JPH07139334A - Exhaust gas purification device - Google Patents

Exhaust gas purification device

Info

Publication number
JPH07139334A
JPH07139334A JP5289259A JP28925993A JPH07139334A JP H07139334 A JPH07139334 A JP H07139334A JP 5289259 A JP5289259 A JP 5289259A JP 28925993 A JP28925993 A JP 28925993A JP H07139334 A JPH07139334 A JP H07139334A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
temperature
pressure loss
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289259A
Other languages
Japanese (ja)
Inventor
Hiroyuki Taniguchi
浩之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP5289259A priority Critical patent/JPH07139334A/en
Publication of JPH07139334A publication Critical patent/JPH07139334A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To improve the high speed responsiveness of an exhaust gas temperature detection means by estimating a particulate collective quantity based on a corrective pressure loss where the pressure loss of the filter is corrected by an engine rotational speed, exhaust temperature, and acceleration opening, so as to discriminate the regeneration timing of the filter. CONSTITUTION:Exhaust gas discharged from diesel engine 20 is introduced into a case 1 from an exhaust pipe 3, and a particulates in exhaust gas are collected by a filter 2. A solenoid valve 14 is opened at the time of regenerating the filter 2. The particulate collective quantity is calculated by a controller 8 based on respective detection signals from an engine rotational speed sensor 18, an exhaust gas temperature sensor 6, and an acceleration opening sensor 19, etc. Thereafter a heater 11 and a blower 13 are respectively driven when the collective quantity exceeds a threshold value. The collected particulates are thus burned by heating by the heater 11 and air supply by the blower 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼル機関の排気
中に含まれる微粒子成分(パティキュレ−ト)を捕集
し、再生する排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for collecting and regenerating particulate matter (particulates) contained in the exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】従来の排気ガス浄化装置では、パティキ
ュレ−ト捕集量が一定レベルになったら所定の順序でヒ
ータやブロワに通電してパティキュレ−トを燃焼させ、
フィルタを再生する。
2. Description of the Related Art In a conventional exhaust gas purifying apparatus, when the amount of collected particulates reaches a certain level, a heater or a blower is energized in a predetermined order to burn the particulates.
Play the filter.

【0003】[0003]

【発明が解決しようとする課題】パティキュレ−ト捕集
量は、フィルタにおける排気ガスの圧力損失に排気ガス
条件を一定とするための補正処理を行って補正圧力損失
を求め、この補正圧力損失はパティキュレ−ト捕集量に
対応するものとしてマップから求めることができる。そ
して、上記補正圧力損失は、エンジン回転数及び排気ガ
ス温度に基づいて圧力損失を補正するのが好適であり、
更に本発明者らは、回転数及びアクセル開度(燃料噴射
量)からエンジンの体積効率を求め、それに基づいて更
に上記補正圧力損失に補正を加えて一層正確なパティキ
ュレ−トを算出することを提案している。
The collected amount of particulates is corrected by the pressure loss of the exhaust gas in the filter to correct the exhaust gas condition, and the corrected pressure loss is calculated as follows. It can be obtained from the map as a value corresponding to the amount of collected particulates. Then, the corrected pressure loss, it is preferable to correct the pressure loss based on the engine speed and the exhaust gas temperature,
Furthermore, the inventors of the present invention calculate the volumetric efficiency of the engine from the rotational speed and the accelerator opening (fuel injection amount), and based on that, further correct the above-mentioned corrected pressure loss to calculate a more accurate particulate. is suggesting.

【0004】しかしながら、上記したパティキュレ−ト
捕集量算出方式において、排気温度が正確に検出されな
いと、算出したパティキュレ−ト捕集量に誤差が生じ、
フィルタの溶損や再生不良を招いてしまう。一方、この
種の高温測定用途には熱電対形式の温度検出手段が有効
であるが、これは保護カバーを有し、排気温度の変化に
対して応答遅れを有し、そのために温度急変時には算出
パティキュレ−ト捕集量が不正確となる問題があった。
この問題は他の形式の温度検出手段でも同様に生じる。
However, in the above-mentioned particulate trapping amount calculation method, if the exhaust gas temperature is not accurately detected, an error will occur in the calculated particulate trapping amount,
This will cause the filter to be melted and defective. On the other hand, a thermocouple type temperature detecting means is effective for this kind of high temperature measurement application, but it has a protective cover and has a response delay with respect to changes in exhaust temperature. There was a problem that the collected amount of particulates was inaccurate.
This problem also occurs in other types of temperature detecting means.

