JPH07140082A - Method for setting discrimination threshold between foreign matter and pattern - Google Patents

Method for setting discrimination threshold between foreign matter and pattern

Info

Publication number
JPH07140082A
JPH07140082A JP5309913A JP30991393A JPH07140082A JP H07140082 A JPH07140082 A JP H07140082A JP 5309913 A JP5309913 A JP 5309913A JP 30991393 A JP30991393 A JP 30991393A JP H07140082 A JPH07140082 A JP H07140082A
Authority
JP
Japan
Prior art keywords
foreign matter
pattern wiring
light
pattern
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5309913A
Other languages
Japanese (ja)
Inventor
Takahiro Jingu
孝広 神宮
Shuichi Chikamatsu
秀一 近松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP5309913A priority Critical patent/JPH07140082A/en
Publication of JPH07140082A publication Critical patent/JPH07140082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make possible the setting of threshold value that properly discriminates foreign matters from a pattern by, with a clear test sample, generating 2-D distribution figure for both photo-detection voltages of P.S polarized light of a pattern wiring and multiple standard particles of different diameters corresponding to the foreign matter. CONSTITUTION:Against the test sample with no sticking foreign matters, both photo-detection voltages Vp and Vs are measured for P and S polarized components of a wiring pattern. They are digitized with an A/D convertors 51a.51b and stored in the memory area of a RAM 53. Then standard particles of 1mum and 2mum in diameter are stuck to a glass plate in plural pieces, and both voltages Vp and Vs against them are measured and stored in the RAM 53. Then, the data in RAM 53 are read by the micro processor MPU 52, and 2-D distribution figure is outputted to an output device 54. In the distribution figure, the boarder line separating the standard particles from the distributed area of pattern wiring is set, and that is used as the threshold value which discriminates foreign matters from a wiring pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被検査物に付着した
異物と、これに形成されているパターン配線とを弁別す
る閾値の設定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of setting a threshold value for discriminating between a foreign substance attached to an object to be inspected and a pattern wiring formed on the foreign substance.

【0002】[0002]

【従来の技術】半導体のICチップや、液晶パネルに使
用されるTFT(薄膜トランジスタ)基板は、シリコン
ウエハまたはガラス基板の表面に蒸着されたシリコン酸
化膜に対してレジスト剤を塗布し、これにマスク板のパ
ターンを転写して製作される。ICチップやTFT基板
に異物が付着すると性能が劣化するので、異物検査装置
により異物の有無が検査されている。ただし、付着異物
を光学的に検査する場合は、異物とともにパターン配線
も検出されるので、これらを区別する必要がある。パタ
ーン配線付きのウエハに対する光学的な異物検査方法と
して、例えば「特開昭61−104243号、異物検出方法およ
びその装置」が公開されており、この方法はTFT基板
にも適用できるので、これによりその検査が行われてい
る。以下、この異物検査装置の概要を説明する。
2. Description of the Related Art For a semiconductor IC chip or a TFT (thin film transistor) substrate used for a liquid crystal panel, a resist agent is applied to a silicon oxide film deposited on the surface of a silicon wafer or a glass substrate, and a mask is applied to this. It is manufactured by transferring the pattern of the board. Since the performance deteriorates when foreign matter adheres to the IC chip or the TFT substrate, the presence or absence of foreign matter is inspected by the foreign matter inspection device. However, when optically inspecting the adhered foreign matter, the pattern wiring is detected together with the foreign matter, so it is necessary to distinguish between them. As an optical foreign matter inspection method for a wafer with a pattern wiring, for example, "Japanese Patent Laid-Open No. 61-104243, foreign matter detection method and its apparatus" has been disclosed, and this method can be applied to a TFT substrate. The inspection is being conducted. The outline of the foreign matter inspection apparatus will be described below.

