JPH07139335A - Exhaust gas purification device - Google Patents

Exhaust gas purification device

Info

Publication number
JPH07139335A
JPH07139335A JP5289275A JP28927593A JPH07139335A JP H07139335 A JPH07139335 A JP H07139335A JP 5289275 A JP5289275 A JP 5289275A JP 28927593 A JP28927593 A JP 28927593A JP H07139335 A JPH07139335 A JP H07139335A
Authority
JP
Japan
Prior art keywords
filter
flow rate
air supply
air
electric heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5289275A
Other languages
Japanese (ja)
Inventor
Hiroyuki Taniguchi
浩之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP5289275A priority Critical patent/JPH07139335A/en
Publication of JPH07139335A publication Critical patent/JPH07139335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To detect any opening/closing trouble of an opening/closing valve for opening/closing a space between an intake means and an exhaust pipe with a simple structure. CONSTITUTION:An intake air flow rate is accurately controlled by feedback- controlling an air intake means 13 by detecting an intake air flow rate of the air intake means 13 at the time of regenerating a filter 2. Additionally, opening trouble of an opening/closing valve 16 is discriminated by a quantity of the intake air flow rate. A temperature in the vicinity of the filter is detected during a period until a particulates are ignited by utilizing a temperature sensor 6 for detecting exhaust gas temperature which is used for calculation of a particulate collective quantity, after electrification to the air intake means 13 at the initial time of regeneration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼル機関の排気
中に含まれる微粒子成分(パティキュレ−ト)を捕集
し、再生する排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for collecting and regenerating particulate matter (particulates) contained in the exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】特開平4−325707号公報は、ディ
−ゼルエンジンの排気経路に配設されたフィルタに捕集
されたパティキュレ−トを燃焼してフィルタを再生する
ために、フィルタ近傍に設けたヒータに通電するととも
にエアポンプによりフィルタの上流側に外気を給気する
ことを開示している。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 4-325707 is provided in the vicinity of a filter in order to regenerate the filter by burning particulates collected by a filter arranged in an exhaust path of a diesel engine. It is disclosed that the heater is energized and the outside air is supplied to the upstream side of the filter by the air pump.

【0003】また、同公報は、エンジン運転時に排気ガ
ス中のパティキュレ−トがエアポンプを通じて外部に漏
洩したり、又はエアポンプに堆積してその作動不良を招
くのを防止するためにエアポンプの下流側の給気管路に
開閉弁を配設し、再生時のみこの開閉弁を開くことを提
案している。
Further, in the publication, in order to prevent the particulates in the exhaust gas from leaking to the outside through the air pump or accumulating on the air pump and causing malfunction of the engine during operation of the engine, the publication discloses that the particulates on the downstream side of the air pump. It is proposed that an on-off valve be installed in the air supply line and that this on-off valve be opened only during regeneration.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記した
公報の開閉弁は排気ガスの熱やパティキュレ−トの影響
を受け、特にその弁体の摺動面にパティキュレ−トが侵
入して、開閉が困難となる場合があることが実験の結果
判明した。一方、フィルタ再生時には一定の制御シーケ
ンスに基づいてエアポンプやヒータに通電されるので、
開閉弁が開不良となるとヒータやフィルタやエアポンプ
が過熱し、最終的には故障する可能性が生じ、開閉弁が
閉不良となると未処理排気ガスのリークやエアポンプの
摺動面へのパティキュレ−トの付着などの可能性が生じ
てしまう。
However, the on-off valve disclosed in the above publication is affected by heat of exhaust gas and particulates, and in particular, the particulates enter the sliding surface of the valve body, which makes opening and closing difficult. As a result of the experiment, it was found that On the other hand, during filter regeneration, the air pump and heater are energized based on a fixed control sequence.
If the on-off valve opens improperly, the heater, filter, or air pump may overheat, which may eventually lead to failure.If the on-off valve fails improperly, untreated exhaust gas may leak or particulates on the sliding surface of the air pump. There is a possibility that there will be adhesion of the toner.

【0005】本発明は上記問題点に鑑みなされたもので
あり、その第1の目的は、装置構成を複雑化することな
く開閉弁の開閉不良を警報可能な排気ガス浄化装置を提
供することにある。またその第2の目的は、装置構成を
複雑化することなく開閉弁の開閉不良に伴う障害を防止
可能な排気ガス浄化装置を提供することにある。
The present invention has been made in view of the above problems, and a first object of the present invention is to provide an exhaust gas purifying apparatus capable of issuing a warning of a defective opening / closing of an opening / closing valve without complicating the apparatus structure. is there. A second object of the present invention is to provide an exhaust gas purifying device that can prevent a failure due to a defective opening / closing of the on-off valve without complicating the device configuration.

【0006】[0006]

【課題を解決するための手段】第1発明の排気ガス浄化
装置は、ディ−ゼルエンジンの排気経路に配設されたフ
ィルタと、前記フィルタの加熱により前記フィルタに捕
集されたパティキュレ−トを燃焼させて前記フィルタを
再生する電熱手段と、給気管路を通じて前記フィルタの
上流側の前記排気経路に外部空気を給気する給気手段
と、前記給気手段の出口側にて前記給気管路に配設され
る開閉弁と、前記電熱手段の近傍に配設された温度検出
手段と、前記温度検出手段が検出する排気ガス温度に基
づいて前記フィルタのパティキュレ−ト捕集量を算出す
るパティキュレ−ト捕集量算出手段と、前記パティキュ
レ−ト捕集量に基づいてフィルタ再生時期を判定するフ
ィルタ再生時期判定手段と、前記給気手段の流量を検出
する流量検出手段と、前記電熱手段及び給気手段への通
電を所定の順序で制御するとともに、前記流量検出手段
が検出する給気流量に基づいて前記フィルタ再生時の給
気流量をフィードバック制御する通電制御手段と、前記
給気手段への通電がなされた後、前記パティキュレ−ト
が着火するまでの期間にて検出した前記給気手段の給気
流量に基づいて前記開閉弁の開不良を判別する開閉弁開
不良判別手段と、前記開不良時に前記電熱手段及び前記
給気手段への通電を遮断する再生中断手段と、を備える
ことを特徴としている。
An exhaust gas purifying apparatus according to a first aspect of the present invention comprises a filter arranged in an exhaust passage of a diesel engine and a particulate collected by the filter by heating the filter. Electric heating means for burning and regenerating the filter, air supply means for supplying external air to the exhaust path on the upstream side of the filter through an air supply pipeline, and the air supply pipeline at the outlet side of the air supply means An on-off valve, a temperature detecting means arranged in the vicinity of the electric heating means, and a particulate matter for calculating a particulate collection amount of the filter based on an exhaust gas temperature detected by the temperature detecting means. A trap collection amount calculating means, a filter regeneration timing determining means for determining a filter regeneration timing based on the particulate trapping volume, and a flow rate detecting means for detecting a flow rate of the air supply means. An energization control unit that controls energization to the electric heating unit and the air supply unit in a predetermined order and that feedback-controls the air supply flow rate during the filter regeneration based on the air supply flow rate detected by the flow rate detection unit, After the power supply to the air supply means is energized, the on-off valve open failure determination for determining the open failure of the on-off valve based on the air supply flow rate of the air supply means detected during the period until the particulate is ignited Means, and regeneration interruption means for interrupting the power supply to the electric heating means and the air supply means at the time of the opening failure.

