraviolet light 206 inside the fluorescent tube, the aperture angle θ0, and the light incident surface 2 of the light guide section 2.
09 shows a light ray 202 that enters the light entrance surface 209, light rays 207 and 208 that do not enter the light entrance surface 209, and a broken line 210 that shows the intensity distribution of light emitted from the opening. While normal fluorescent tubes emit light from all around, aperture type fluorescent tubes emit light only from the opening with an aperture angle of θ0, concentrating the light in a certain position direction and emitting it. It's a fluorescent tube. The aperture type fluorescent tube 201 has a reflective film 2 on the inner surface of the glass body 204 in a portion other than the opening inside the fluorescent tube 201.
03, a fluorescent film 205 is applied. Therefore,
The luminous flux emitted when the excitation ultraviolet light 206 inside the fluorescent tube 201 collides with the fluorescent film 205 is not emitted outside the fluorescent tube by the reflective film 203, but is reflected inside the fluorescent tube.
After being reflected several times, the light is concentrated at the opening where neither the reflective film nor the fluorescent film is coated, and is emitted to the outside of the fluorescent tube.

【0004】しかし、開口部より出射される光は、実際
、強度分布210のように広がっている。そのため、光
線207,208のような光入射面209に入射されな
い光が多く、発光体から出射される光の利用効率が低い
However, the light emitted from the aperture actually spreads out like an intensity distribution 210. Therefore, much light, such as light rays 207 and 208, does not enter the light incident surface 209, and the efficiency of using light emitted from the light emitter is low.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、発光
体としてのアパーチャ型蛍光管の開口部から出射される
光の強度分布を考慮しておらず、光の利用効率が低く、
高輝度化を図ることが困難であった。
[Problems to be Solved by the Invention] The above-mentioned prior art does not take into account the intensity distribution of light emitted from the opening of the aperture-type fluorescent tube as a light emitter, and the efficiency of light utilization is low.
It was difficult to achieve high brightness.

【0006】本発明の目的は、発光体からの光の利用効
率を向上させ、高輝度化を図ることにある。
[0006] An object of the present invention is to improve the efficiency of using light from a light emitter and to achieve high brightness.

【0007】[0007]

【課題を解決するための手段】上記目的は、アパーチャ
型蛍光管の開口部と導光部の光入射面に対面するように
配置し、蛍光管の開口部の内面又は外面に、互いに屈折
率の異なる二種類以上の光学薄膜を交互に複数層積層し
た多層膜構造の干渉膜を形成することにより達成される
[Means for Solving the Problems] The above object is to arrange the opening of an aperture type fluorescent tube to face the light incident surface of the light guiding section, and to set the refractive index of each other on the inner or outer surface of the opening of the fluorescent tube. This is achieved by forming an interference film with a multilayer structure in which two or more types of optical thin films with different values are alternately laminated.

【0008】[0008]

【作用】本発明に用いる干渉膜の分光透過率は、光線の
入射角度(干渉膜表面の法線方向に対する光線の角度)
に依存する特性がある。例えば、干渉膜に直角に入射し
た光線の透過率は高く、ほとんど反射されずに透過する
。しかし、干渉膜の法線方向に対し大きな角度を持って
入射した光の透過率は低くなり、逆に、反射率が大きく
なる。このため、本発明のアパーチャ型蛍光管の干渉膜
を形成した開口部で、蛍光管内部からの光の中で入射角
度が大きな光線は、干渉膜により反射され蛍光管内部に
戻される。蛍光管内部に戻った光線は、蛍光管内の反射
膜により数度反射を繰返し、光線は、再び、開口部の干
渉膜に入射する。干渉膜での光線の反射は、干渉膜への
入射角度が小さくなり、光線が干渉膜を透過するまで繰
り返される。この結果、干渉膜を形成した開口部から出
射される光線は、開口部表面の法線方向に強い指向性の
光強度分布を持ち、開口部に対面するように配置した導
光部の光入射面に効率良く入射される。よって、発光体
の光の利用効率が向上し、高輝度な面光源装置を実現す
ることが出来る。
[Operation] The spectral transmittance of the interference film used in the present invention is the incident angle of the light ray (the angle of the light ray with respect to the normal direction of the surface of the interference film).
There are characteristics that depend on . For example, the transmittance of light rays incident at right angles to the interference film is high, and is transmitted through the interference film with almost no reflection. However, the transmittance of light incident at a large angle with respect to the normal direction of the interference film decreases, and conversely, the reflectance increases. Therefore, at the aperture of the aperture-type fluorescent tube of the present invention in which the interference film is formed, light rays that have a large incident angle among the light from inside the fluorescent tube are reflected by the interference film and returned to the inside of the fluorescent tube. The light beam that has returned to the inside of the fluorescent tube is reflected several times by the reflective film inside the fluorescent tube, and the light beam is again incident on the interference film at the opening. The reflection of the light beam on the interference film is repeated until the angle of incidence on the interference film becomes small and the light beam passes through the interference film. As a result, the light rays emitted from the aperture formed with the interference film have a strongly directional light intensity distribution in the normal direction of the aperture surface, and the light enters the light guide placed facing the aperture. The light is efficiently incident on the surface. Therefore, the efficiency of using light from the light emitter is improved, and a high-brightness surface light source device can be realized.