【0003】図3は上記の特許公開にかかる異物検査装
置の基本構成を示し、便宜上、ウエハとTFT基板を一
括して被検査物1とする。被検査物1の表面に形成され
たパターン配線(PAT)をXY方向とし、被検査物1
は図示しない移動機構によりXまたはY方向に移動す
る。これに対して、投光系2,受光系3よりなる検査光
学系と、信号処理部4が設けられる。投光系2において
は、光源21よりP偏光のレーザビームLT(P)が、被検査
物1の表面に対して低角度θP でX方向に投射される。
また光源22よりS偏光のレーザビームLT(S)が高角度θ
S でY方向に投射され、両ビームLT(P),LT(S)は、図
示しない集束レンズによりそれぞれ集束され、被検査物
1の表面にスポットSP が照射される。受光系3は被検
査物1の垂直上方に設けられ、被検査物1の表面に形成
されたパターン配線と、これに付着した異物の反射光L
R は、受光系3の集光レンズ31により集光され、ビーム
スプリッタ32により2分割される。分割された一方は、
P偏光の検光板33によりP偏光成分が検出されて受光器
34に受光され、受光電圧vP が出力される。また分割さ
れた他方は、S偏光の検光板35によりS偏光成分が検出
され、受光器36より受光電圧vS が出力される。両受光
電圧vP,vS は信号処理部4の割り算器41に入力して両
者の比数(vP/vS)=kが算出され、比数kはコンパレ
ータ42により適当な閾値mと比較され、パターン配線が
除かれて異物のみが検出されて検出パルスpa が出力さ
れる。
FIG. 3 shows the basic structure of the foreign substance inspection apparatus according to the above-mentioned patent publication. For convenience, the wafer and the TFT substrate are collectively referred to as the inspection object 1. The pattern wiring (PAT) formed on the surface of the inspection object 1 is set in the XY directions, and the inspection object 1
Moves in the X or Y direction by a moving mechanism (not shown). On the other hand, an inspection optical system including a light projecting system 2 and a light receiving system 3 and a signal processing unit 4 are provided. In the light projecting system 2, a P-polarized laser beam L T (P) is projected from the light source 21 in the X direction at a low angle θ P with respect to the surface of the inspection object 1.
Further, the S-polarized laser beam L T (S) from the light source 22 has a high angle θ.
The two beams L T (P) and L T (S) are projected by S in the Y direction, respectively, are focused by a focusing lens (not shown), and a spot S P is irradiated on the surface of the inspection object 1. The light receiving system 3 is provided vertically above the inspected object 1, and the pattern wiring formed on the surface of the inspected object 1 and the reflected light L of the foreign matter attached thereto
The R is condensed by the condenser lens 31 of the light receiving system 3 and is divided into two by the beam splitter 32. The one that was divided is
The P-polarized light is detected by the P-polarized light analyzer plate 33.
The light is received by 34, and the received light voltage v P is output. On the other side, the S-polarized light is detected by the S-polarized light analyzing plate 35, and the light-receiving voltage v S is output from the light receiver 36. The two received light voltages v P and v S are input to the divider 41 of the signal processing unit 4 to calculate the ratio (v P / v S ) = k of both, and the ratio k is set to an appropriate threshold value m by the comparator 42. After the comparison, the pattern wiring is removed, only the foreign matter is detected, and the detection pulse p a is output.