【0007】第2発明の排気ガス浄化装置は、ディ−ゼ
ルエンジンの排気経路に配設されたフィルタと、前記フ
ィルタの加熱により前記フィルタに捕集されたパティキ
ュレ−トを燃焼させて前記フィルタを再生する電熱手段
と、給気管路を通じて前記フィルタの上流側の前記排気
経路に外部空気を給気する給気手段と、前記給気手段の
出口側にて前記給気管路に配設される開閉弁と、前記電
熱手段の近傍に配設された温度検出手段と、前記温度検
出手段が検出する排気ガス温度に基づいて前記フィルタ
のパティキュレ−ト捕集量を算出するパティキュレ−ト
捕集量算出手段と、前記パティキュレ−ト捕集量に基づ
いてフィルタ再生時期を判定するフィルタ再生時期判定
手段と、前記電熱手段及び給気手段への通電を所定の順
序で制御する通電制御手段と、前記給気手段への通電が
なされた後、前記パティキュレ−トが着火するまでの期
間にて検出した前記温度検出手段の検出温度に基づいて
前記開閉弁の開不良を判別する開閉弁開不良判別手段
と、前記開不良時に前記電熱手段及び前記給気手段への
通電を遮断する再生中断手段とを備えることを特徴とし
ている。
In the exhaust gas purifying apparatus of the second invention, the filter disposed in the exhaust path of the diesel engine and the particulate matter collected by the filter by heating the filter are burned to burn the filter. Electric heating means for regeneration, air supply means for supplying external air to the exhaust path on the upstream side of the filter through the air supply pipeline, and opening / closing provided in the air supply pipeline on the outlet side of the air supply means A valve, a temperature detecting means arranged in the vicinity of the electric heating means, and a particulate trapping amount calculation for calculating a particulate trapping amount of the filter based on an exhaust gas temperature detected by the temperature detecting means. Means, a filter regeneration timing determining means for determining a filter regeneration timing based on the particulate collection amount, and an energization for controlling energization of the electric heating means and the air supply means in a predetermined order. Control means and opening / closing for determining whether the opening / closing valve is open poorly based on the temperature detected by the temperature detecting means during the period until the particulates are ignited after the air supply means is energized. It is characterized in that it comprises a valve opening failure determination means and a regeneration interruption means for interrupting the electric power supply to the electric heating means and the air supply means when the opening failure occurs.

【0008】第3発明の排気ガス浄化装置は、ディ−ゼ
ルエンジンの排気経路に配設されたフィルタと、前記フ
ィルタの加熱により前記フィルタに捕集されたパティキ
ュレ−トを燃焼させて前記フィルタを再生する電熱手段
と、給気管路を通じて前記フィルタの上流側の前記排気
経路に外部空気を給気する給気手段と、前記給気手段の
出口側にて前記給気管路に配設される開閉弁と、前記電
熱手段の近傍に配設された温度検出手段と、前記温度検
出手段が検出する排気ガス温度に基づいて前記フィルタ
のパティキュレ−ト捕集量を算出するパティキュレ−ト
捕集量算出手段と、前記パティキュレ−ト捕集量に基づ
いてフィルタ再生時期を判定するフィルタ再生時期判定
手段と、前記給気手段の流量を検出する流量検出手段
と、前記電熱手段及び給気手段への通電を所定の順序で
制御するとともに、前記流量検出手段が検出する給気流
量に基づいて前記フィルタ再生時の給気流量をフィード
バック制御する通電制御手段と、エンジン運転時の前記
流量検出手段の検出流量に基づいて前記開閉弁の閉不良
を判別する開閉弁閉不良判別手段と、前記閉不良時に警
報を出力する警報手段とを備えることを特徴とている。
In the exhaust gas purifying apparatus of the third invention, the filter disposed in the exhaust passage of the diesel engine and the particulate matter collected by the filter due to the heating of the filter are burned to burn the filter. Electric heating means for regeneration, air supply means for supplying external air to the exhaust path on the upstream side of the filter through the air supply pipeline, and opening / closing provided in the air supply pipeline on the outlet side of the air supply means A valve, a temperature detecting means arranged in the vicinity of the electric heating means, and a particulate trapping amount calculation for calculating a particulate trapping amount of the filter based on an exhaust gas temperature detected by the temperature detecting means. Means, a filter regeneration timing determining means for determining a filter regeneration timing based on the particulate collection amount, a flow rate detecting means for detecting a flow rate of the air supply means, the electric heating means and Energization control means for controlling energization to the air supply means in a predetermined order, and feedback control of the air supply flow rate during the filter regeneration based on the air supply flow rate detected by the flow rate detection means; The present invention is characterized by including an on-off valve closing failure determination means for determining a closing failure of the on-off valve based on the flow rate detected by the flow rate detection means, and an alarm means for outputting an alarm when the closing failure is caused.

【0009】[0009]

【作用】各発明において、給気手段はフィルタに給気
し、電熱手段はフィルタを加熱してパティキュレ−トを
燃焼させる。開閉弁は給気手段とフィルタの上流側の排
気経路との間を開閉する。給気流量や排気ガス温度を用
いてパティキュレ−ト捕集量が算出され、このパティキ
ュレ−ト捕集量に基づいてフィルタ再生時期が判定さ
れ、所定の順序で電熱手段及び給気手段に通電してフィ
ルタ再生すなわちパティキュレ−ト燃焼がなされる。
In each of the inventions, the air supply means supplies air to the filter, and the electric heating means heats the filter to burn the particulates. The on-off valve opens and closes between the air supply means and the exhaust path on the upstream side of the filter. The particulate collection amount is calculated using the supply air flow rate and the exhaust gas temperature, the filter regeneration timing is determined based on the particulate collection amount, and the electric heating means and the air supply means are energized in a predetermined order. Filter regeneration, that is, particulate combustion is performed.

【0010】第1、第3発明では特に、フィルタ再生時
に給気手段の給気流量を検出して給気手段をフィードバ
ック制御することにより、給気流量が精密制御される。
このようにすると、フィルタ再生の際、燃焼温度が高く
(例えば1000℃以上)なり過ぎてフィルタの溶損や
シール部材の寿命低下が生じたり、燃焼温度が低く(例
えば600℃以下)なり過ぎてフィルタ再生不良が生じ
たりすることがなく、良好な再生が可能となる。すなわ
ち、試験結果によれば、燃焼温度を決定する最も重要な
パラメータは供給酸素流量すなわち給気流量であって、
そのばらつきが上記燃焼温度変動の主因である。そこ
で、第1、第3発明ではフィルタ再生時に給気手段の給
気流量を検出して給気手段をフィードバック制御するこ
とにより、給気流量を精密制御して上記問題を解決して
いる。
In the first and third aspects of the invention, particularly, the supply flow rate is precisely controlled by detecting the supply flow rate of the supply means and performing feedback control of the supply means during filter regeneration.
In this case, when the filter is regenerated, the combustion temperature becomes too high (for example, 1000 ° C. or higher), which causes the melting loss of the filter and the life of the seal member, or the combustion temperature becomes too low (for example, 600 ° C. or less). Good regeneration is possible without causing filter regeneration failure. That is, according to the test results, the most important parameter that determines the combustion temperature is the supply oxygen flow rate, that is, the supply air flow rate,
The variation is the main cause of the fluctuation of the combustion temperature. Therefore, in the first and third aspects of the invention, the above problem is solved by precisely controlling the air supply flow rate by detecting the air supply flow rate of the air supply means and performing feedback control of the air supply means during filter regeneration.