【0009】[0009]

【実施例】以下、本発明の実施例を図1により説明する
。図1は、本発明の第一の実施例の断面図である。図1
は、透過型表示パネル、均一な面光を得るという機能を
持つ導光部2、パネル1の背面に照射される光線3、パ
ネル1の観視方向4、本発明のアパーチャ型蛍光管10
1、蛍光管101から導光部2の入射面に入射される光
線102、蛍光管101の開口部内面に形成した干渉膜
103を示す。図2は、第一の実施例におけるアパーチ
ャ型蛍光管の断面図を示す。  図2は、ガラス体10
4、開口部以外のガラス体104の内面に塗布された反
射膜105と蛍光膜106、励起紫外線107、開口角
θ1を示す。
[Embodiment] An embodiment of the present invention will be explained below with reference to FIG. FIG. 1 is a sectional view of a first embodiment of the invention. Figure 1
These are a transmissive display panel, a light guide section 2 having a function of obtaining uniform surface light, a light beam 3 irradiated to the back surface of the panel 1, a viewing direction 4 of the panel 1, and an aperture type fluorescent tube 10 of the present invention.
1. A light ray 102 entering the incident surface of the light guide section 2 from the fluorescent tube 101 and an interference film 103 formed on the inner surface of the opening of the fluorescent tube 101 are shown. FIG. 2 shows a cross-sectional view of the aperture type fluorescent tube in the first embodiment. FIG. 2 shows the glass body 10
4. The reflective film 105 and fluorescent film 106 coated on the inner surface of the glass body 104 other than the opening, the excitation ultraviolet ray 107, and the aperture angle θ1 are shown.

【0010】第一の実施例は、アパーチャ型蛍光管の開
口部と導光部の光入射面に対面するように配置し、蛍光
管の開口部の内面又は外面に、互いに屈折率の異なる複
数種の光学薄膜を交互に複数層積層した多層膜構造の干
渉膜を形成し、開口部から出射される光線の強度分布を
、開口部表面の法線方向に強い指向性のものとし、蛍光
管の出射光を、導光部の光入射面に効率良く入射される
ようにしたものである。
In the first embodiment, the opening of an aperture type fluorescent tube is arranged so as to face the light incident surface of the light guiding section, and a plurality of tubes having different refractive indexes are arranged on the inner or outer surface of the opening of the fluorescent tube. A multilayer interference film is formed by alternately laminating multiple optical thin films, and the intensity distribution of the light emitted from the aperture is strongly directional in the normal direction of the aperture surface. The emitted light is made to efficiently enter the light incident surface of the light guide section.

【0011】図3は、干渉膜の分光透過率特性5と蛍光
管の発光スペクトル分布6を示したものである。図1、
図2のアパーチャ型蛍光管101は、青色(435nm
)、緑色(540nm)、赤色(610nm)にそれぞ
れ発光のピークをもつ三波長タイプと呼ばれるものであ
る。干渉膜の分光透過率特性5は、SPF(Short
 Pass Filter)型のものの測定例で、波長
の短い光を透過し、波長の長い光を反射する特性を示す
。干渉膜の代表的な構成は、屈折率が低い物質と屈折率
が高い物質の光学薄膜を交互に積層した多層膜構造であ
る。
FIG. 3 shows the spectral transmittance characteristic 5 of the interference film and the emission spectrum distribution 6 of the fluorescent tube. Figure 1,
The aperture type fluorescent tube 101 in FIG.
), green (540 nm), and red (610 nm). The spectral transmittance characteristic 5 of the interference film is SPF (Short
This is a measurement example of a Pass Filter type filter, which exhibits the characteristic of transmitting light with short wavelengths and reflecting light with long wavelengths. A typical structure of an interference film is a multilayer film structure in which optical thin films of materials with a low refractive index and materials with a high refractive index are alternately laminated.