【0004】図4により上記の異物検出の原理を説明す
る。図(a),(b) において、(イ) は被検査物1のパターン
配線、(ロ) は比較的に小さい異物、また(ハ) は比較的に
大きい異物をそれぞれ例示したものである。図(a) は、
被検査物1に対してP偏光波を照射した場合で、パター
ン配線(イ)は、その表面が平滑であるのでP偏光波は低
角度θP の方向に正反射し、従って垂直上方の集光レン
ズ31にはほとんど入射せず、受光器36の受光電圧vP
図示のように小さい。一方、異物(ロ),(ハ) はP偏光波を
散乱し、散乱光Qは偏光面がランダムの方向に変化する
ので、そのP偏光成分は受光器34に、S偏光成分は受光
器36にそれぞれ受光され、小さい異物(ロ) の散乱光Qは
小さいので両受光電圧vP,vS は小さく、大きい異物
(ハ) の散乱光Qは大きいので大きい受光電圧vP,vS
それぞれ出力される。次に図(b) はS偏光波を照射した
場合で、パターン配線(イ) によりS偏光波は高角度θS
の方向に正反射するので、集光レンズ31には多く集光さ
れ、受光器36の受光電圧vS は図示のように大きい。一
方、異物(ロ),(ハ) によりS偏光波はやはり散乱光Qを散
乱し、小さい異物(ロ) に対して小さく、大きい異物(ハ)
に対して大きい受光電圧vP,vS がそれぞれ出力され
る。割り算器41により両受光電圧vP,vS の比数(vP/
S)=kを求めると、(c)に示す波形がえられる。パタ
ーン配線(イ) はvP <vS であるため、比数kは1より
かなり小さいが、異物(ロ),(ハ) はvP ≒vS であるた
め、1に近い値である。これらの各波形に対して適当な
一定の閾値mをコンパレータ52に設定し、波高値が閾値
mに達しないパターン配線(イ) を除き、これを越える異
物値(ロ),(ハ) を検出して検出パルスpa が出力されるも
のである。なお上記は基本構成と、これによる異物検出
方法であって、実用装置においては、投光系2の光源22
の個数を増加し、また波長が異なる両ビームLT(P),L
T(S)を使用するなどにより、異物検出性能の改善がなさ
れているが、いずれにしてもS偏光波とP偏光波を使用
し、上記の原理により異物とパターン配線を弁別するこ
とには変わりはない。
The principle of the above foreign matter detection will be described with reference to FIG. In FIGS. (A) and (b), (a) is a pattern wiring of the inspection object 1, (b) is a relatively small foreign material, and (c) is a relatively large foreign material. Figure (a) shows
When the inspection object 1 is irradiated with P-polarized waves, the surface of the pattern wiring (a) is smooth, so that the P-polarized waves are specularly reflected in the direction of the low angle θ P , and thus the vertically upward collection is performed. The light is hardly incident on the optical lens 31, and the light receiving voltage v P of the light receiver 36 is small as shown in the figure. On the other hand, the foreign matters (b) and (c) scatter P-polarized waves, and the scattered light Q changes its polarization plane in a random direction. Therefore, the P-polarized component is received by the photodetector 34 and the S-polarized component is received by the photodetector 36. to be respectively received, the scattered light Q both receiving the voltage so small v P of small foreign matter (b), v S is small, a large foreign object
Since the scattered light Q in (c) is large, large received light voltages v P and v S are output. Next, Fig. (B) shows the case where the S-polarized wave is irradiated. The S-polarized wave has a high angle θ S due to the pattern wiring (a).
Since the light is specularly reflected in the direction of, the light is largely collected by the condenser lens 31, and the light receiving voltage v S of the light receiver 36 is large as shown in the figure. On the other hand, the S-polarized wave also scatters the scattered light Q due to the foreign matter (b) and (c), and is smaller and larger than the small foreign matter (b).
The received light voltages v P and v S, which are large with respect to the above, are output. The divider 41 calculates the ratio of the received light voltages v P and v S (v P /
When v S ) = k is obtained, the waveform shown in (c) is obtained. Since the pattern wiring (a) has v P <v S , the ratio k is considerably smaller than 1, but the foreign matters (b) and (c) have a value close to 1 because v P ≈v S. An appropriate constant threshold value m is set for each of these waveforms in the comparator 52, and foreign matter values (b) and (c) exceeding this are detected except for the pattern wiring (a) whose peak value does not reach the threshold value m. Then, the detection pulse p a is output. It should be noted that the above is the basic configuration and the foreign matter detection method based thereon.
Both beams L T (P), L with different wavelengths
Although the foreign matter detection performance has been improved by using T (S), etc., in any case, it is not possible to distinguish between foreign matter and pattern wiring by using the S polarized wave and the P polarized wave and the above principle. There is no change.

【0005】[0005]

【発明が解決しようとする課題】さて、上記は検出原理
をモデル化した説明であって、実情はこのように単純で
はない。すなわちパターン配線は、その形状寸法が被検
査物1の種類により異なるので反射光LR の大きさも種
類により異なり、またそのエッジは、微弱ではあるが、
ランダム偏光面の散乱光Qを散乱するので、これらが両
受光電圧vP,vSに影響して上記の比数kが変化する。
一方、異物の大きさは例示したモデルのような大小の2
種類に限られず任意であるので、その散乱光Qの大きさ
もマチマチで、受光電圧vP,vS の大小関係はモデルの
ように単純でない。従って、上記の閾値mを一律または
一定値とするときは、異物とパターン配線の弁別が的確
になされない。これに対して、両者を的確に弁別できる
適切な閾値を決めて検査装置に設定することが必要とさ
れている。この発明は以上に鑑みてなされたもので、異
物検査装置に対して異物とパターン配線を的確に弁別す
る閾値の設定方法を提供することを目的とする。
The above is an explanation in which the detection principle is modeled, and the actual situation is not so simple. That is, since the shape and size of the pattern wiring differ depending on the type of the inspection object 1, the magnitude of the reflected light L R also varies depending on the type, and the edge thereof is weak,
Since the scattered light Q of the randomly polarized plane is scattered, these influence the both light receiving voltages v P and v S , and the above-mentioned ratio k changes.
On the other hand, the size of the foreign matter is as large or small as the model illustrated.
The size of the scattered light Q is not limited to any kind, and the magnitude of the scattered light Q is also different, and the magnitude relationship between the received light voltages v P and v S is not simple as in the model. Therefore, when the threshold value m is set to a uniform value or a constant value, the foreign matter and the pattern wiring are not accurately discriminated from each other. On the other hand, it is necessary to determine an appropriate threshold value that can accurately discriminate the two and set the threshold value in the inspection device. The present invention has been made in view of the above, and an object of the present invention is to provide a method of setting a threshold value that accurately distinguishes a foreign substance from a pattern wiring for a foreign substance inspection device.