【0005】本発明は上記問題点に鑑みなされたもので
あり、装置構成の複雑化を回避しつつ温度検出手段の上
記高速応答性の改善が可能な排気ガス浄化装置を提供す
ることを、その解決すべき課題としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust gas purifying apparatus capable of improving the high-speed response of the temperature detecting means while avoiding the complication of the apparatus structure. It is a problem to be solved.

【0006】[0006]

【課題を解決するための手段】本発明の排気ガス浄化装
置は、 ディ−ゼルエンジンの排気経路に配設されて前
記ディ−ゼルエンジンから排出されるパティキュレート
を補集するフィルタと、前記エンジンの回転数を検出す
る回転数検出手段と、前記フィルタの近傍に配設されて
前記パティキュレ−トを通電により燃焼させて前記フィ
ルタを再生する電熱手段と、前記フィルタの再生時に前
記フィルタに給気する給気手段と、前記フィルタの圧力
損失を検出する圧力損失検出手段と、前記フィルタの上
流側に配設されて前記エンジンの排気温度を検出する温
度検出手段と、アクセル開度を検出するアクセル開度検
出手段と、前記排気温度の急変状態を検出する排気温度
急変検出手段とを備え、前記排気温度の安定時に前記排
気温度及び前記回転数に基づいて前記圧力損失を補正し
て補正圧力損失を算出するとともに、前記排気温度の急
変時に前記アクセル開度及び前記回転数に基づいて前記
圧力損失を補正して前記補正圧力損失を算出する補正圧
力損失算出手段と、前記補正圧力損失に基づいてフィル
タ再生時期を決定するフィルタ再生時期決定手段とを備
えることを特徴としている。
An exhaust gas purifying apparatus according to the present invention comprises a filter arranged in an exhaust path of a diesel engine for collecting particulates discharged from the diesel engine, and the engine. Rotation speed detecting means for detecting the rotation speed of the filter, electric heating means disposed in the vicinity of the filter for regenerating the filter by burning the particulate by energization, and air is supplied to the filter at the time of regenerating the filter. Air supply means, pressure loss detection means for detecting pressure loss of the filter, temperature detection means arranged upstream of the filter for detecting exhaust temperature of the engine, and accelerator for detecting accelerator opening degree. An opening degree detection means and an exhaust gas temperature sudden change detection means for detecting a sudden change state of the exhaust gas temperature are provided, and the exhaust gas temperature and the rotation are measured when the exhaust gas temperature is stable. The corrected pressure loss is calculated by correcting the pressure loss based on the number, and the corrected pressure loss is calculated by correcting the pressure loss based on the accelerator opening and the rotational speed when the exhaust temperature suddenly changes. It is characterized by comprising a corrected pressure loss calculating means and a filter regeneration timing determining means for determining a filter regeneration timing based on the corrected pressure loss.

【0007】好適な態様において、前記排気温度急変検
出手段は、前記エンジンの回転数の急変により検出する
ものである。
In a preferred mode, the exhaust temperature sudden change detection means detects the sudden change in the engine speed.

【0008】[0008]

【作用及び発明の効果】本発明では、フィルタの圧力損
失をエンジン回転数、排気温度及びアクセル開度で補正
した補正圧力損失に基づいてパティキュレ−ト捕集量を
推定し、この推定捕集量に基づいて再生時期を判別す
る。また、排気温度の急変状態を検出した時にはこの排
気温度を用いず、アクセル開度及び回転数により前記圧
力損失を補正して補正圧力損失を算出する。
According to the present invention, the particulate collection amount is estimated based on the corrected pressure loss obtained by correcting the pressure loss of the filter with the engine speed, the exhaust temperature and the accelerator opening degree, and the estimated collection amount is estimated. The reproduction time is determined based on. Further, when a sudden change in exhaust gas temperature is detected, the exhaust gas temperature is not used, and the pressure loss is corrected by the accelerator opening and the rotational speed to calculate the corrected pressure loss.

【0009】このようにすれば、排気温度急変時に温度
検出手段の応答遅れに起因する温度検出誤差によりパテ
ィキュレ−ト捕集量の算出誤差が生じるのを防止して、
フィルタ再生時期を正確に決定することができ、上記算
出誤差により生じるフィルタ損傷や再生不良といった問
題の発生を回避することができる。
With this configuration, it is possible to prevent an error in calculation of the amount of trapped particulates from occurring due to a temperature detection error caused by a response delay of the temperature detection means when the exhaust temperature suddenly changes.
It is possible to accurately determine the filter regeneration time, and it is possible to avoid problems such as filter damage and regeneration failure caused by the above calculation error.