【0012】図4(a)は、SPF型の干渉膜7の構造
図、(b)は、干渉膜7の各層の特性値を示したもので
ある。ガラス基板8の上に屈折率の低い物質L(例えば
、二酸化けい素  Sio2;屈折率nL≒1.46)
と屈折率の高い物質H(例えば、二酸化チタン  Ti
O2;nH≒2.4)を交互に合計11層積層したもの
である。ここで、最外層(すなわち、層No.1,層N
o.11)を除く各層の光学的な膜厚n.d(nは該当
する層の屈折率、dは該当する層の膜厚)の面方向の平
均値を0.25・p・λR(λRは赤色の発光ピ−ク波
長、pは1.1〜1.4の間の数)に設定する。
FIG. 4(a) is a structural diagram of the SPF type interference film 7, and FIG. 4(b) shows the characteristic values of each layer of the interference film 7. A substance L with a low refractive index (for example, silicon dioxide Sio2; refractive index nL≒1.46) is placed on the glass substrate 8.
and a substance H with a high refractive index (for example, titanium dioxide Ti
A total of 11 layers of O2; nH≈2.4) were alternately laminated. Here, the outermost layer (i.e. layer No. 1, layer N
o. Optical film thickness of each layer except 11) n. The average value in the plane direction of d (n is the refractive index of the relevant layer, d is the film thickness of the relevant layer) is 0.25・p・λR (λR is the red emission peak wavelength, p is 1.1 -1.4).

【0013】図4に示した干渉膜は、λR=611nm
、p=1.2であり、その構造は (L/2・H・L/2)5=(L/2・H・L/2)(
L/2・H・L/2)(L/2・H・L/2)(L/2
・H・L/2)(L/2・H・L/2)=(L/2・H
・L・H・L・H・L・H・L・H・L/2)の例を示
したものである。
The interference film shown in FIG. 4 has a wavelength of λR=611 nm.
, p=1.2, and its structure is (L/2・H・L/2)5=(L/2・H・L/2)(
L/2・H・L/2) (L/2・H・L/2) (L/2
・H・L/2) (L/2・H・L/2)=(L/2・H
・L・H・L・H・L・H・L・H・L/2).

【0014】図5は、図4における干渉膜7の入射角度
依存性、即ち干渉膜7に入射する光線の入射角度θの変
化に対する分光透過率の変化を示したものである。又、
図6は、図1,2における蛍光管101の赤色のピーク
波長(λR=610nm)における光線の入射角度θと
透過率Tの関係を示したもので、この干渉膜は光線の入
射角θが0〜30度の範囲では透過率Tが高く、θが4
0度以上になると透過率が低下し、逆に反射率(1−T
)が高くなる特性を示す。
FIG. 5 shows the incident angle dependence of the interference film 7 in FIG. 4, that is, the change in spectral transmittance with respect to the change in the incident angle θ of the light beam incident on the interference film 7. or,
FIG. 6 shows the relationship between the incident angle θ of the light beam and the transmittance T at the red peak wavelength (λR=610 nm) of the fluorescent tube 101 in FIGS. 1 and 2. In the range of 0 to 30 degrees, the transmittance T is high and θ is 4
When the temperature exceeds 0 degrees, the transmittance decreases, and conversely the reflectance (1-T
) shows the characteristic of increasing.

【0015】図7は、干渉膜表面における光の入,反射
を示すモデル図である。図1,2に示すように、干渉膜
7を蛍光管101の開口部ガラス体104内面に形成す
ると、図7に示すように、干渉膜7への入射角度θが小
さい(θ<30度)  光線150は干渉膜7を透過し
て、前方に出てくる。しかし、入射角度θが大きい  
(θ>40度)光線151は、干渉膜7により反射され
蛍光管内部に戻される。光線151は、図2に示す反射
膜105により、蛍光管内で数度、反射を繰返した後、
再び、干渉膜7に入射する。干渉膜7表面での光線15
1の反射は、光線151の干渉膜7への入射角度が小さ
くなり、干渉膜7を透過するまで繰り返される。
FIG. 7 is a model diagram showing the incidence and reflection of light on the surface of the interference film. As shown in FIGS. 1 and 2, when the interference film 7 is formed on the inner surface of the opening glass body 104 of the fluorescent tube 101, the incident angle θ to the interference film 7 is small (θ<30 degrees) as shown in FIG. The light beam 150 passes through the interference film 7 and emerges forward. However, the incident angle θ is large
(θ>40 degrees) The light ray 151 is reflected by the interference film 7 and returned to the inside of the fluorescent tube. After the light ray 151 is reflected several times within the fluorescent tube by the reflective film 105 shown in FIG.
The light enters the interference film 7 again. Ray 15 on the surface of interference film 7
The reflection of light 151 is repeated until the angle of incidence of the light ray 151 on the interference film 7 becomes small and the light ray 151 passes through the interference film 7.