【0006】[0006]

【課題を解決するための手段】この発明は上記の目的を
達成した、異物とパターンの弁別閾値設定方法であっ
て、前記の異物検査装置に対して、異物が付着してない
清浄な被検査物のテストサンプルを装着して、そのパタ
ーン配線の両受光電圧vS,vP を測定し、両受光電圧v
S,vP の2次元分布図を作成する。また、異物の大きさ
に相当する、すくなくとも2種類の直径を有するそれぞ
れ複数個の標準粒子について、種類別にそれぞれの両受
光電圧vS,vP を測定して2次元分布図にプロットす
る。標準粒子群とパターン配線の両者の分布領域を区分
する境界線を設定し、この境界線を被検査物の異物とパ
ターン配線とを弁別する閾値とする。上記において、被
検査物のテストサンプルと標準粒子群に対する、それぞ
れの両受光電圧vS,vP の各データを、両受光電圧vS,
P をアドレスとして2次元メモリに記憶する。記憶さ
れた各データを出力器に出力して2次元分布図を作成
し、その標準粒子群とパターン配線を区分する境界線を
設定する。この境界線に基づいて、2次元メモリの標準
粒子群とパターン配線の両分布領域とに対して、有効デ
ータ "1" と無効データ "0" をそれぞれ設定する。被
検査物の検査によりえられた両受光電圧vS,vP のアド
レス指定により、2次元メモリより読み出されたデータ
が "0" のときパターン配線として無視し、 "1" のと
き異物と判定して異物パルスを出力するものである。
SUMMARY OF THE INVENTION The present invention is a method for setting a threshold value for discriminating between a foreign matter and a pattern, which achieves the above object, wherein the foreign matter inspecting apparatus cleanly inspects the foreign matter. Attach a test sample of the object, measure both light receiving voltages v S , v P of the pattern wiring, and measure both light receiving voltage v
Create a two-dimensional distribution map of S , v P. Also, for a plurality of standard particles each having at least two kinds of diameters corresponding to the size of the foreign matter, the respective two received light voltages v S and v P are measured and plotted in a two-dimensional distribution chart. A boundary line that divides the distribution areas of both the standard particle group and the pattern wiring is set, and this boundary line is used as a threshold value for discriminating between the foreign matter of the inspection object and the pattern wiring. In the above, the respective data of both the light receiving voltages v S , v P for the test sample of the object to be inspected and the standard particle group are converted into the two light receiving voltages v S ,
Store v P as an address in the two-dimensional memory. Each stored data is output to an output device to create a two-dimensional distribution map, and a boundary line that separates the standard particle group and the pattern wiring is set. Based on this boundary line, valid data "1" and invalid data "0" are set respectively for the standard particle group of the two-dimensional memory and both distribution areas of the pattern wiring. When the data read from the two-dimensional memory is "0", it is ignored as a pattern wiring by the address designation of both the light receiving voltages v S and v P obtained by the inspection of the object to be inspected, and when it is "1", it is detected as a foreign matter. The determination is made and the foreign matter pulse is output.

【0007】[0007]