【0010】[0010]

【実施例】本発明の排気ガス浄化装置の一実施例を図1
に示す。この排気ガス浄化装置は両端密閉のフィルタ収
容ケース1を有し、フィルタ収容ケース1内にはその上
流側から下流側へ、排気圧検出用の上流側圧力センサ
(本発明でいう圧力損失検出手段)7、温度センサ(温
度検出手段)6、ヒータ(電熱手段)11、フィルタ
2、フィルタ下流圧力検出用の下流側圧力センサ(本発
明でいう圧力損失検出手段)17が順番に配置されてい
る。フィルタ収容ケース1の上流側の端壁にはディーゼ
ルエンジン20の排気管3が配設されており、排気管3
の途中から送気管10が分岐されている。送気管10は
開閉弁14を介して給気用のブロワ13の出口に連結さ
れている。15はブロワ13の給気流量をフィードバッ
ク制御するために用いる給気流量検出センサである。
FIG. 1 shows an embodiment of an exhaust gas purifying apparatus according to the present invention.
Shown in. This exhaust gas purifying apparatus has a filter housing case 1 whose both ends are hermetically sealed, and an upstream side pressure sensor for detecting exhaust pressure (pressure loss detecting means in the present invention) from the upstream side to the downstream side in the filter housing case 1. ) 7, a temperature sensor (temperature detection means) 6, a heater (electric heating means) 11, a filter 2, and a downstream pressure sensor (pressure loss detection means in the present invention) 17 for detecting filter downstream pressure are arranged in order. . The exhaust pipe 3 of the diesel engine 20 is arranged on the upstream end wall of the filter housing case 1.
The air supply pipe 10 is branched from the middle of. The air supply pipe 10 is connected to an outlet of a blower 13 for supplying air via an opening / closing valve 14. Reference numeral 15 is an air supply flow rate detection sensor used for feedback controlling the air supply flow rate of the blower 13.

【0011】一方、上記したヒータ11、開閉弁14、
ブロワ(給気手段)13はコントローラ(本発明でいう
補正圧力損失算出手段、フィルタ再生時期決定手段、排
気温度急変検出手段)8により駆動制御される。また、
ディーゼルエンジン20には回転数センサ(本発明でい
う回転数検出手段)18及びアクセル開度センサ(アク
セル開度検出手段、ここでは燃料噴射装置の噴射量セン
サで代用するものとするが、アクセル開度を直接検出し
てもよい)19が装着されており、それらの出力信号は
コントローラ8に出力される。
On the other hand, the above-mentioned heater 11, on-off valve 14,
The blower (air supply means) 13 is drive-controlled by a controller (corrected pressure loss calculation means, filter regeneration timing determination means, exhaust gas temperature sudden change detection means in the present invention) 8. Also,
For the diesel engine 20, a rotation speed sensor (rotation speed detecting means in the present invention) 18 and an accelerator opening sensor (accelerator opening detecting means, here, an injection amount sensor of the fuel injection device is used as a substitute, but the accelerator opening is performed. 9 may be directly detected), and their output signals are output to the controller 8.

【0012】コントローラ8はA/Dコンバータ内蔵マ
イコン(図示せず)を具備しており、各種データを処理
して、ヒータ11、開閉弁14及びブロワ13を制御し
て再生を実行し、異常発生時には異常警報ランプ9を点
灯する。91は再生時期表示ランプである。フィルタ2
はハニカムセラミックフィルタ(日本碍子kk製、直径
5.66インチ×長さ6インチ)であって、多孔性コ−
ジェライトを素材として円柱形状に焼成されている。フ
ィルタ2はその両端面を貫通する多数の通気孔を有し、
隣接する通気孔の一方は上流端で封栓され、その他方は
下流端で封栓されている。排気ガスは隣接する通気孔間
の多孔性隔壁を透過し、パティキュレ−トだけが通気孔
内に捕集される。フィルタ2の両端面はケース1の両端
面に所定距離を隔てて対面している。
The controller 8 is equipped with a microcomputer (not shown) with a built-in A / D converter, processes various data, controls the heater 11, the on-off valve 14 and the blower 13 to execute regeneration, thereby generating an abnormality. Occasionally, the abnormality alarm lamp 9 is turned on. Reference numeral 91 is a reproduction time display lamp. Filter 2
Is a honeycomb ceramic filter (manufactured by Nippon Insulator kk, diameter 5.66 inches × length 6 inches), which is a porous core.
It is fired into a cylindrical shape using gellite as a material. The filter 2 has a large number of ventilation holes penetrating both end surfaces thereof,
One of the adjacent vent holes is plugged at the upstream end and the other is plugged at the downstream end. The exhaust gas passes through the porous partition wall between the adjacent vent holes, and only the particulates are trapped in the vent holes. Both end faces of the filter 2 face the both end faces of the case 1 with a predetermined distance.