【0011】更に第1発明では、上記給気流量検出手段
を用いて、フィルタ再生初期のパティキュレ−トが着火
するまでの期間に給気流量を検出し、検出した給気流量
の多少により開閉弁の開不良を判別する。すなわち、給
気流量が少なければその開不良と判定して電熱手段及び
給気手段への通電を遮断する。また第3発明では、上記
給気流量検出手段を用いて、エンジン運転期間の給気手
段通過流量を検出し、検出した流量の多少により開閉弁
の閉不良を判別する。すなわち、給気流量が多ければそ
の閉不良と判定して電熱手段及び給気手段への通電を遮
断する。
Further, in the first aspect of the present invention, the supply air flow rate detecting means is used to detect the supply air flow rate until the particulates in the initial stage of filter regeneration are ignited, and the on-off valve is detected depending on the detected supply air flow rate. To determine the open failure. That is, if the air supply flow rate is small, it is determined that the opening is defective, and the power supply to the electric heating means and the air supply means is cut off. Further, in the third aspect of the invention, the supply air flow rate detecting means is used to detect the flow rate of the air supply means passing through during the engine operation period, and whether the on-off valve is closed or not is determined depending on the detected flow rate. That is, if the supply air flow rate is large, it is determined that the closing is defective, and the power supply to the electric heating means and the supply means is cut off.

【0012】なお上記第1、第3発明では給気手段の故
障も検出することができる。また第2発明では、上記し
たパティキュレ−ト捕集量の算出に用いた排気ガス温度
検出用の温度センサを用いて、再生初期にて給気手段へ
の通電がなされた後、パティキュレ−トが着火するまで
の期間にてフィルタ近傍の温度を検出する。ここでもし
検出温度が所定レベルを超過すれば、開閉弁の開不良と
判定して電熱手段及び給気手段への通電を遮断する。
In the first and third aspects of the invention, it is possible to detect a failure of the air supply means. In the second aspect of the invention, the temperature sensor for detecting the exhaust gas temperature used for calculating the amount of collected particulates described above is used, and after the power supply means is energized at the initial stage of regeneration, the particulates are discharged. The temperature near the filter is detected during the period until ignition. Here, if the detected temperature exceeds the predetermined level, it is determined that the on-off valve is not properly opened, and the power supply to the electric heating means and the air supply means is cut off.

【0013】(発明の効果)以上説明したように上記各
発明では、フィルタ再生のために設置したセンサを用い
て開閉弁の開閉不良を検出し、特に第1、第2発明で
は、電熱手段及び給気手段への通電を遮断するので、こ
れら電熱手段及び給気手段の故障を防止することができ
る。また、第3発明では給気手段の不良を防止し、外部
環境の汚染を防止することができる。
(Effects of the Invention) As described above, in each of the above inventions, the opening and closing valve open / close failure is detected using the sensor installed for filter regeneration. Particularly, in the first and second inventions, the heating means and Since the power supply to the air supply unit is cut off, it is possible to prevent the electric heating unit and the air supply unit from being damaged. Further, according to the third aspect of the invention, it is possible to prevent the defective air supply means and prevent the pollution of the external environment.

【0014】[0014]

【実施例】【Example】

(実施例1)本発明の排気ガス浄化装置の一実施例を図
1に示す。この排気ガス浄化装置は両端密閉のフィルタ
収容ケース1を有し、フィルタ収容ケース1内にはその
上流側から下流側へ、排気圧検出用の上流側圧力センサ
7、温度センサ6(本発明でいう温度検出手段)、ヒー
タ(本発明でいう電熱手段)11、フィルタ2、フィル
タ下流圧力検出用の下流側圧力センサ17が順番に配置
されている。フィルタ収容ケース1の上流側の端壁には
ディーゼルエンジン20の排気管3が配設されており、
排気管3の途中から送気管(本発明でいう給気管路)1
0が分岐されている。送気管10は開閉弁16を介して
給気用のブロワ13の吐出口に連結されており、送気管
10の吸入口は給気流量検出センサ(本発明でいう給気
流量検出手段)19を通じてブロワ13の吸入口に連結
されている。
(Embodiment 1) An embodiment of the exhaust gas purifying apparatus of the present invention is shown in FIG. This exhaust gas purifying apparatus has a filter housing case 1 whose both ends are hermetically sealed, and an upstream pressure sensor 7 for detecting exhaust pressure and a temperature sensor 6 (in the present invention) from the upstream side to the downstream side in the filter housing case 1. The temperature detecting means), the heater (electric heating means in the present invention) 11, the filter 2, and the downstream pressure sensor 17 for detecting the filter downstream pressure are sequentially arranged. The exhaust pipe 3 of the diesel engine 20 is provided on the upstream end wall of the filter housing case 1,
From the middle of the exhaust pipe 3 to the air supply pipe (the air supply pipe line in the present invention) 1
0 is branched. The air supply pipe 10 is connected to the discharge port of the blower 13 for air supply through an on-off valve 16, and the suction port of the air supply pipe 10 is passed through a supply air flow rate detection sensor (supply air flow rate detection means in the present invention) 19. It is connected to the suction port of the blower 13.

【0015】一方、上記したヒータ11、ブロワ13は
コントローラ8により駆動制御され、また、ディーゼル
エンジン20に装着された回転数センサ18の信号はコ
ントローラ8に出力される。コントローラ8はA/Dコ
ンバータ内蔵マイコン(図示せず)を具備しており、各
種データを処理して、ヒータ11、ブロワ13を制御し
て再生を実行するともに、異常発生時に異常警報ランプ
9を点灯する(異常信号を出力する)。91は再生指示
ランプである。
On the other hand, the above-mentioned heater 11 and blower 13 are drive-controlled by the controller 8, and the signal of the rotation speed sensor 18 mounted on the diesel engine 20 is output to the controller 8. The controller 8 is equipped with a microcomputer (not shown) with a built-in A / D converter, processes various data, controls the heater 11 and the blower 13 to execute regeneration, and also activates an abnormality warning lamp 9 when an abnormality occurs. Lights up (an abnormal signal is output). Reference numeral 91 is a reproduction instruction lamp.

【0016】フィルタ2はハニカムセラミックフィルタ
(日本碍子kk製、直径5.66インチ×長さ6イン
チ)であって、コ−ジェライトを素材として円柱形状に
焼成されている。フィルタ2はその両端面を貫通する多
数の通気孔を有し、隣接する通気孔の一方は上流端で封
栓され、その他方は下流端で封栓されている。排気ガス
は隣接する通気孔間の多孔性隔壁を透過し、パティキュ
レ−トだけが通気孔内に捕集される。フィルタ2の両端
面はケース1の両端面に所定距離を隔てて対面してい
る。
The filter 2 is a honeycomb ceramic filter (manufactured by Nippon Insulator kk, diameter 5.66 inches × length 6 inches), which is fired into a cylindrical shape using cordierite as a raw material. The filter 2 has a large number of vent holes penetrating both end faces thereof, one of the adjacent vent holes is plugged at the upstream end, and the other is plugged at the downstream end. The exhaust gas passes through the porous partition wall between the adjacent vent holes, and only the particulates are trapped in the vent holes. Both end faces of the filter 2 face the both end faces of the case 1 with a predetermined distance.

【0017】ヒータ3はニクロム線を素材とする電熱抵
抗体からなり、フィルタ2の再生時上流側に当たる端面
に近接配置されている。以下、この装置の動作を説明す
る。 (パティキュレ−ト捕集動作)ディ−ゼルエンジン20
から排出された排気ガスは排気管3を通じてケース1内
に導入され、排気ガス中のパティキュレ−トはフィルタ
2で捕集され、浄化された排気ガスは尾管4から外部に
排出される。
The heater 3 is made of an electrothermal resistor made of a nichrome wire and is arranged in proximity to the end face of the filter 2 which is on the upstream side during regeneration. The operation of this device will be described below. (Particulate collection operation) Diesel engine 20
The exhaust gas discharged from the exhaust gas is introduced into the case 1 through the exhaust pipe 3, particulates in the exhaust gas are collected by the filter 2, and the purified exhaust gas is discharged to the outside from the tail pipe 4.