【0016】図8(a)は、図16,17に示す干渉膜
がない従来のアパーチャ型蛍光管の開口部表面の一点に
ついての、出射光の強度分布8、図8(b)は、図1,
2に示す干渉膜を形成した本発明のアパーチャ型蛍光管
についての、出射光の強度分布9を示す。図8(a)の
光強度分布8は、ランベルト分布(コサイン分布)であ
るが、図8(b)の光強度分布9は、角度αが小さい部
分の強度が増大した指向性をもつ分布となり、観測角α
が小さい領域では光強度が増大したものとなる。
FIG. 8(a) shows the intensity distribution 8 of the emitted light at a point on the opening surface of a conventional aperture-type fluorescent tube without an interference film as shown in FIGS. 16 and 17, and FIG. 8(b) shows the 1,
2 shows an intensity distribution 9 of emitted light for the aperture-type fluorescent tube of the present invention in which the interference film shown in FIG. 2 is formed. The light intensity distribution 8 in FIG. 8(a) is a Lambertian distribution (cosine distribution), but the light intensity distribution 9 in FIG. 8(b) is a directional distribution in which the intensity increases in the portion where the angle α is small. , observation angle α
The light intensity increases in a region where is small.

【0017】図9は、本発明の面光源装置の光源部断面
図と、開口部全面からの出射光の強度分布図を示したも
のである。図9は、干渉膜103をアパーチャ型蛍光管
101の開口部内面に形成したときの出射光の強度分布
16、図16,17に示す従来の蛍光管の強度分布21
0を示す。干渉膜103を形成することにより、光の強
度分布16は、開口部表面の法線方向に強い指向性を持
ち、出射光102は導光部2の光入射面108に効率良
く入射され、発光体の光の利用率が向上し、高輝度な面
光源装置を実現することが出来る。
FIG. 9 shows a sectional view of the light source portion of the surface light source device of the present invention and an intensity distribution diagram of the light emitted from the entire surface of the opening. FIG. 9 shows the intensity distribution 16 of the emitted light when the interference film 103 is formed on the inner surface of the opening of the aperture type fluorescent tube 101, and the intensity distribution 21 of the conventional fluorescent tube shown in FIGS. 16 and 17.
Indicates 0. By forming the interference film 103, the light intensity distribution 16 has strong directivity in the normal direction of the aperture surface, and the emitted light 102 is efficiently incident on the light incidence surface 108 of the light guide section 2, causing light emission. The utilization rate of body light is improved, and a high-brightness surface light source device can be realized.

【0018】しかし、蛍光管の開口部内面に形成する図
1,2中の干渉膜103が、例えば、図3に示す赤外光
を反射し、その他の波長域の光を透過する分光透過率特
性をもつ膜だけであれば、蛍光管からの出射光は、赤色
成分だけが干渉膜の影響を受け、赤色成分が増加し、赤
味を帯びてしまう。そこで、三波長(青、緑、赤)の光
に対応させるためには、青、緑、赤色用の各々異なった
分光透過率特性を持つ干渉膜を積層して形成する必要が
ある。
However, the interference film 103 in FIGS. 1 and 2 formed on the inner surface of the opening of the fluorescent tube has a spectral transmittance that reflects infrared light as shown in FIG. 3 and transmits light in other wavelength ranges. If only a film with special characteristics were used, only the red component of the light emitted from the fluorescent tube would be affected by the interference film, and the red component would increase, making it reddish. Therefore, in order to accommodate light of three wavelengths (blue, green, and red), it is necessary to stack and form interference films each having different spectral transmittance characteristics for blue, green, and red.

【0019】図10は、第一の実施例における蛍光管の
開口部内面に形成した干渉膜の拡大断面図で、蛍光管内
部からの三波長の光250、青、緑、赤色用の干渉膜1
0,11,12を示す。
FIG. 10 is an enlarged sectional view of the interference film formed on the inner surface of the opening of the fluorescent tube in the first embodiment. 1
Shows 0, 11, 12.