【作用】上記の弁別閾値設定方法においては、異物が付
着してない清浄な被検査物のテストサンプルは、そのパ
ターン配線の両受光電圧vS,vP が測定され、その2次
元分布図が作成される。また、異物の大きさに相当す
る、すくなくとも2種類の直径を有するそれぞれ複数個
の標準粒子について、種類別にそれぞれの両受光電圧v
S,vP が測定されて2次元分布図にプロットされる。標
準粒子群とパターン配線の両者の分布領域を区分する境
界線が設定され、これが被検査物の異物とパターン配線
とを弁別する閾値とされる。この閾値は、従来のような
一定値でなくて、異物とパターン配線の両受光電圧vS,
P の値により変化して実際に合致するので、両者を的
確に弁別することができる。ただし、このような変化す
る閾値を実現する場合、ハード回路のみにより行うこと
もできるが、この発明ではソフト手法を併用して行うも
ので、これが請求項2に開示されている。すなわち、被
検査物のテストサンプルと標準粒子群に対する、それぞ
れの両受光電圧vS,vP の各データは、両受光電圧vS,
P をアドレスとして2次元メモリに記憶され、この各
データを出力器に出力して2次元分布図が作成され、こ
れを目視して標準粒子群とパターン配線を区分する境界
線が設定される。この境界線に基づいて、2次元メモリ
の標準粒子群とパターン配線の両分布領域とに対して、
有効データ "1" と無効データ "0" がそれぞれ設定さ
れる。被検査物の検査においては、測定された両受光電
圧vS,vP により2次元メモリのアドレスを指定し、読
み出されたデータが "0" のときはパターン配線として
無視し、これが "1" のとき異物と判定され異物パルス
が出力される。
In the discrimination threshold setting method described above, the test sample of the clean inspection object to which no foreign matter is attached measures both the light receiving voltages v S and v P of the pattern wiring, and the two-dimensional distribution chart thereof is obtained. Created. In addition, with respect to a plurality of standard particles each having at least two kinds of diameters corresponding to the size of the foreign matter, the two received light voltages v for each kind
S , v P are measured and plotted on a two-dimensional distribution map. A boundary line that divides the distribution areas of both the standard particle group and the pattern wiring is set, and this serves as a threshold value for discriminating between the foreign matter of the inspection object and the pattern wiring. This threshold value is not a constant value as in the conventional case, but both the light receiving voltage v S of the foreign matter and the pattern wiring,
Since they change depending on the value of v P and actually match each other, it is possible to accurately discriminate the both. However, in order to realize such a changing threshold value, although it can be performed only by a hard circuit, in the present invention, a soft method is used together, and this is disclosed in claim 2. That is, the respective data of the two light receiving voltages v S , v P for the test sample of the object to be inspected and the standard particle group are the two light receiving voltages v S ,
The data is stored in a two-dimensional memory with v P as an address, each data is output to an output device, and a two-dimensional distribution map is created. By visually observing this, a boundary line that separates the standard particle group and the pattern wiring is set. . Based on this boundary line, for the standard particle group of the two-dimensional memory and both distribution areas of the pattern wiring,
Valid data "1" and invalid data "0" are set respectively. In the inspection of the object to be inspected, the address of the two-dimensional memory is designated by the measured light receiving voltages v S and v P , and when the read data is "0", it is ignored as the pattern wiring, and this is "1". When it is ", it is judged as a foreign matter and a foreign matter pulse is output.

【0008】[0008]

【実施例】図1および図2はこの発明の一実施例を示
し、図1は閾値設定部5の構成図、図2は2次元メモリ
(RAM)53のメモリ領域図である。図1において、閾
値設定部5は、2個のA/D変換器51a,51b と、マイク
ロプロセッサ(MPU)52、2次元メモリ(RAM)5
3、および出力器54よりなり、各A/D変換器51a,51b
は、前記した図3の異物検査装置の受光系3の2個の受
光器34,35 にそれぞれ接続される。
1 and 2 show an embodiment of the present invention. FIG. 1 is a block diagram of a threshold value setting section 5, and FIG. 2 is a memory area diagram of a two-dimensional memory (RAM) 53. In FIG. 1, the threshold setting unit 5 includes two A / D converters 51a and 51b, a microprocessor (MPU) 52, and a two-dimensional memory (RAM) 5
3 and an output device 54, each A / D converter 51a, 51b
Are respectively connected to the two light receivers 34 and 35 of the light receiving system 3 of the foreign substance inspection apparatus shown in FIG.