【0018】(フィルタ再生動作)次に、このフィルタ
2の再生動作を図2〜図8のフローチャートに従って説
明する。まず、エンジン運転期間中に実施するフィルタ
再生時期判別ルーチンについて図2を参照して説明す
る。
(Filter Regenerating Operation) Next, the regenerating operation of the filter 2 will be described with reference to the flow charts of FIGS. First, a filter regeneration timing determination routine executed during engine operation will be described with reference to FIG.

【0019】ステップ300にて後述するバルブ閉確認
サブルーチンを実施した後、ステップ100にて、圧力
センサ7、17が検出する排気圧力P1,P2と、回転
数センサ18が検出するエンジン回転数nと、排気ガス
温度Tを検出する温度センサ6に基づいて、パティキュ
レ−ト捕集量Gを算出する。このパティキュレ−ト捕集
量Gの算出を、図4のサブルーチンにて詳細に説明す
る。
After the valve closing confirmation subroutine described below is executed in step 300, the exhaust pressures P1 and P2 detected by the pressure sensors 7 and 17 and the engine speed n detected by the rotation speed sensor 18 are calculated in step 100. The particulate collection amount G is calculated based on the temperature sensor 6 that detects the exhaust gas temperature T. The calculation of the particulate collection amount G will be described in detail in the subroutine of FIG.

【0020】まず、ステップ1001にて、排気圧力P
1、P2、回転数n及び排気ガス温度Tを入力する。次
に、ステップ1002にて、フィルタ2の圧力損失(差
圧)ΔP=P1−P2に対する回転数n、排気ガス温度
Tの影響を排除するために、以下の補正式により、補正
差圧ΔPeqiを求める。
First, at step 1001, the exhaust pressure P
1, P2, rotation speed n, and exhaust gas temperature T are input. Next, in step 1002, in order to eliminate the influence of the rotational speed n and the exhaust gas temperature T on the pressure loss (differential pressure) ΔP = P1-P2 of the filter 2, the corrected differential pressure ΔPeqi is calculated by the following correction formula. Ask.

【0021】 ΔPeqi=ΔP×(523/T)×(2600/n) 排気ガス温度Tは絶対温度であり、回転数nの単位はr
pmである。すなわち、上式により測定差圧ΔPを、絶
対温度Tが523で、回転数nが2600の場合の差圧
に相当する補正差圧ΔPeqiを算出する。したがっ
て、本実施例では、差圧は排気ガス温度T又は回転数n
の変動に対して逆比例するものと近似している。この補
正差圧ΔPeqiは50msec毎に算出する。
ΔPeqi = ΔP × (523 / T) × (2600 / n) The exhaust gas temperature T is an absolute temperature, and the unit of the rotation speed n is r.
pm. That is, the measured differential pressure ΔP is calculated by the above equation, and the corrected differential pressure ΔPeqi corresponding to the differential pressure when the absolute temperature T is 523 and the rotation speed n is 2600 is calculated. Therefore, in this embodiment, the differential pressure is the exhaust gas temperature T or the rotation speed n.
Is inversely proportional to the fluctuation of. This corrected differential pressure ΔPeqi is calculated every 50 msec.

【0022】次に、ステップ1003にて、補正差圧Δ
Peqiの直前64個の各算出値の移動平均を求め、こ
れを平均補正差圧ΔPeqmとする。次に、ステップ1
004にて、マイコン式のコントローラ8内蔵のメモリ
(図示せず)に格納されて平均補正差圧ΔPeqmと捕
集量Gとの関係を記憶するテーブルから、捕集量Gをサ
ーチする。
Next, at step 1003, the corrected differential pressure Δ
The moving average of the 64 calculated values immediately before Peqi is calculated, and this is set as the average correction differential pressure ΔPeqm. Next, step 1
At 004, the collection amount G is searched from the table stored in the memory (not shown) built in the microcomputer-type controller 8 and storing the relationship between the average correction differential pressure ΔPeqm and the collection amount G.

【0023】ステップ102では、サーチしたパティキ
ュレ−ト捕集量Gが所定のしきい値Gtを超過したかど
うかを調べ、超過しなければステップ100にリターン
し、超過したらステップ103に進む。ステップ103
では、フィルタ再生時期を表示するランプ91を点灯し
てルーチンを終了する。
In step 102, it is checked whether or not the searched particulate collection amount G exceeds a predetermined threshold value Gt. If it does not exceed, the process returns to step 100, and if it does, the process proceeds to step 103. Step 103
Then, the lamp 91 for displaying the filter regeneration time is turned on and the routine ends.

【0024】その後、運転者がランプ91の点灯を視認
し、エンジン停止状態にて再生スイッチ(図示せず)を
オンすると、図3に示すフィルタ再生実行ルーチンが開
始される。このルーチンでは、まずステップ104にて
ブロワ13を起動し、内蔵のタイマーを起動し(10
6)、ステップ400にて後述するバルブ開確認サブル
ーチンを実施した後、タイマー制御サブルーチンを実行
して再生動作を行う(108)。
After that, when the driver visually recognizes that the lamp 91 is lit and turns on the regeneration switch (not shown) while the engine is stopped, the filter regeneration execution routine shown in FIG. 3 is started. In this routine, first, in step 104, the blower 13 is started, and the built-in timer is started (10
6) In step 400, a valve opening confirmation subroutine, which will be described later, is executed, and then a timer control subroutine is executed to perform a regeneration operation (108).

【0025】タイマー制御サブルーチンについて図5を
参照しつつ以下に説明する。このサブルーチンは、タイ
マーに基づいて通電、送風制御を行うものであり、以
下、前期放冷モード、予熱モード、着火モード、燃焼伝
播モード、後期放冷モードの順に制御動作を実行する。 (前期放冷モード)まずステップ1161にて、ブロワ
13へ通電して給気流量を190リットル/分と大きく
設定し、一分間送風し、フィルタ2やヒータ11を常温
にまで冷却する。これは、エンジン排気ガスなどによる
加熱でフィルタ2やヒータ11の初期温度がばらつく
と、着火時期や最高温度がばらついてしまうからであ
る。 (予熱モード)次のステップ1162にて、ヒータ11
へ0.8kWの電力を給電し、ブロワ13の給気流量を
190リットル/分のままとし、10分間継続する(1
163)。この大給気流量の送風によりフィルタ2の各
部は均一に予熱される。 (着火モード)次のステップ1164にて、ヒータ11
への給電電力を1.3kWに増大し、かつ、ブロワ13
の給気流量を20リットル/分に大幅削減し、3分間継
続する(1165)。この加熱電力増大、給気流量低減
によりフィルタ2の前端面のパティキュレ−トの温度が
急上昇し、着火する。 (燃焼伝播モード)次のステップ1166にて、ヒータ
11への給電電力を1.2kWに小幅削減し、かつ、ブ
ロワ13の給気流量を20リットル/分のままとし、2
2分間継続する(1167)。これにより、フィルタ2
の前端面から下流方向へ燃焼が進行する。
The timer control subroutine will be described below with reference to FIG. This subroutine controls energization and air blowing based on a timer, and thereafter executes control operations in the order of the first term cooling mode, preheating mode, ignition mode, combustion propagation mode, and second term cooling mode. (First term cooling mode) First, in step 1161, the blower 13 is energized to set the air supply flow rate to a large value of 190 liters / minute, and air is blown for one minute to cool the filter 2 and the heater 11 to room temperature. This is because if the initial temperature of the filter 2 and the heater 11 varies due to heating by engine exhaust gas, the ignition timing and maximum temperature also vary. (Preheat mode) In the next step 1162, the heater 11
0.8 kW of electric power is supplied to the blower 13 and the air supply flow rate of the blower 13 is kept at 190 liters / minute, which continues for 10 minutes (1
163). By the blowing of the large air supply flow rate, each part of the filter 2 is uniformly preheated. (Ignition mode) In the next step 1164, the heater 11
Power supply to the blower 13
The supply air flow rate of is reduced to 20 liters / minute, and is continued for 3 minutes (1165). Due to the increase of the heating power and the decrease of the supply air flow rate, the temperature of the particulates on the front end face of the filter 2 suddenly rises and the ignition occurs. (Combustion Propagation Mode) In the next step 1166, the power supply to the heater 11 is slightly reduced to 1.2 kW, and the supply flow rate of the blower 13 is kept at 20 liters / minute.
Continue for 2 minutes (1167). This allows the filter 2
Combustion progresses downstream from the front end face of the.