【0013】5は給電装置であって、商用地上電源(図
示せず)に接続されるプラグ51、降圧トランス52、
全波整流器53からなり、全波整流器53から出力され
る直流電圧がヒータ11及びブロワ駆動モータMの各高
位端に印加され、ヒータ11の低位端はリレースイッチ
56を通じて接地され、ブロワ駆動モータMの低位端は
リレースイッチ55を通じて接地されている。
Reference numeral 5 denotes a power feeding device, which includes a plug 51 connected to a commercial ground power source (not shown), a step-down transformer 52,
The full-wave rectifier 53 is provided, and the DC voltage output from the full-wave rectifier 53 is applied to the high end of each of the heater 11 and the blower drive motor M, and the low end of the heater 11 is grounded through the relay switch 56. The lower end of the relay is grounded through the relay switch 55.

【0014】ヒータ11はニクロム線を素材とする電熱
抵抗体からなり、フィルタ2の再生時上流側に当たる端
面に近接配置されている。以下、この装置の動作を説明
する。 (パティキュレ−ト捕集動作)ディ−ゼルエンジン20
から排出された排気ガスは排気管3を通じてケース1内
に導入され、排気ガス中のパティキュレ−トはフィルタ
2で捕集され、浄化された排気ガスは尾管4から外部に
排出される。
The heater 11 is composed of an electrothermal resistor made of nichrome wire, and is arranged close to the end face of the filter 2 which is located on the upstream side during regeneration. The operation of this device will be described below. (Particulate collection operation) Diesel engine 20
The exhaust gas discharged from the exhaust gas is introduced into the case 1 through the exhaust pipe 3, particulates in the exhaust gas are collected by the filter 2, and the purified exhaust gas is discharged to the outside from the tail pipe 4.

【0015】(フィルタ再生動作)このフィルタ2の再
生動作を図2のフローチャートに従って説明する。な
お、この装置ではフィルタ再生動作をエンジン停止期間
に外部電源から受電して手動操作による起動により開始
するものとする。再生開始直前に電磁弁14は開かれ
る。このフィルタ再生動作は、エンジン運転中に実施さ
れるフィルタ再生判別ルーチン(ステップ100〜11
1)及びエンジン停止中に実施されるフィルタ再生実行
ルーチン(ステップ112〜116)からなる。
(Filter Regeneration Operation) The regeneration operation of the filter 2 will be described with reference to the flowchart of FIG. It should be noted that in this device, the filter regeneration operation is started by receiving power from an external power source while the engine is stopped and starting it by a manual operation. The solenoid valve 14 is opened immediately before the start of reproduction. This filter regeneration operation is performed by a filter regeneration determination routine (steps 100 to 11) performed during engine operation.
1) and a filter regeneration execution routine (steps 112 to 116) executed while the engine is stopped.

【0016】まず、フィルタ再生判別ルーチンを説明す
る。エンジン20の起動とともにフィルタ再生判別ルー
チンがスタートされ、ステップ100にて、圧力センサ
7、17が検出する排気圧力P1,P2と、回転数セン
サ18が検出するエンジン回転数nと、温度センサ6が
検出する排気ガス温度Tと、アクセル開度センサ19が
検出するアクセル開度Aとに基づいて、パティキュレ−
ト捕集量を算出する。
First, the filter regeneration discrimination routine will be described. When the engine 20 is started, the filter regeneration determination routine is started, and in step 100, the exhaust pressures P1 and P2 detected by the pressure sensors 7 and 17, the engine rotation speed n detected by the rotation speed sensor 18, and the temperature sensor 6 are detected. Based on the detected exhaust gas temperature T and the accelerator opening A detected by the accelerator opening sensor 19, the particulate amount is determined.
Calculate the collected amount.