【0020】図11は、第一の実施例における蛍光管の
発光スペクトル分布と、青、緑、赤色用の干渉膜の分光
透過率特性図で、青、緑、赤色用の干渉膜10,11,
12の分光透過率特性13,14,15、蛍光管の発光
スペクトル分布6を示す。図11において、青色用の干
渉膜10は、青色と緑色の間の波長域の光を反射し、そ
の他の波長域の光を透過する分光透過率特性13をもち
、緑色用の干渉膜11は、緑色と赤色の間の波長域の光
を反射し、その他の波長域の光を透過する分光透過率特
性14をもち、赤色用の干渉膜12は、赤外光を反射し
、その他の波長域の光を透過する分光透過率特性15を
もっている。図1,2中の干渉膜103を、図11に示
すようにそれぞれ分光透過率特性が異なる干渉膜10,
11,12を積層したものとすることにより、三波長の
光をそれぞれ独立して制御することが出きるので、蛍光
管からの出射光は、色付きがなく、本発明の効果を得る
ことが出来る。
FIG. 11 shows the emission spectrum distribution of the fluorescent tube and the spectral transmittance characteristics of the interference films for blue, green, and red in the first embodiment. ,
The spectral transmittance characteristics 13, 14, and 15 of No. 12 and the emission spectrum distribution 6 of the fluorescent tube are shown. In FIG. 11, the interference film 10 for blue has a spectral transmittance characteristic 13 of reflecting light in a wavelength range between blue and green and transmitting light in other wavelength ranges, and the interference film 11 for green has , has a spectral transmittance characteristic 14 that reflects light in a wavelength range between green and red and transmits light in other wavelength ranges, and the interference film 12 for red color reflects infrared light and transmits light in other wavelength ranges. It has a spectral transmittance characteristic 15 that transmits light within a range. The interference films 103 in FIGS. 1 and 2 are replaced with interference films 10 and 10 having different spectral transmittance characteristics, respectively, as shown in FIG.
By laminating 11 and 12, the three wavelengths of light can be controlled independently, so the light emitted from the fluorescent tube is not colored, and the effects of the present invention can be obtained. .

【0021】図12は、第一の実施例に用いるアパーチ
ャ型蛍光管の他の構成例を示す蛍光管断面図を示したも
のである。図12に示すように、干渉膜103をアパー
チャ型蛍光管101の開口部外面に形成しても、本発明
の実施には何の不都合もない。
FIG. 12 is a sectional view of a fluorescent tube showing another example of the structure of the aperture type fluorescent tube used in the first embodiment. As shown in FIG. 12, even if the interference film 103 is formed on the outer surface of the opening of the aperture type fluorescent tube 101, there is no problem in implementing the present invention.

【0022】図13は、第二の実施例における蛍光管の
開口部内面に形成した干渉膜の拡大断面図で、赤色用の
干渉膜12、赤色光の発光スペクトルのピーク値が小さ
い蛍光管内部からの光251を示す。また、図14は、
第二の実施例に用いる蛍光管の発光スペクトル分布と干
渉膜の分光透過率特性図で、赤外光を反射し、その他の
波長域の光を透過する赤色用の干渉膜12の分光透過率
特性18、青と緑色の発光スペクトルが、赤色の発光ス
ペクトルより大きい発光スペクトル分布17を示したも
のである。
FIG. 13 is an enlarged sectional view of the interference film formed on the inner surface of the opening of the fluorescent tube in the second embodiment. 251 is shown. In addition, FIG.
The emission spectrum distribution of the fluorescent tube used in the second embodiment and the spectral transmittance characteristic diagram of the interference film show the spectral transmittance of the interference film 12 for red color that reflects infrared light and transmits light in other wavelength ranges. Characteristic 18 shows an emission spectrum distribution 17 in which the blue and green emission spectra are larger than the red emission spectrum.