【0026】ただ、この実施例では、給気流量が少ない
ためにパティキュレ−ト燃焼に伴う発熱量はそれほど大
きくなく、かつ、いわゆる風圧が弱いので気流方向へ延
焼しにくくなり、更に、燃焼がフィルタ2の下流側へ進
むにつれて熱収支が放熱側に傾くために温度が低下し、
フィルタ2の径方向中心部下流側では燃焼持続温度(約
600℃)以下となって燃焼が停止する。
However, in this embodiment, since the flow rate of the supply air is small, the amount of heat generated by the particulate combustion is not so large, and because the so-called wind pressure is weak, it is difficult to spread the fire in the direction of the air flow. As the heat balance leans toward the heat dissipation side, the temperature decreases as it goes to the downstream side of 2.
On the downstream side of the central portion of the filter 2 in the radial direction, the combustion temperature becomes lower than about 600 ° C. and the combustion is stopped.

【0027】この燃焼停止により、従来のようにフィル
タ2の径方向中心部が下流側端面まで燃焼が進み、空気
抵抗が減少して給気流量が径方向中心部を素通りするこ
とが防止できる。そのため、フィルタ2の径方向中間部
の中流部は酸素の供給により下流部直前まで充分に燃焼
持続し、また、フィルタ2の外周部上流側も同様の理由
でその中流部直前まで燃焼持続する。
By stopping this combustion, it is possible to prevent the radial center portion of the filter 2 from being burned to the downstream end face as in the conventional case, the air resistance is reduced, and the supply air flow rate does not pass through the radial center portion. Therefore, the middle-flow portion of the radial middle portion of the filter 2 is sufficiently burned until just before the downstream portion due to the supply of oxygen, and the upstream side of the outer peripheral portion of the filter 2 is also burned until just before the middle-flow portion for the same reason.

【0028】すなわち、この燃焼伝播モードによれば、
フィルタ2の径方向中心部下流側がフィルタ2の下流側
端面まで燃焼し尽くしてフィルタ2の径方向中心部の空
気抵抗が低下し、給気流量が径方向中心部を素通りする
ことにより、径方向中間部及び外周部に充分な酸素が供
給されずに、延焼が遅滞するのを防ぐことができる。 (後期放冷モード)次のステップ1168にて、ヒータ
11への給電電力を停止するとともに、ブロワ13の給
気流量を90リットル/分に増大し、10分間継続する
(1169)。
That is, according to this combustion propagation mode,
The downstream side of the radial center portion of the filter 2 burns up to the downstream end surface of the filter 2, the air resistance of the radial center portion of the filter 2 decreases, and the supply air flow rate passes through the radial central portion. It is possible to prevent the spread of flame from being delayed due to insufficient oxygen being supplied to the intermediate portion and the outer peripheral portion. (Late term cooling mode) In the next step 1168, the power supply to the heater 11 is stopped and the supply flow rate of the blower 13 is increased to 90 liters / minute for 10 minutes (1169).

【0029】このように給気流量を大幅に増大すると、
酸素供給量の増大、特に径方向中心部下流側への酸素供
給量の増大により、径方向中心部下流側にて燃焼が再開
され、また、径方向中間部下流側や外周部中流、下流側
での燃焼も加速され、急速かつ各部均一に再生が行われ
る。その後、各部のパティキュレ−トの燃焼が終了した
後、大給気流量によりフィルタ2が冷却された後、ブロ
ワ13をオフし(1170)、再生が終了する。
When the supply air flow rate is greatly increased in this way,
Combustion is restarted on the downstream side of the radial center part due to the increase of the oxygen supply amount, especially the oxygen supply amount on the downstream side of the radial center part. Combustion is also accelerated, and regeneration is performed rapidly and uniformly in each part. Then, after the combustion of the particulates in each part is completed, the filter 2 is cooled by the large air supply flow rate, the blower 13 is turned off (1170), and the regeneration is completed.

【0030】次に、ブロワ13の空気流量の制御とブロ
ワ点検とを行う割り込みルーチンを図6を参照して説明
する。この割り込みルーチンは所定の短時間間隔(例え
ば数十msec)毎に実施される。まずブロワ運転指令
が出力されているかどうかを調べ(200)、でていな
ければただちにメインルーチンにリターンし、出ていれ
ば、空気流量センサ19から空気流量を検出する(20
2)。
Next, an interrupt routine for controlling the air flow rate of the blower 13 and checking the blower will be described with reference to FIG. This interrupt routine is executed at predetermined short time intervals (for example, several tens of msec). First, it is checked whether or not the blower operation command is output (200). If not, the process immediately returns to the main routine, and if it is output, the air flow rate sensor 19 detects the air flow rate (20).
2).

【0031】次に、予め記憶しているその時点の目標流
量と検出した空気流量との差ΔFを検出し(204)、
差ΔFに対応するブロワ13内蔵の駆動モータ(図示せ
ず)への通電デューティ比を算出し(206)、算出し
た通電デューティ比をこの駆動モータへの通電制御部
(コントローラ8内蔵、図示せず)に指令する(20
8)。この通電制御部は入力される通電デューティ比を
ホールドするとともにこの通電デューティ比の定周期3
相パルス信号電圧を出力するゲート制御部と、上記定周
期3相パルス信号電圧で開閉されるMOSパワートラン
ジスタ回路からなるが、構成及び動作は周知であるの
で、詳細説明は省略する。
Next, the difference ΔF between the target flow rate stored at that time and the detected air flow rate is detected (204),
An energization duty ratio to a drive motor (not shown) with a built-in blower 13 corresponding to the difference ΔF is calculated (206), and the calculated energization duty ratio is applied to an energization control unit (built-in controller 8; not shown) for this drive motor. ) (20)
8). The energization control unit holds the energization duty ratio that is input, and also determines the energization duty ratio constant period 3
It comprises a gate control unit for outputting a phase pulse signal voltage and a MOS power transistor circuit which is opened / closed by the above-mentioned fixed-cycle three-phase pulse signal voltage. However, since its configuration and operation are well known, detailed description thereof will be omitted.

【0032】これにより、ブロワ13は差ΔFが0とな
るようにフィードバック制御されて正確な目標回転数で
回転することとなる。次に、今回の通電デューティ比が
100%であるかどうかを調べ(210)、そうであれ
ばステップ212に進み、そうでなければメインルーチ
ンにリターンする。
As a result, the blower 13 is feedback-controlled so that the difference ΔF becomes 0 and rotates at the accurate target rotation speed. Next, it is checked whether the current duty ratio is 100% (210), and if so, the process proceeds to step 212, and if not, the process returns to the main routine.