【0009】閾値の設定においては、まずパターン付き
ウエハまたはTFT基板などの被検査物1の、異物が付
着していないテストサンプルを検査装置に装着し、パタ
ーン配線のP偏光成分とS偏光成分に対する両受光電圧
P,vS を測定する。測定された両受光電圧vP,vS
A/D変換器51a,51b により、例えば256階調のデジ
タル電圧VP,VS とされ、RAM53のメモリ領域の電圧
P,VS に対するアドレスに記憶される。図2(a) にお
いて、RAM53のメモリ領域のアドレスは、横軸を電圧
S 、縦軸を電圧VP とし、両電圧は0〜1.0の範囲
にノルマライズされている。テストサンプルのパターン
配線に対する両電圧VP,VS は、例えば×印のように分
布する。ただしこの分布領域はI,IIおよびIII の3領
域に分かれる。領域Iは前記の図4で説明したvP <v
S の場合に相当し、一定の比数k1(VP /VS)の直線内
である。領域IIも同様で、一定の比数k2 の直線内であ
るが、ただし領域IIは、P偏光波とS偏光波の投射角が
入れ代わり、P偏光波を高角度で、S偏光波を低角度で
それぞれ投射した場合で、この場合はVP <VS であ
る。また領域III は、前記したパターン配線の形状寸法
の相違と、そのエッジによる散乱光Qのために、両電圧
P,VS がバラついて図示のように分散している。次
に、直径が1μmと2μmの標準粒子を、それぞれ複数
個づつ適当なガラス板に付着させ、これらに対する両電
圧VP,VS を測定してRAM53に記憶すると、例えば1
μmの標準粒子は△印、2μmは○印のように分布し、
この分布範囲と直線k1 に挟まれた範囲を異物領域IVと
する。RAM53のデータをMPU52により読み出して、
出力器54に2次元分布図を出力する。この分布図の領域
IVと、各領域I,IIおよびIII との間に、図(b) のよう
に境界線Cを引いて異物領域とパターン配線領域に区分
する。次にRAM53に対して、境界線Cを境界としてパ
ターン配線領域の全範囲に無効データ "0" を、また異
物領域IVの全範囲に有効データ "1" をそれぞれ記憶す
る。
In setting the threshold value, first, a test sample of the object to be inspected 1 such as a patterned wafer or a TFT substrate in which no foreign matter is attached is attached to the inspection device, and the P-polarized component and the S-polarized component of the pattern wiring are set. Both light receiving voltages v P and v S are measured. The measured light receiving voltages v P and V S are converted into digital voltages V P and V S of, for example, 256 gradations by the A / D converters 51a and 51b, and the addresses for the voltages V P and V S of the memory area of the RAM 53 are set. Memorized in. In FIG. 2A, the address of the memory area of the RAM 53 has a horizontal axis of voltage V S and a vertical axis of voltage V P, and both voltages are normalized in the range of 0 to 1.0. Both voltages V P and V S with respect to the pattern wiring of the test sample are distributed as shown by, for example, X marks. However, this distribution region is divided into three regions, I, II and III. The region I is v P <v described in FIG. 4 above.
This corresponds to the case of S and is within the straight line of a constant ratio number k 1 ( VP / VS). The same applies to the region II, which is within a straight line with a constant ratio k 2 , but in the region II, the projection angles of the P-polarized wave and the S-polarized wave are interchanged, and the P-polarized wave has a high angle and the S-polarized wave has a low angle. When projected at different angles, V P <V S in this case. Further, in the region III, both voltages V P and V S are dispersed as shown in the figure due to the difference in the shape and size of the pattern wiring and the scattered light Q due to the edge thereof. Next, a plurality of standard particles each having a diameter of 1 μm and 2 μm are attached to an appropriate glass plate, and both voltages V P and V S for these are measured and stored in the RAM 53.
Standard particles of μm are distributed like Δ, 2 μm are distributed like ○,
The range sandwiched by this distribution range and the straight line k 1 is referred to as a foreign matter region IV. Read the data of RAM53 by MPU52,
The two-dimensional distribution map is output to the output device 54. Area of this distribution map
A boundary line C is drawn between IV and each of the regions I, II, and III to divide into a foreign substance region and a pattern wiring region, as shown in FIG. Next, in the RAM 53, invalid data "0" is stored in the entire area of the pattern wiring area with the boundary C as the boundary, and valid data "1" is stored in the entire area of the foreign material area IV.

【0010】被検査物1の検査においては、両受光電圧
S,VP を測定し、これをアドレスとしてMPU52によ
りRAM53のデータを読み出し、読み出したデータが "
0"のときはパターン配線であるから無視され、 "1"
のときは異物と判定され異物パルスpa が出力器54に出
力される。
In the inspection of the inspection object 1, both light receiving voltages V S and V P are measured, the data of the RAM 53 is read out by the MPU 52 by using these as addresses, and the read out data is "
When it is 0 ", it is ignored because it is a pattern wiring, and it is" 1 ".
In the case of, it is determined that the particle is a particle, and the particle pulse p a is output to the output device 54.

【0011】[0011]

【発明の効果】以上の説明のとおり、この発明による設
定方法により設定された閾値は、異物とパターン配線の
両受光電圧vS,vP の値により変化して実際に合致し、
両者が的確に弁別されるもので、この閾値を実現するた
めの、ハード回路にソフト手法を併用した実行容易な手
段が開示されており、異物検査技術に寄与する効果には
大きいものがある。
As described above, the threshold value set by the setting method according to the present invention changes depending on the values of the light-receiving voltages v S and v P of the foreign matter and the pattern wiring, and actually matches.
The two are accurately discriminated, and an easy-to-execute means using a soft method in combination with a hard circuit for realizing this threshold value is disclosed, and there is a great effect in contributing to the foreign substance inspection technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例における閾値設定部5の構
成図である。
FIG. 1 is a configuration diagram of a threshold value setting unit 5 according to an embodiment of the present invention.

【図2】図(a) は、2次元メモリ(RAM)53のメモリ
領域図、(b) は異物領域とパターン配線領域を区分する
境界線Cの設定方法の説明図である。
2A is a memory region diagram of a two-dimensional memory (RAM) 53, and FIG. 2B is an explanatory diagram of a method of setting a boundary line C that separates a foreign substance region and a pattern wiring region.