【0023】第二の実施例は、蛍光管の開口部の内面又
は外面に形成する干渉膜を、青、緑、赤色光の内、一色
又は二色の光を制御する分光透過率特性をもつものとし
、蛍光管は、青、緑、赤色に各々発光スペクトルのピー
クを持ち、干渉膜で制御する色に比べ、それ以外の色の
発光スペクトルのピークを大きくし、蛍光管からの出射
光は色付きがなく、第一の実施例と同様な本発明の効果
を得るものである。図13,14に示す第二の実施例は
、赤色用の干渉膜を該蛍光管の開口部に形成した場合で
、全体の断面図は図1と同じであるから省略するが、赤
色光のみ干渉膜12で膜表面に対して法線方向に強い指
向性を持たせ、蛍光管の発光スペクトル分布を、分布1
7のように青、緑色光の発光スペクトルを赤色光に比べ
て大きくすることにより、蛍光管から出射される三波長
の光は、青、緑、赤色の発光スペクトルのピ−クが等し
くなり、色付きがなく、本発明の効果を得ることが出来
る。
In the second embodiment, an interference film formed on the inner or outer surface of the opening of the fluorescent tube has spectral transmittance characteristics that control one color or two colors of light among blue, green, and red light. Assume that fluorescent tubes have emission spectrum peaks in blue, green, and red respectively, and the emission spectrum peaks of other colors are made larger than those controlled by the interference film, and the light emitted from the fluorescent tube is There is no coloration, and the same effects of the present invention as in the first embodiment can be obtained. The second embodiment shown in FIGS. 13 and 14 is a case in which an interference film for red light is formed at the opening of the fluorescent tube, and the overall cross-sectional view is the same as that in FIG. The interference film 12 has strong directivity in the direction normal to the film surface, and the emission spectrum distribution of the fluorescent tube is changed to distribution 1.
By making the emission spectra of blue and green light larger than that of red light as shown in 7, the three wavelengths of light emitted from the fluorescent tube will have the same peaks in the emission spectra of blue, green, and red. There is no coloration and the effects of the present invention can be obtained.

【0024】図15は、第三の実施例の断面図で、本発
明の開口部表面に干渉膜103を形成したアパーチャ型
蛍光管101とアクリル樹脂などの透明板を導光体とし
て用いる導光部16より構成される第一の実施例と同じ
光源部、光源部からの光線102が入射される無反射コ
ーティングが施された光入射面601を示す。第三の実
施例は、特に、導光部にアクリル樹脂などの導光体を用
いている場合に、本発明の効果をさらに向上させたもの
である。図15において、光入射面601をSiO2、
MgF2などを積層蒸着して、無反射コーティングする
ことにより、光入射面601での表面反射が生じなくな
り、光源部から光線102を、効率良く導光部16に入
射させることが出来る。
FIG. 15 is a cross-sectional view of a third embodiment, in which an aperture type fluorescent tube 101 having an interference film 103 formed on the opening surface of the present invention and a light guide using a transparent plate made of acrylic resin or the like as a light guide. The same light source section as in the first embodiment is shown, which includes a light source section 16, and a light incident surface 601 coated with a non-reflection coating onto which a light beam 102 from the light source section is incident. The third embodiment further improves the effects of the present invention, particularly when a light guide made of acrylic resin or the like is used in the light guide section. In FIG. 15, the light incidence surface 601 is SiO2,
By depositing MgF2 or the like in a non-reflective coating, surface reflection does not occur on the light incident surface 601, and the light beam 102 can be efficiently made to enter the light guide section 16 from the light source section.

【0025】[0025]

【発明の効果】本発明によれば、発光体から出射される
光の利用効率を向上させることが出来、高輝度な面光源
装置を実現することが出来る。
According to the present invention, the utilization efficiency of light emitted from a light emitter can be improved, and a high-luminance surface light source device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明における第一の実施例の断面図、FIG. 1 is a sectional view of a first embodiment of the present invention;

【図2
】第一の実施例のアパーチャ型蛍光管断面図、
[Figure 2
]A sectional view of an aperture type fluorescent tube of the first embodiment,

【図3】
蛍光管の発光スペクトル分布と干渉膜の分光透過率特性
図、
[Figure 3]
Emission spectrum distribution of fluorescent tube and spectral transmittance characteristic diagram of interference film,

【図4】干渉膜の説明図、[Fig. 4] An explanatory diagram of an interference film,

【図5】干渉膜の入射角度による波長−透過率特性図、
[Figure 5] Wavelength-transmittance characteristic diagram depending on the incident angle of the interference film,

【図6】干渉膜の入射角度−透過率特性図、[Fig. 6] Incident angle-transmittance characteristic diagram of interference film,

【図7】干
渉膜表面における光の入,反射を示す説明図、
[Fig. 7] An explanatory diagram showing the incidence and reflection of light on the surface of the interference film,

【図8】蛍光管の出射光の光強度分布図、[Figure 8] Light intensity distribution diagram of light emitted from a fluorescent tube,

【図9】第一
の実施例の面光源装置の拡大断面図と、開口部からの出
射光の強度分布図、
FIG. 9 is an enlarged sectional view of the surface light source device of the first embodiment and an intensity distribution diagram of light emitted from the opening;