【0033】ステップ212では、前回の通電デューテ
ィ比が100%であったかどうかを内蔵のレジスタ(図
示せず)から調べ、そうであればステップ216に進
み、そうでなければ内蔵のタイマーをスタートして(2
14)、ステップ216に進む。ステップ216では、
このタイマーが所定のセット時間(ここでは3秒)に達
したかどうかを調べ、達していなければメインルーチン
にリターンし、達していれば、通電デューティ比のフィ
ードバック制御を行っているにもかかわらず、3秒間通
電デューティ比100%の運転を行っても目標空気流量
に達していないのはブロワ13の故障と判断して、異常
表示ランプ9を点灯し、タイマーをオフしかつヒータ1
1への通電を停止して(218)、ルーチンを終了す
る。
In step 212, it is checked from a built-in register (not shown) whether the previous energization duty ratio was 100%. If yes, the process proceeds to step 216, and if not, the built-in timer is started. (2
14) and proceeds to step 216. In step 216,
It is checked whether or not this timer has reached a predetermined set time (3 seconds in this case), and if it has not reached, it returns to the main routine, and if it has reached, the feedback control of the energization duty ratio is being performed. It is judged that the target air flow rate has not reached the target air flow rate even after the operation for 3 seconds at the energization duty ratio of 100%, the blower 13 is broken, the abnormality display lamp 9 is turned on, the timer is turned off, and the heater 1 is turned on.
The energization of 1 is stopped (218), and the routine ends.

【0034】次に、上記したバルブ閉確認サブルーチン
300を図7を参照して説明する。まず、給気流量検出
センサ(本発明でいう給気流量検出手段)19の出力信
号に基づいて、給気流量Qを読み込み(302)、読み
込んだ給気流量Qが所定流量Qt1より大きいかどうか
を調べ、以下であれば開閉弁16は閉であるとしてメイ
ンルーチンにリターンし、大きければ開閉弁16は閉不
良であるとしてバルブ開信号を不揮発メモリ(EEPR
OM)に記憶し、この不揮発メモリ(EEPROM)は
警報ランプ9を点灯するための警報信号を出力し、これ
により警報ランプ9が点灯され、その後、メインルーチ
ンにリターンする。なお、この警報信号に基づいてエン
ジンスタート禁止などの動作を行うことも当然可能であ
る。
Next, the above-mentioned valve closing confirmation subroutine 300 will be described with reference to FIG. First, the supply air flow rate Q is read based on the output signal of the supply air flow rate detection sensor (supply air flow rate detection means in the present invention) 19 (302), and whether the read supply air flow rate Q is larger than a predetermined flow rate Qt1. If it is below, it is determined that the on-off valve 16 is closed and the routine returns to the main routine. If it is larger, it is determined that the on-off valve 16 is not closed properly and the valve open signal is sent to the nonvolatile memory (EEPR).
OM), and this non-volatile memory (EEPROM) outputs an alarm signal for turning on the alarm lamp 9, whereby the alarm lamp 9 is turned on, and then the process returns to the main routine. It is of course possible to perform an operation such as prohibiting the engine start based on this alarm signal.

【0035】次に、上記したバルブ開確認サブルーチン
400を図8を参照して説明する。まず、給気流量検出
センサ(本発明でいう給気流量検出手段)19の出力信
号に基づいて、給気流量Qを読み込み(402)、読み
込んだ給気流量Qが所定流量Qt2より大きいかどうか
を調べ、未満であれば開閉弁16は開不良であるとして
バルブ閉開信号を不揮発メモリ(EEPROM)に記憶
し、この不揮発メモリ(EEPROM)は警報ランプ9
を点灯するための警報信号を出力し、これにより警報ラ
ンプ9が点灯され、ルーチンを終了する。なお、この警
報信号に基づいてエンジンスタート禁止などの動作を行
うことも当然可能である。
Next, the above-mentioned valve opening confirmation subroutine 400 will be described with reference to FIG. First, the supply air flow rate Q is read based on the output signal of the supply air flow rate detection sensor (supply air flow rate detection means in the present invention) 19 (402), and whether the read supply air flow rate Q is larger than a predetermined flow rate Qt2. If it is less than the above, it is determined that the on-off valve 16 is defectively opened, and a valve closing / opening signal is stored in the nonvolatile memory (EEPROM).
An alarm signal for lighting is output, whereby the alarm lamp 9 is turned on, and the routine ends. It is of course possible to perform an operation such as prohibiting the engine start based on this alarm signal.

【0036】一方、読み込んだ給気流量Qが所定流量Q
t2以上であれば、開閉弁16は支障なく正常に開いて
いると判定してメインルーチンにリターンする。以上説
明したように、この実施例では、ブロワ13の流量制御
に用いる給気流量検出センサ19を用いて、フィルタ再
生初期のパティキュレ−トが着火するまでの期間に給気
流量を検出し、検出した給気流量の多少により開閉弁1
6の開不良を判別する。すなわち、給気流量が少なけれ
ばその開不良と判定してヒータ11及びブロワ13への
通電を遮断する。また、エンジン運転期間の給気手段通
過流量を検出し、検出した流量の多少により開閉弁16
の閉不良を判別する。すなわち、通過流量が多ければば
その閉不良と判定して警報する。
On the other hand, the read supply air flow rate Q is the predetermined flow rate Q.
If t2 or more, it is determined that the opening / closing valve 16 is normally open without any trouble, and the process returns to the main routine. As described above, in this embodiment, the supply air flow rate detection sensor 19 used for controlling the flow rate of the blower 13 is used to detect and detect the supply air flow rate until the particulates in the initial stage of filter regeneration are ignited. Open / close valve 1 depending on the flow rate of supplied air
The open defect of 6 is determined. That is, if the supply air flow rate is small, it is determined that the opening is defective, and the power supply to the heater 11 and the blower 13 is cut off. Further, the on-off valve 16 is detected by detecting the flow rate through the air supply means during the engine operation period and depending on the detected flow rate.
Determine the closing failure of. That is, if the passing flow rate is large, it is determined that the valve is closed and an alarm is issued.

【0037】したがって、開閉弁16の開閉不良により
ヒータ11及びブロワ13の通電を遮断し、ヒータ11
及びブロワ13のの過熱を防止することができる。ま
た、ブロワ13へのパティキュレ−ト堆積による障害、
例えば回転不良や起動時負荷トルク増大などを防止する
ことができる。更に、この機能付加にもかかわらず装置
構成の複雑化を回避することができ、かつ、タイマー制
御サブルーチンの開始前に実行するので再生動作や排気
ガス浄化装置の各部への悪影響も生じない。 (実施例2)バルブ開確認サブルーチンの他の実施例を
図9を参照して説明する。
Therefore, the heater 11 and the blower 13 are de-energized due to defective opening / closing of the on-off valve 16, and the heater 11
Also, overheating of the blower 13 can be prevented. Also, obstacles due to particulate accumulation on the blower 13,
For example, it is possible to prevent rotation failure and increase in load torque at startup. Further, despite the addition of this function, it is possible to avoid complication of the device configuration, and since it is executed before the start of the timer control subroutine, there is no adverse effect on the regenerating operation or each part of the exhaust gas purification device. (Embodiment 2) Another embodiment of the valve opening confirmation subroutine will be described with reference to FIG.