【図3】異物検査装置の基本構成図である。FIG. 3 is a basic configuration diagram of a foreign matter inspection apparatus.

【図4】異物検査装置における異物検出原理の説明図で
ある。
FIG. 4 is an explanatory diagram of a foreign matter detection principle in the foreign matter inspection apparatus.

【符号の説明】[Explanation of symbols]

1…パターン付きウエハまたはTFT基板の被検査物、
2…投光系、21,22 …光源、3…受光系、31…集光レン
ズ、32…ビームスプリッタ、33,35 …検光板、34,36 …
受光器、4…信号処理部、41…割り算器、42…コンパレ
ータ、5…閾値設定部、51a,51b …A/D変換器、52…
マイクロプロセッサ(MPU)、53…2次元メモリ(R
AM)、54…出力器、LT(P)…P偏光のレーザビーム、
T(S)…S偏光のレーザビーム、θP …低角度、θS
高角度、PAT…パターン配線、LR …反射光、vP
P偏光成分の受光電圧、vS …S偏光成分の受光電圧、
k…比数、Q…散乱光、m…一定の閾値、pa …異物パ
ルス、VP,VS …受光電圧vP,vS のデジタル値、k1,
2 …直線、I,II,III …パターン配線領域、IV…標
準粒子または異物領域、C…境界線。
1 ... Inspected object of patterned wafer or TFT substrate,
2 ... Projector system, 21, 22 ... Light source, 3 ... Light receiving system, 31 ... Condensing lens, 32 ... Beam splitter, 33, 35 ... Analyzer plate, 34, 36 ...
Light receiver, 4 ... Signal processing unit, 41 ... Divider, 42 ... Comparator, 5 ... Threshold setting unit, 51a, 51b ... A / D converter, 52 ...
Microprocessor (MPU), 53 ... Two-dimensional memory (R
AM), 54 ... Output device, L T (P) ... P-polarized laser beam,
L T (S) ... S-polarized laser beam, θ P ... Low angle, θ S ...
High angle, PAT ... pattern wiring, L R ... reflected light, v P ...
Received voltage of P-polarized component, v S ... Received voltage of S-polarized component,
k ... specific number, Q ... scattered light, m ... a certain threshold, p a ... foreign substance pulse, V P, V S ... receiving voltage v P, v digital value of S, k 1,
k 2 ... Straight line, I, II, III ... Pattern wiring area, IV ... Standard particle or foreign material area, C ... Boundary line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 J 7630−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/66 J 7630-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パターン配線が形成された被検査物の表
面に対して、S偏光波とP偏光波のレーザスポットを照
射し、前記パターン配線と、該表面に付着した異物とに
よる該レーザスポットの反射光を、S偏光成分とP偏光
成分に区別して2個の受光器により受光し、該両受光器
が出力する該S偏光成分の受光電圧vS と、該P偏光成
分の受光電圧vP とを比較し、適当な閾値により前記パ
ターン配線を除き前記異物を検出する異物検査装置にお
いて、前記異物が付着してない清浄な前記被検査物のテ
ストサンプルを前記異物検査装置に装着して、該テスト
サンプルのパターン配線の前記両受光電圧vS,vP を測
定し、該測定された両受光電圧vS,vP 、の2次元分布
図を作成し、かつ、前記異物の大きさに相当する、すく
なくとも2種類の直径を有するそれぞれ複数個の標準粒
子について、該種類別にそれぞれの前記両受光電圧vS,
P を測定して該2次元分布図にプロットし、該標準粒
子群と前記パターン配線の両者の分布領域を区分する境
界線を設定し、該境界線を前記被検査物の異物とパター
ン配線とを弁別する閾値とすることを特徴とする、異物
とパターンの弁別閾値設定方法。
1. A laser spot of S-polarized waves and P-polarized waves is applied to the surface of the object to be inspected on which the pattern wiring is formed, and the laser spot is formed by the pattern wiring and foreign matter attached to the surface. Of the reflected light of the S-polarized component and the P-polarized component are received by two light receivers, and the light-receiving voltage v S of the S-polarized component and the light-receiving voltage v of the P-polarized component output by both the light receivers. In a foreign matter inspection device that compares the P and detects the foreign matter by removing the pattern wiring with an appropriate threshold value, mount a clean test sample of the inspected matter in which the foreign matter does not adhere to the foreign matter inspection device. the two light receiving voltage v S of the pattern wiring of the test sample, a v P measured, both received voltage is the measured v S, v P, to create a two-dimensional distribution diagram of, and the size of the foreign substance Equivalent to, at least two types of straight For each plurality of standard particles having, each of the the seed classification both receiving the voltage v S,
v P is measured and plotted on the two-dimensional distribution chart, a boundary line for dividing the distribution area of both the standard particle group and the pattern wiring is set, and the boundary line is set to the foreign matter of the inspection object and the pattern wiring. And a threshold value for discriminating between foreign matter and a pattern, which is used as a threshold value.
【請求項2】前記被検査物のテストサンプルと前記標準
粒子群に対する、それぞれの前記両受光電圧vS,vP
各データを、該両受光電圧vS,vP をアドレスとして2
次元メモリに記憶し、該記憶された各データを出力器に
出力して前記2次元分布図を作成し、該2次元分布図に
対して前記標準粒子群とパターン配線を区分する境界線
を設定し、該境界線に基づいて、前記2次元メモリの標
準粒子群とパターン配線の両分布領域に対して、有効デ
ータ "1" と無効データ "0" をそれぞれ設定し、前記
被検査物の検査によりえられた両受光電圧vS,vP のア
ドレス指定により、該2次元メモリより読み出されたデ
ータが "0" のとき前記パターン配線として無視し、 "
1" のとき前記異物と判定して異物パルスを出力するこ
とを特徴とする、請求項1記載の異物とパターンの弁別
閾値設定方法。
For wherein said standard particle group and test sample of the object to be inspected, each of the two light receiving voltage v S, each data v P, the both light receiving voltage v S, a v P as an address 2
The two-dimensional distribution map is created by storing the stored data in a three-dimensional memory, outputting each stored data to an output device, and setting a boundary line that separates the standard particle group and the pattern wiring from the two-dimensional distribution map. Then, based on the boundary line, valid data "1" and invalid data "0" are set respectively for both the standard particle group and the pattern wiring distribution area of the two-dimensional memory, and the inspection of the inspected object is performed. When the data read from the two-dimensional memory is "0", it is ignored as the pattern wiring by the addressing of the two received light voltages v S and v P obtained by
The foreign matter and pattern discrimination threshold setting method according to claim 1, wherein the foreign matter pulse is output when it is 1 ".
JP5309913A 1993-11-16 1993-11-16 Method for setting discrimination threshold between foreign matter and pattern Pending JPH07140082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5309913A JPH07140082A (en) 1993-11-16 1993-11-16 Method for setting discrimination threshold between foreign matter and pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309913A JPH07140082A (en) 1993-11-16 1993-11-16 Method for setting discrimination threshold between foreign matter and pattern