【図10】第一の実施例における開口部表面の干渉膜の
拡大断面図、
FIG. 10 is an enlarged cross-sectional view of the interference film on the surface of the opening in the first embodiment;

【図11】第一の実施例における蛍光管の発光スペクト
ル分布と干渉膜の分光透過率特性図、
FIG. 11 is a diagram of the emission spectrum distribution of the fluorescent tube and the spectral transmittance characteristic of the interference film in the first embodiment;

【図12】第一の実施例に用いるアパーチャ型蛍光管の
他の構成例を示す蛍光管断面図、
FIG. 12 is a sectional view of a fluorescent tube showing another configuration example of the aperture type fluorescent tube used in the first embodiment;

【図13】第二の実施例における開口部表面の干渉膜の
拡大断面図、
FIG. 13 is an enlarged cross-sectional view of the interference film on the surface of the opening in the second embodiment;

【図14】第二の実施例における蛍光管の発光スペクト
ル分布と干渉膜の分光透過率特性図、
FIG. 14 is a diagram of the emission spectrum distribution of the fluorescent tube and the spectral transmittance characteristic of the interference film in the second embodiment;

【図15】本発明における第三の実施例の断面図、FIG. 15 is a sectional view of a third embodiment of the present invention;

【図
16】従来の面光源装置の断面図、
FIG. 16 is a cross-sectional view of a conventional surface light source device.

【図17】アパーチ
ャー型蛍光管の断面図と、開口部からの出射光の強度分
布図。
FIG. 17 is a cross-sectional view of an aperture-type fluorescent tube and an intensity distribution diagram of light emitted from the aperture.

【符号の説明】[Explanation of symbols]

2、20…導光部、 101、501…本発明のアパーチャ型蛍光管、103
…干渉膜、 104…ガラス体、 105…反射膜、 106…蛍光膜、 θ1,θ2…開口角。
2, 20... Light guide section, 101, 501... Aperture type fluorescent tube of the present invention, 103
...Interference film, 104...Glass body, 105...Reflection film, 106...Fluorescent film, θ1, θ2...Aperture angle.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アパーチャ型蛍光管を発光体とし、前記ア
パーチャ蛍光管の開口部を導光部の光入射面に対面する
ように配置し、前記アパーチャ蛍光管からの出射光を前
記光入射面に入射させ、その入射光を前記導光部の内部
で、反射、拡散させ、照射面で均一な面光を得る面光源
装置において、前記アパーチャ蛍光管の開口部の内面又
は外面に、互いに屈折率の異なる複数種の光学薄膜を交
互に複数層積層して成る多層膜構造の干渉膜を形成した
ことを特徴とする面光源装置。
1. An aperture type fluorescent tube is used as a light emitting body, an opening of the aperture fluorescent tube is arranged to face a light incident surface of a light guiding section, and the light emitted from the aperture fluorescent tube is directed to the light incident surface. In the surface light source device, the incident light is reflected and diffused inside the light guiding section to obtain uniform surface light on the irradiation surface. A surface light source device characterized in that an interference film having a multilayer structure is formed by alternately laminating a plurality of types of optical thin films having different ratios.
【請求項2】請求項1において、前記アパーチャ蛍光管
は、青、緑、赤色に各々発光スペクトルのピ−クを持ち
、前記アパーチャ蛍光管の開口部の内面又は外面に形成
する干渉膜は、青、緑、赤色用の各々異なった分光透過
率特性を持つ干渉膜を積層して形成されており、青色用
は、青色と緑色の間の波長域の光を反射し、その他の波
長域の光を透過する分光透過率特性をもち、緑色用は、
緑色と赤色の間の波長域の光を反射し、その他の波長域
の光を透過する分光透過率特性をもち、赤色用は、赤外
光を反射し、その他の波長域の光を透過する分光透過率
特性をもち、前記アパーチャ蛍光管が発光する青、緑、
赤色の各波長域の光を各々独立して制御するようにした
面光源装置。
2. In claim 1, the aperture fluorescent tube has emission spectrum peaks in blue, green, and red, respectively, and the interference film formed on the inner or outer surface of the opening of the aperture fluorescent tube comprises: It is formed by laminating interference films with different spectral transmittance characteristics for blue, green, and red, and the blue one reflects light in the wavelength range between blue and green, and reflects light in the other wavelength ranges. It has spectral transmittance characteristics that transmit light, and for green color,
It has spectral transmittance characteristics that reflects light in the wavelength range between green and red and transmits light in other wavelength ranges, and the red color reflects infrared light and transmits light in other wavelength ranges. It has spectral transmittance characteristics, and the aperture fluorescent tube emits blue, green,
A surface light source device that independently controls light in each red wavelength range.
【請求項3】請求項1または2において、前記アパーチ
ャ蛍光管の開口部の内面又は外面に形成する干渉膜は、
青、緑、赤色光の内、一色又は二色の光を制御する分光
透過率特性をもつものとし、前記アパーチャ蛍光管は、
青、緑、赤色に各々発光スペクトルのピ−クを持ち、前
記干渉膜で制御する色に比べ、それ以外の色の発光スペ
クトルのピ−クを大きくした面光源装置。
3. According to claim 1 or 2, the interference film formed on the inner or outer surface of the opening of the aperture fluorescent tube comprises:
The aperture fluorescent tube has spectral transmittance characteristics that control one color or two colors of light among blue, green, and red light, and the aperture fluorescent tube has
A surface light source device having emission spectrum peaks for each of blue, green, and red, and in which the emission spectrum peaks for other colors are larger than the colors controlled by the interference film.
【請求項4】請求項1、2または3において、前記導光
部の光入射面を無反射コーティングしたことを特徴とす
る面光源装置。
4. The surface light source device according to claim 1, wherein the light incident surface of the light guide section is coated with an anti-reflection coating.
JP13625291A 1991-06-07 1991-06-07 Surface light source device Pending JPH04359858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13625291A JPH04359858A (en) 1991-06-07 1991-06-07 Surface light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13625291A JPH04359858A (en) 1991-06-07 1991-06-07 Surface light source device