【0038】この実施例では、フィルタ予熱時の温度セ
ンサ6の検出温度に基づいて開閉弁16の開不良を検出
するものである。まず、ステップ1163で予熱した
後、温度センサ6から温度を検出する(502)。もし
開閉弁16が閉じていれば、ヒータ11は給気により冷
却、放熱しないために、ヒータ11の近傍に設置された
温度センサ6は開閉弁16が開の場合よりも格段に高温
を検出する。
In this embodiment, the opening failure of the on-off valve 16 is detected based on the temperature detected by the temperature sensor 6 when the filter is preheated. First, after preheating in step 1163, the temperature is detected from the temperature sensor 6 (502). If the on-off valve 16 is closed, the heater 11 does not cool or radiate heat by supplying air, so the temperature sensor 6 installed near the heater 11 detects much higher temperature than when the on-off valve 16 is open. .

【0039】そこで、検出した温度Tが所定温度Ttよ
り大きいかどうかを調べ、以下であれば開閉弁16は開
であるとしてメインルーチンにリターンし、大きければ
開閉弁16は開不良であるとしてバルブ開信号を不揮発
メモリ(EEPROM)に記憶し、この不揮発メモリ
(EEPROM)は警報ランプ9を点灯するための警報
信号を出力し、これにより警報ランプ9が点灯され、そ
の後、ルーチンを終了する。
Therefore, it is checked whether or not the detected temperature T is higher than a predetermined temperature Tt. If it is below, it is determined that the open / close valve 16 is open and the process returns to the main routine. The open signal is stored in a non-volatile memory (EEPROM), and the non-volatile memory (EEPROM) outputs an alarm signal for turning on the alarm lamp 9, whereby the alarm lamp 9 is turned on, and then the routine ends.

【0040】以上説明したように、この実施例では、パ
ティキュレ−ト捕集量算出に用いた温度センサ6を用い
て、フィルタ再生初期のパティキュレ−トが着火するま
での期間にフィルタ近傍温度を検出し、検出した温度に
より開閉弁16の開不良を判別する。すなわち、温度が
高ければ開不良と判定してヒータ11及びブロワ13へ
の通電を遮断する。
As described above, in this embodiment, the temperature sensor 6 used for calculating the trapped amount of the particulates is used to detect the temperature near the filter during the period until the particulates ignite in the initial stage of filter regeneration. Then, the opening failure of the on-off valve 16 is determined based on the detected temperature. That is, if the temperature is high, it is determined that the opening is defective, and the power supply to the heater 11 and the blower 13 is cut off.

【0041】したがって、開閉弁16の開不良によりヒ
ータ11及びブロワ13への通電を遮断して、ヒータ1
1及びブロワ13の過熱を防止することができる。更
に、この機能付加にもかかわらず装置構成の複雑化を回
避することができ、かつ、タイマー制御サブルーチンの
開始前に実行するので再生動作や排気ガス浄化装置の各
部への悪影響も生じない。
Therefore, the heater 11 and the blower 13 are de-energized due to a defective opening of the on-off valve 16, and the heater 1
1 and the blower 13 can be prevented from overheating. Further, despite the addition of this function, it is possible to avoid complication of the device configuration, and since it is executed before the start of the timer control subroutine, there is no adverse effect on the regenerating operation or each part of the exhaust gas purification device.

【0042】なお、図2のステップ100は本発明でい
うパティキュレ−ト捕集量算出手段であり、ステップ1
02は本発明でいうフィルタ再生時期判定手段であり、
ステップ400及び図9のフローチャートは本発明でい
う開閉弁開不良判別手段であり、ステップ406、50
6は本発明でいう再生中断手段であり、ステップ300
は本発明でいう開閉弁閉不良判別手段であり、ステップ
306は警報手段である。
Note that step 100 in FIG. 2 is a means for calculating the amount of collected particulates referred to in the present invention.
Reference numeral 02 is a filter regeneration timing determining means in the present invention,
Step 400 and the flowchart of FIG. 9 are the on-off valve opening failure determination means according to the present invention, and steps 406 and 50.
Reference numeral 6 is a reproduction interruption means in the present invention, and step 300
Is the on-off valve closing failure determination means in the present invention, and step 306 is an alarm means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排気ガス浄化装置の一実施例を示すブ
ロック図、
FIG. 1 is a block diagram showing an embodiment of an exhaust gas purification device of the present invention,

【図2】その再生動作を示すフローチャート、FIG. 2 is a flowchart showing the reproducing operation,

【図3】その再生動作を示すフローチャート、FIG. 3 is a flowchart showing the reproducing operation,

【図4】その再生動作を示すフローチャート、FIG. 4 is a flowchart showing the reproduction operation,

【図5】その再生動作を示すフローチャート、FIG. 5 is a flowchart showing the reproducing operation,

【図6】その再生動作を示すフローチャート、FIG. 6 is a flowchart showing the reproducing operation,

【図7】その再生動作を示すフローチャート、FIG. 7 is a flowchart showing the reproducing operation,

【図8】その再生動作を示すフローチャート、FIG. 8 is a flowchart showing the reproducing operation,

【図9】実施例2の再生動作を示すフローチャート。FIG. 9 is a flowchart showing a reproducing operation of the second embodiment.

【符号の説明】[Explanation of symbols]