【0017】このパティキュレ−ト捕集量Gの算出を、
図3のサブルーチンにて詳細に説明する。まず、ステッ
プ1001にて、エンジン回転数センサ18、圧力セン
サ7、17及び温度センサ6と、エンジン20に内設さ
れたアクセル開度センサ19からフィルタ上流側の排気
圧P1、フィルタ下流側の排気圧P2、回転数n及び排
気ガス温度T、アクセル開度Aを入力する。
The calculation of the amount G of collected particulates is
This will be described in detail with reference to the subroutine of FIG. First, in step 1001, the engine speed sensor 18, the pressure sensors 7 and 17, the temperature sensor 6, and the accelerator opening sensor 19 provided in the engine 20 are used to exhaust gas pressure P1 on the upstream side of the filter and exhaust gas P1 on the downstream side of the filter. The atmospheric pressure P2, the rotation speed n, the exhaust gas temperature T, and the accelerator opening A are input.

【0018】次のステップ200にて、本実施例の特徴
をなす排気温度急変時に対応する後述のサブルーチン
(本発明でいう排気温度急変検出手段)を実行する。次
のステップ1002では、フィルタ2の圧力損失(測定
差圧)ΔP=P1−P2に対する回転数n、排気ガス温
度Tの影響を排除するために、以下の補正式により、補
正差圧ΔPeqiを求める。
At the next step 200, a later-described subroutine (exhaust temperature sudden change detection means in the present invention) corresponding to the exhaust temperature sudden change, which is a feature of this embodiment, is executed. In the next step 1002, the corrected differential pressure ΔPeqi is obtained by the following correction formula in order to eliminate the influence of the rotational speed n and the exhaust gas temperature T on the pressure loss (measured differential pressure) ΔP = P1-P2 of the filter 2. .

【0019】 ΔPeqi=ΔP×(523/T)×(2600/n) 排気ガス温度Tは絶対温度であり、回転数nの単位はr
pmである。すなわち、上式により測定差圧ΔPを絶対
温度Tが523で、回転数nが2600の場合の補正差
圧ΔPeqiに補正する。したがって、本実施例では、
測定差圧ΔPは排気ガス温度T又は回転数nの変動に対
して逆比例するものと近似している。この補正差圧ΔP
eqiは50msec毎に算出する。
ΔPeqi = ΔP × (523 / T) × (2600 / n) The exhaust gas temperature T is an absolute temperature, and the unit of the rotation speed n is r.
pm. That is, the measured differential pressure ΔP is corrected by the above equation to the corrected differential pressure ΔPeqi when the absolute temperature T is 523 and the rotation speed n is 2600. Therefore, in this embodiment,
The measured differential pressure ΔP is approximated to be inversely proportional to the fluctuation of the exhaust gas temperature T or the rotational speed n. This correction differential pressure ΔP
eqi is calculated every 50 msec.

【0020】次のステップ1003にて、回転数nとア
クセル開度Aとから、予め記憶する算出式又はマップに
基づいてエンジン負荷を求める。次に予め記憶する三次
元マップへ回転数n及び上記エンジン負荷を導入して、
回転数n及び負荷に連動する体積効率ηをサーチする。
次のステップ1004にて、体積効率の変動による補正
差圧ΔPeqiの変化を補償するために、上記ΔPeq
iにηを掛けて補正圧力損失ΔPeqi’を算出する。
なお、このステップ1003、1004を省略する事も
できる。
In the next step 1003, the engine load is obtained from the rotational speed n and the accelerator opening A based on a calculation formula or map stored in advance. Next, by introducing the rotational speed n and the engine load into a three-dimensional map stored in advance,
The volume efficiency η linked to the rotation speed n and the load is searched.
In the next step 1004, in order to compensate the change in the correction differential pressure ΔPeqi due to the change in volume efficiency, the above ΔPeq is corrected.
The corrected pressure loss ΔPeqi ′ is calculated by multiplying i by η.
The steps 1003 and 1004 can be omitted.

【0021】次のステップ1006にて、過去において
50msec毎に入力された各補正差圧ΔPeqi’の
内、直前の64個の各算出値の平均を求め、これを平均
補正差圧ΔPeqmとする。次に、ステップ1007に
て、マイコン式のコントローラ8内蔵のメモリ(図示せ
ず)に記憶され、平均補正差圧ΔPeqmと捕集量Gと
の関係を記憶するテーブルから、捕集量Gをサーチして
メインルーチンにリターンする。
In the next step 1006, an average of the 64 calculated values immediately before, out of the corrected differential pressures ΔPeqi ′ input every 50 msec in the past, is calculated, and this is set as the average corrected differential pressure ΔPeqm. Next, in step 1007, the collection amount G is searched from a table stored in a memory (not shown) built in the microcomputer-type controller 8 and storing the relationship between the average correction differential pressure ΔPeqm and the collection amount G. And then returns to the main routine.