Publications (1)

Publication Number Publication Date
JPH07140082A true JPH07140082A (en) 1995-06-02

Family

ID=17998853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309913A Pending JPH07140082A (en) 1993-11-16 1993-11-16 Method for setting discrimination threshold between foreign matter and pattern

Country Status (1)

Country Link
JP (1) JPH07140082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122046A (en) * 2007-11-16 2009-06-04 Hitachi High-Technologies Corp Defect inspection method and defect inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122046A (en) * 2007-11-16 2009-06-04 Hitachi High-Technologies Corp Defect inspection method and defect inspection apparatus

Similar Documents

Publication Publication Date Title
US5805278A (en) Particle detection method and apparatus
US5659390A (en) Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns
JP4183492B2 (en) Defect inspection apparatus and defect inspection method
JP3140664B2 (en) Foreign matter inspection method and apparatus
JPH081416B2 (en) Particle sorter
JPS6182147A (en) Method and device for inspecting surface
US6879391B1 (en) Particle detection method and apparatus
JPH10221267A (en) Micro-defect inspection method, its device, exposing method, and manufacture of semiconductor substrate
JP2594685B2 (en) Wafer slip line inspection method
JPH07140082A (en) Method for setting discrimination threshold between foreign matter and pattern
JPH085575A (en) Method and apparatus for detecting foreign matter protrusion on color filter
JP3362033B2 (en) Foreign matter inspection device
JPS6026174B2 (en) Defect detection device
JP4040777B2 (en) Foreign matter inspection device
JP2002116155A (en) Apparatus and method for inspecting foreign matter and defect
JPH0926397A (en) Detecting method for foreign matter particle
JP3280401B2 (en) Defect inspection device and defect inspection method
JP3446754B2 (en) Micro foreign matter detection method and its detection device
JP2001272355A (en) Foreign matter inspecting apparatus
JPS636444A (en) Foreign matter inspection device
JPH06229939A (en) Inspection apparatus for foreign matter
JP2970235B2 (en) Surface condition inspection device
JP2609638B2 (en) Foreign matter inspection device
JPH0580496A (en) Foreign matter inspecting device
JP2845041B2 (en) Particle counting device