2はフィルタ、6は温度センサ(温度検出手段)、7、
17は圧力センサ(圧力検出手段)、8はコントローラ
(パティキュレ−ト捕集量算出手段、フィルタ再生時期
判定手段、通電制御手段、開閉弁開不良判別手段、再生
中断手段、開閉弁閉不良判別手段)、11はヒータ(電
熱手段)、13はブロワ(給気手段)、18は回転数セ
ンサ(回転数検出手段)、9は警報ランプ(警報手
段)。
2 is a filter, 6 is a temperature sensor (temperature detecting means), 7,
Reference numeral 17 is a pressure sensor (pressure detection means), 8 is a controller (particulate trap collection amount calculation means, filter regeneration timing determination means, energization control means, open / close valve open failure determination means, regeneration interrupt means, open / close valve closed failure determination means. ), 11 is a heater (electric heating means), 13 is a blower (air supply means), 18 is a rotation speed sensor (revolution speed detection means), and 9 is an alarm lamp (warning means).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ディ−ゼルエンジンの排気経路に配設され
たフィルタと、 前記フィルタの加熱により前記フィルタに捕集されたパ
ティキュレ−トを燃焼させて前記フィルタを再生する電
熱手段と、 給気管路を通じて前記フィルタの上流側の前記排気経路
に外部空気を給気する給気手段と、 前記給気手段の出口側にて前記給気管路に配設される開
閉弁と、 前記電熱手段の近傍に配設された温度検出手段と、 前記温度検出手段が検出する排気ガス温度に基づいて前
記フィルタのパティキュレ−ト捕集量を算出するパティ
キュレ−ト捕集量算出手段と、 前記パティキュレ−ト捕集量に基づいてフィルタ再生時
期を判定するフィルタ再生時期判定手段と、 前記給気手段の流量を検出する流量検出手段と、 前記電熱手段及び給気手段への通電を所定の順序で制御
するとともに、前記流量検出手段が検出する給気流量に
基づいて前記フィルタ再生時の給気流量をフィードバッ
ク制御する通電制御手段と、 前記給気手段への通電がなされた後、前記パティキュレ
−トが着火するまでの期間にて検出した前記給気手段の
給気流量に基づいて前記開閉弁の開不良を判別する開閉
弁開不良判別手段と、 前記開不良時に前記電熱手段及び前記給気手段への通電
を遮断する再生中断手段と、 を備えることを特徴とする排気ガス浄化装置。
1. A filter arranged in an exhaust passage of a diesel engine, an electric heating means for regenerating the filter by burning particulates collected by the filter by heating the filter, and an air supply pipe. An air supply means for supplying external air to the exhaust path upstream of the filter through a passage, an opening / closing valve arranged in the air supply pipeline on the outlet side of the air supply means, and in the vicinity of the electric heating means Temperature detecting means disposed in the filter, particulate collection amount calculating means for calculating the particulate collection amount of the filter based on the exhaust gas temperature detected by the temperature detecting means, and the particulate collection. A filter regeneration timing determining means for determining a filter regeneration timing based on the collected amount, a flow rate detecting means for detecting a flow rate of the air supplying means, and a predetermined energization to the electric heating means and the air supplying means. An energization control unit that controls in sequence and feedback-controls the air supply flow rate during the filter regeneration based on the air supply flow rate detected by the flow rate detection unit; and, after the air supply unit is energized, the particulate -An open / close valve open failure determination means for determining an open failure of the open / close valve based on the air supply flow rate of the air supply means detected during the period until the ignition of the gate, and the electric heating means and the supply air when the open failure occurs. An exhaust gas purifying device comprising: a regeneration interrupting unit that interrupts energization to the air unit.
【請求項2】ディ−ゼルエンジンの排気経路に配設され
たフィルタと、 前記フィルタの加熱により前記フィルタに捕集されたパ
ティキュレ−トを燃焼させて前記フィルタを再生する電
熱手段と、 給気管路を通じて前記フィルタの上流側の前記排気経路
に外部空気を給気する給気手段と、 前記給気手段の出口側にて前記給気管路に配設される開
閉弁と、 前記電熱手段の近傍に配設された温度検出手段と、 前記温度検出手段が検出する排気ガス温度に基づいて前
記フィルタのパティキュレ−ト捕集量を算出するパティ
キュレ−ト捕集量算出手段と、 前記パティキュレ−ト捕集量に基づいてフィルタ再生時
期を判定するフィルタ再生時期判定手段と、 前記電熱手段及び給気手段への通電を所定の順序で制御
する通電制御手段と、 前記給気手段への通電がなされた後、前記パティキュレ
−トが着火するまでの期間にて検出した前記温度検出手
段の検出温度に基づいて前記開閉弁の開不良を判別する
開閉弁開不良判別手段と、 前記開不良時に前記電熱手段及び前記給気手段への通電
を遮断する再生中断手段と、 を備えることを特徴とする排気ガス浄化装置。
2. A filter arranged in an exhaust path of a diesel engine, an electric heating means for burning particulates collected by the filter by heating the filter to regenerate the filter, and an air supply pipe. An air supply means for supplying external air to the exhaust path upstream of the filter through a passage, an opening / closing valve arranged in the air supply pipeline on the outlet side of the air supply means, and in the vicinity of the electric heating means Temperature detecting means disposed in the filter, particulate collection amount calculating means for calculating the particulate collection amount of the filter based on the exhaust gas temperature detected by the temperature detecting means, and the particulate collection. A filter regeneration timing determining means for determining a filter regeneration timing based on the collected amount; an energization control means for controlling energization of the electric heating means and the air supplying means in a predetermined order; and the air supplying means. After the power is turned on, the open / close valve open failure determination means for determining the open failure of the open / close valve based on the temperature detected by the temperature detection means in the period until the particulate is ignited, and the open An exhaust gas purifying device, comprising: a regeneration interruption means for interrupting the electric power supply to the electric heating means and the air supply means in the event of a failure.
【請求項3】ディ−ゼルエンジンの排気経路に配設され
たフィルタと、 前記フィルタの加熱により前記フィルタに捕集されたパ
ティキュレ−トを燃焼させて前記フィルタを再生する電
熱手段と、 給気管路を通じて前記フィルタの上流側の前記排気経路
に外部空気を給気する給気手段と、 前記給気手段の出口側にて前記給気管路に配設される開
閉弁と、 前記電熱手段の近傍に配設された温度検出手段と、 前記温度検出手段が検出する排気ガス温度に基づいて前
記フィルタのパティキュレ−ト捕集量を算出するパティ
キュレ−ト捕集量算出手段と、 前記パティキュレ−ト捕集量に基づいてフィルタ再生時
期を判定するフィルタ再生時期判定手段と、 前記給気手段の流量を検出する流量検出手段と、 前記電熱手段及び給気手段への通電を所定の順序で制御
するとともに、前記流量検出手段が検出する給気流量に
基づいて前記フィルタ再生時の給気流量をフィードバッ
ク制御する通電制御手段と、 エンジン運転時の前記流量検出手段の検出流量に基づい
て前記開閉弁の閉不良を判別する開閉弁閉不良判別手段
と、 前記閉不良時に警報を出力する警報手段と、 を備えることを特徴とする排気ガス浄化装置。
3. A filter arranged in an exhaust path of a diesel engine, an electric heating means for regenerating the filter by burning particulates collected by the filter by heating the filter, and an air supply pipe. An air supply means for supplying external air to the exhaust path upstream of the filter through a passage, an opening / closing valve arranged in the air supply pipeline on the outlet side of the air supply means, and in the vicinity of the electric heating means Temperature detecting means disposed in the filter, particulate collection amount calculating means for calculating the particulate collection amount of the filter based on the exhaust gas temperature detected by the temperature detecting means, and the particulate collection. A filter regeneration timing determining means for determining a filter regeneration timing based on the collected amount, a flow rate detecting means for detecting a flow rate of the air supplying means, and a predetermined energization to the electric heating means and the air supplying means. Based on the flow rate detected by the flow rate detection means during engine operation, the current control means for controlling the supply flow rate during the filter regeneration based on the supply air flow rate detected by the flow rate detection means. An exhaust gas purifying apparatus comprising: an on-off valve closing failure determination unit that determines whether the opening and closing valve is closed; and an alarm unit that outputs an alarm when the closing failure occurs.
JP5289275A 1993-11-18 1993-11-18 Exhaust gas purification device Pending JPH07139335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289275A JPH07139335A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289275A JPH07139335A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
JPH07139335A true JPH07139335A (en) 1995-05-30

Family

ID=17741061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289275A Pending JPH07139335A (en) 1993-11-18 1993-11-18 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JPH07139335A (en)

Similar Documents

Publication Publication Date Title
JP2000304255A (en) Supply and exhaust cylinder clogging detecting device for forced supply exhaust type combustion device
JPH0711936A (en) Exhaust gas purification device
KR0148603B1 (en) An exhaust gas purifier
JPH07139335A (en) Exhaust gas purification device
JPH07180528A (en) Exhaust emission control device
JP3187183B2 (en) Exhaust gas purification device
JPH0711935A (en) Exhaust gas purification device
JPH094917A (en) Fan
JPH06330729A (en) Exhaust gas cleaner
JPH07139334A (en) Exhaust gas purification device
JPH06330728A (en) Exhaust gas cleaner
JPH06330732A (en) Exhaust gas cleaner
JPH0777028A (en) Exhaust gas purifier
JPH07224637A (en) Exhaust emission control device
JPH06341311A (en) Exhaust emission control device
JPH0783030A (en) Exhaust emission control device
JPH06341310A (en) Exhaust emission control device
JPH06341312A (en) Exhaust emission control device
JP3698534B2 (en) Gas detector
JPH02133751A (en) Hot water supply abnormality detection method
KR0163465B1 (en) Combustion instrument
JP3211510B2 (en) Exhaust gas purification device
JP3294346B2 (en) Exhaust gas purification device
JPH06330731A (en) Exhaust gas cleaner
JPH01170706A (en) Reburning device in particulate trap