【0022】次に、ステップ108にて、サーチしたパ
ティキュレ−ト捕集量Gが所定のしきい値Gtを超過し
たかどうかを調べ、超過しなければステップ100にリ
ターンし、超過したらステップ111に進む。ステップ
111では、フィルタ再生を指令するランプ91を点灯
して、ルーチンを終了する。
Next, in step 108, it is checked whether or not the searched particulate collection amount G exceeds a predetermined threshold value Gt. If it does not exceed, the process returns to step 100, and if it exceeds, the process returns to step 111. move on. In step 111, the lamp 91 for instructing filter regeneration is turned on, and the routine ends.

【0023】その後、運転者がフィルタ再生を指令する
ランプ91の点灯を視認し、エンジン停止状態にて再生
スイッチ(図示せず)をオンすると、上記フィルタ再生
実行ルーチンが開始される。このルーチンでは、まずス
テップ112にてブロワ13を起動し、次に、内蔵のタ
イマーを起動し(114)、所定の順序でヒータ11及
びブロワ13をタイマー制御して再生動作を行い(11
6)、再生を終了する。
After that, when the driver visually recognizes the lighting of the lamp 91 for instructing the filter regeneration and turns on the regeneration switch (not shown) while the engine is stopped, the filter regeneration execution routine is started. In this routine, first, the blower 13 is started in step 112, then the built-in timer is started (114), and the heater 11 and the blower 13 are timer-controlled in a predetermined order to perform the regenerating operation (11
6) The reproduction is ended.

【0024】次に、本実施例の要部である温度急変時対
応サブルーチン200について、図4のフローチャート
を参照して説明する。まずステップ2002で、エンジ
ン回転数nが1300rpm以上を超えるかどうかを調
べ、以下であれば排気温度の急変はないものとしてステ
ップ1002へリターンし、超えるならば排気温度急変
の可能性有りとして、過去7秒間のエンジン回転数nの
最大値nmaxと最小値nminとを抽出する(200
4)。なお、このサブルーチンは約50msec毎に実
行され、読み込んだエンジン回転数nの各データはレジ
スタに7秒分だけ保持されており、この保持データから
上記最大値nmax及び最小値nminが抽出されるも
のとする。
Next, the subroutine 200 for sudden temperature change, which is the main part of this embodiment, will be described with reference to the flowchart of FIG. First, in step 2002, it is checked whether the engine speed n exceeds 1300 rpm or more. If it is below, it is determined that there is no sudden change in exhaust temperature, and the process returns to step 1002. The maximum value nmax and the minimum value nmin of the engine speed n for 7 seconds are extracted (200
4). Note that this subroutine is executed about every 50 msec, each data of the read engine speed n is held in the register for 7 seconds, and the maximum value nmax and the minimum value nmin are extracted from the held data. And

【0025】次に過去7秒間における回転数変化Δn=
nmax−nminを算出し(2006)、この回転数
変化Δnが50rpmより大きいかどうかを調べ(20
08)、以下であれば、温度変化の急変はないものとし
て判断してステップ1002にリターンする。一方、ス
テップ2008にて、Δnが50rpmを超える場合に
は、温度急変が生じているものと判断して、マップから
現在のエンジン回転数n及びアクセル開度Aに対応する
排気温度Taをサーチする(2010)。
Next, the rotational speed change Δn = in the past 7 seconds
nmax-nmin is calculated (2006), and it is checked whether or not this rotation speed change Δn is larger than 50 rpm (20
08), if it is below, it is determined that there is no sudden change in temperature change, and the process returns to step 1002. On the other hand, if Δn exceeds 50 rpm in step 2008, it is determined that the temperature sudden change has occurred, and the exhaust temperature Ta corresponding to the current engine speed n and accelerator opening A is searched from the map. (2010).