Publications (1)

Publication Number Publication Date
JPH04359858A true JPH04359858A (en) 1992-12-14

Family

ID=15170839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13625291A Pending JPH04359858A (en) 1991-06-07 1991-06-07 Surface light source device

Country Status (1)

Country Link
JP (1) JPH04359858A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266933A (en) * 2005-03-24 2006-10-05 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defect in transparent plate
JP2007180037A (en) * 1999-11-10 2007-07-12 Matsushita Electric Works Ltd Light emitting element, planar light emitting board, method of manufacturing light emitting element, planar fluorescent lamp, and plasma display
JP2016051132A (en) * 2014-09-02 2016-04-11 日本電気硝子株式会社 Light diffusion preventive member and light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180037A (en) * 1999-11-10 2007-07-12 Matsushita Electric Works Ltd Light emitting element, planar light emitting board, method of manufacturing light emitting element, planar fluorescent lamp, and plasma display
JP2006266933A (en) * 2005-03-24 2006-10-05 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defect in transparent plate
JP4575202B2 (en) * 2005-03-24 2010-11-04 日本板硝子株式会社 Defect inspection method and defect inspection apparatus for transparent plate-like body
JP2016051132A (en) * 2014-09-02 2016-04-11 日本電気硝子株式会社 Light diffusion preventive member and light emitting device

Similar Documents

Publication Publication Date Title
US6031653A (en) Low-cost thin-metal-film interference filters
JP2528371B2 (en) Multi-wavelength beam splitter device
KR101329493B1 (en) Multilayered fluorescent screens for scanning beam display systems
US7106516B2 (en) Material with spectrally selective reflection
JP2003248108A (en) Selectively reflecting optical device
US20110164317A1 (en) Contrast-increasing rear projection screen
US8550681B2 (en) Light source assemblies
US20210024409A1 (en) Radiative Cooling Device
KR20050007125A (en) Screen
JP2006190955A (en) Light emitting diode including quasi-omnidirectional reflector
WO1995012827A1 (en) Surface light source device
CN100549813C (en) Reflective viewing screen
JPS61143719A (en) View angle sensitive color illumination accessary
US20220276421A1 (en) Optical filters complementary angular blocking regions
CN112150937A (en) Color conversion assembly and display panel
KR20060045116A (en) Screen and method for manufacturing the same
CN108302378A (en) A kind of backlight module and display device
JPH04359858A (en) Surface light source device
JP5362727B2 (en) Radiation emission component
CN101377557A (en) Apparatus for evening and eliminating coherence of laser
JP2000048619A (en) Light guide plate and its manufacture
JPH07140324A (en) Light projecting and receiving device
WO2024009996A1 (en) Lighting device
JPH0622824Y2 (en) LCD projector device
JPH08306217A (en) Ultraviolet irradiation lamp