【0026】次に、サーチした排気温度Taとエンジン
回転数nとに基づいて補正圧力損失ΔPeqiを算出し
(2012)、ステップ1003へリターンする。この
補正圧力損失ΔPeqiの算出はステップ1002の場
合と同じであり、フィルタ2の圧力損失ΔP=P1−P
2に対して、以下の補正式により、補正差圧ΔPeqi
を求めるもので、算出式は、 ΔPeqi=ΔP×(523/Ta)×(2600/
n) となる。
Next, the corrected pressure loss ΔPeqi is calculated based on the searched exhaust temperature Ta and the engine speed n (2012), and the process returns to step 1003. The calculation of the corrected pressure loss ΔPeqi is the same as in the case of step 1002, and the pressure loss ΔP = P1−P of the filter 2
For 2, the correction differential pressure ΔPeqi is calculated by the following correction formula.
The calculation formula is ΔPeqi = ΔP × (523 / Ta) × (2600 /
n).

【0027】なお上記したステップ2008で用いたマ
ップは三次元マップであって、エンジン回転数n及びア
クセル開度Aの各値に対する排気温度Taの値が記憶さ
れている。すなわち、ここでは排気温度Taはエンジン
回転数nとアクセル開度A(又は燃料噴射量)により決
定されるものとしている。もちろん、更に外気温度やエ
ンジン運転開始からの経過時間などのパラメータにより
上記排気温度Taを修正してもよい。
The map used in the above step 2008 is a three-dimensional map, and the value of the exhaust gas temperature Ta for each value of the engine speed n and the accelerator opening A is stored. That is, here, the exhaust gas temperature Ta is determined by the engine speed n and the accelerator opening A (or the fuel injection amount). Of course, the exhaust temperature Ta may be further corrected by parameters such as the outside air temperature and the elapsed time from the start of engine operation.

【0028】またこの実施例では、回転数変化を7秒間
で測定したが、これは熱電対からなる温度センサ6の遅
延時定数に基づいて設定したものであるが、当然変更す
ることができる。このようにすれば、温度急変時の検出
して、この温度急変時に温度センサ6の検出温度ではな
くアクセル開度Aと回転数nとから推定した排気温度T
aを採用するので、温度センサ6の応答遅れによるパテ
ィキュレ−ト捕集量の誤推定を防止することができる。
In this embodiment, the change in the number of revolutions is measured for 7 seconds, but this is set based on the delay time constant of the temperature sensor 6 composed of a thermocouple, but it can be changed as a matter of course. By doing so, the exhaust temperature T detected when the temperature suddenly changes and estimated from the accelerator opening A and the rotational speed n instead of the temperature detected by the temperature sensor 6 when the temperature suddenly changes
Since a is adopted, it is possible to prevent erroneous estimation of the particulate trapped amount due to the response delay of the temperature sensor 6.

【0029】更にこの実施例では、温度急変時の判定を
エンジン回転数nの急変により検出するので、正確かつ
簡単に温度急変を検出することができる。なお上記実施
例では、アクセル開度又はそれに相当する状態量A及び
回転数nから排気温度Taを推定し、この排気温度Ta
に基づいて圧力損失ΔPを補正したが、A、nとΔPと
の三次元マップを用いて、これらA、nから直接ΔPを
補正することもできる。
Further, in this embodiment, since the judgment of the sudden temperature change is detected by the sudden change of the engine speed n, the rapid temperature change can be detected accurately and easily. In the above embodiment, the exhaust gas temperature Ta is estimated from the accelerator opening or the state quantity A corresponding to the accelerator opening amount and the rotation speed n, and the exhaust gas temperature Ta is estimated.
Although the pressure loss ΔP is corrected based on the above, it is also possible to directly correct ΔP from these A and n using a three-dimensional map of A and n and ΔP.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気ガス浄化装置の一実施例を示すブ
ロック図、
FIG. 1 is a block diagram showing an embodiment of an exhaust gas purification device of the present invention,

【図2】その再生動作を示すフローチャート、FIG. 2 is a flowchart showing the reproducing operation,

【図3】パティキュレ−ト捕集量推定動作を示すフロー
チャート、
FIG. 3 is a flowchart showing an operation of estimating the amount of collected particulates,

【図4】温度急変対応サブルーチンを示すフローチャー
ト。
FIG. 4 is a flowchart showing a subroutine for sudden temperature change.

【符号の説明】[Explanation of symbols]

2はフィルタ、6は温度センサ(温度検出手段)、7、
17は圧力センサ(圧力損失検出手段)、8はコントロ
ーラ(補正圧力損失算出手段、再生時期決定手段、排気
温度急変検出手段)、11は着火用ヒータ(電熱手
段)、13はブロワ(給気手段)、18は回転数センサ
(回転数検出手段)、19はアクセル開度センサ(アク
セル開度検出手段)。
2 is a filter, 6 is a temperature sensor (temperature detecting means), 7,
Reference numeral 17 is a pressure sensor (pressure loss detection means), 8 is a controller (correction pressure loss calculation means, regeneration timing determination means, exhaust gas temperature sudden change detection means), 11 is an ignition heater (electric heating means), and 13 is a blower (air supply means). ), 18 is a rotation speed sensor (rotation speed detection means), and 19 is an accelerator opening sensor (accelerator opening detection means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ディ−ゼルエンジンの排気経路に配設され
て前記ディ−ゼルエンジンから排出されるパティキュレ
ートを補集するフィルタと、 前記エンジンの回転数を検出する回転数検出手段と、 前記フィルタの近傍に配設されて前記パティキュレ−ト
を通電により燃焼させて前記フィルタを再生する電熱手
段と、 前記フィルタの再生時に前記フィルタに給気する給気手
段と、 前記フィルタの圧力損失を検出する圧力損失検出手段
と、 前記フィルタの上流側に配設されて前記エンジンの排気
温度を検出する温度検出手段と、 アクセル開度を検出するアクセル開度検出手段と、 前記排気温度の急変状態を検出する排気温度急変検出手
段とを備え、 前記補正圧力損失に基づいてフィルタ再生時期を決定す
るフィルタ再生時期決定手段とを備えることを特徴とす
る排気ガス浄化装置。
1. A filter disposed in an exhaust path of a diesel engine for collecting particulates discharged from the diesel engine; a rotation speed detecting means for detecting a rotation speed of the engine; An electric heating means disposed near the filter to regenerate the filter by burning the particulate by energization, an air supply means for supplying air to the filter when the filter is regenerated, and a pressure loss of the filter is detected. Pressure loss detecting means, a temperature detecting means arranged upstream of the filter for detecting the exhaust temperature of the engine, an accelerator opening detecting means for detecting an accelerator opening, and a sudden change state of the exhaust temperature. Exhaust gas temperature sudden change detection means for detecting, and filter regeneration timing determining means for determining filter regeneration timing based on the corrected pressure loss. Exhaust gas purifying device, characterized in that.
【請求項2】前記排気温度急変検出手段は、前記エンジ
ンの回転数の急変により検出するものである請求項1記
載の排気ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the exhaust gas temperature sudden change detecting means detects the sudden change in the engine speed.
JP5289259A 1993-11-18 1993-11-18 Exhaust gas purification device Pending JPH07139334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289259A JPH07139334A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289259A JPH07139334A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
JPH07139334A true JPH07139334A (en) 1995-05-30

Family

ID=17740845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289259A Pending JPH07139334A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JPH07139334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087672B1 (en) * 2018-10-22 2020-03-11 현대위아 주식회사 Apparatus for processing exhaust gas using diesel particulate filter and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087672B1 (en) * 2018-10-22 2020-03-11 현대위아 주식회사 Apparatus for processing exhaust gas using diesel particulate filter and method thereof

Similar Documents

Publication Publication Date Title
JPH07317529A (en) Exhaust emission control device of diesel engine
JPH0979037A (en) Abnormality detecting device for radiator cooling fan system
JPH0711936A (en) Exhaust gas purification device
JPH07180528A (en) Exhaust emission control device
JPH07139334A (en) Exhaust gas purification device
JPH06137133A (en) Exhaust emission control device for internal combustion engine
JPH08284644A (en) Exhaust particulate purifying device
JPH0711935A (en) Exhaust gas purification device
KR0148603B1 (en) An exhaust gas purifier
JPH1077825A (en) Regenerating device for exhaust gas filter
JPH0777028A (en) Exhaust gas purifier
JPH06330732A (en) Exhaust gas cleaner
JPH06330728A (en) Exhaust gas cleaner
JPH06341311A (en) Exhaust emission control device
JPH0783026A (en) Exhaust emission control device
JPH0763039A (en) Exhaust emission control device
JPH06341312A (en) Exhaust emission control device
JPH10306743A (en) Rotating speed measuring method and measuring device for diesel engine, and exhaust emission cleaning device for diesel engine
JPH06330729A (en) Exhaust gas cleaner
JPH06330727A (en) Exhaust gas cleaner
JPH0619787Y2 (en) Particulate trap filter regeneration device
JP3086093B2 (en) Exhaust gas purification device
JPS59162314A (en) Exhaust gas purifying device for diesel engine
JPH07139335A (en) Exhaust gas purification device
JPH06330731A (en) Exhaust gas cleaner